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Abstract. To reduce a graph problem to its planar version, a standard
technique is to replace crossings in a drawing of the input graph by
planarizing gadgets. We show unconditionally that such a reduction is
not possible for the perfect matching problem and also extend this to
some other problems related to perfect matching. We further show that
there is no planarizing gadget for the Hamiltonian cycle problem.

1 Introduction

The perfect matching problem is a very fundamental computational problem (see,
e.g., [17, 23]). Edmonds [8] developed a polynomial-time algorithm, but still it is
unknown whether there is an efficient parallel algorithm for the perfect matching
problem, i.e., whether it is in NC. In their seminal result, Mulmuley, Vazirani,
and Vazirani [27] isolated a perfect matching by assigning random weights to
the edges. This yielded a randomized parallel algorithm for the problem, it is
in RNC. A derandomization of this algorithm is a challenging open problem.

There are NC algorithms for the perfect matching problem for special graph
classes, for example for regular bipartite graphs [22], dense graphs [3], and
strongly chordal graphs [4].

Here we consider planar graphs. Planarity is an interesting property with
respect to the perfect matching problems, and seems to change the complexity
of the problem drastically:

– Valiant [29] showed that counting the number of perfect matchings in a graph
is a hard problem, namely it is #P-complete,

– whereas for planar graphs, Kasteleyn [18] showed that a Pfaffian orientation
can be computed in polynomial time, which leads to a polynomial time
algorithm for counting the number of perfect matchings. Vazirani [30] showed
that the problem is in fact in NC.
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In contrast, no NC algorithm is known for the construction of a perfect
matching in planar graphs. This is a puzzling state of affairs because, intuitively,
counting seems to be a harder problem than construction. There is, however, an
RNC algorithm for the construction problem [27].

Much work has been done on the perfect matching for bipartite planar graphs
[26, 24, 21, 6, 13, 7]. The current best bound on the problem is unambiguous
logspace, UL, for decision and construction [7]. Note that for the bipartite perfect
matching problem no better bounds are known than for the general perfect
matching problem.

In this paper, we investigate the question of whether there is a logspace or
NC reduction from the perfect matching problem to the planar perfect matching
problem. It is quite possible that such a reduction exists.

– Such a reduction would be a breakthrough result because it would deran-
domize the RNC algorithm for perfect matching. Many researchers conjec-
ture that such a derandomization is possible (see, e.g., [1]). Hence, this could
be one way of doing it.

– A reduction does not necessarily maintain the number of perfect matchings.
Hence, it does not imply an unexpected collapse of complexity classes.

An obvious approach to such a reduction is a planarizing gadget : a planar
graph that locally replaces the crossing edges of a given drawing of a graph.
It is natural to suspect that any more globally acting reduction would be very
involved to construct. Examples for planarizing gadgets are the reductions of
3-colorability and vertex cover to their planar versions [10]. In contrast, because
of the four color theorem, a planarizing gadget for k-colorability cannot exist for
k ≥ 4. Datta et al. [5] have recently used a planarizing gadget to investigate the
complexity of computing the determinant of a matrix, which is the adjacency
matrix of a planar graph. They construct a gadget that reduces the general
determinant to the planar determinant. Therefore, both problems have the same
complexity, they are GapL-complete. The analogous result has been shown for
the permanent, again via some planarizing gadget. Therefore, the permanent
and the planar permanent are #P-complete.

Our first result is to construct an obstacle in getting an NC algorithm for the
perfect matching problem: we show that planarizing gadgets for perfect matching
do not exist. We extend the result to unique perfect matching, weighted perfect
matching, exact perfect matching, and counting modulo k perfect matching.

The planar Hamiltonian cycle problem was shown to be NP-complete by
a direct reduction from 3-SAT [11]. In the Computational Complexity Blog,
Gasarch [12] asks whether there is a reduction from HAM to its planar version
via some planarizing gadget. In a comment to the blog, David Johnson finds
this to be an interesting open problem. Using similar arguments as we used for
the perfect matching problem, we give a negative answer to Gasarch’s question:
there is no planarizing gadget for the Hamiltonian cycle problem. Recently we
discovered that this observation was made independently and earlier in a post
by Burke [2].
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2 Preliminaries

Let G = (V,E) be an undirected graph. A matching in G is a set M ⊆ E, such
that no two edges in M have a vertex in common. A matching M is called perfect
if every vertex occurs as an endpoint of some edge in M . In the decision problem
of perfect matching , one has to decide whether G has a perfect matching,

PM = {G | G has a perfect matching}.

For a weight function w : E → IN of the graph, the weight of a matching M is
defined as w(M) =

∑
e∈M w(e).

Sequential algorithms to compute maximum matchings use augmenting path
techniques [15]. They are described in many textbooks, see for example [20, 17].
We mention some simple facts. Let M and M ′ be matchings in a graph G =
(V,E). Consider the subgraph G′ = (V,M 4M ′) of G that contains only the
edges in the symmetric difference ofM andM ′. This graph consists of alternating
paths (with respect to M and M ′). That is, the paths have edges alternating
from M and M ′. Note that some of these paths can be cycles (i.e., start and
end vertex being the same). Also, they are simple and pairwise disjoint. If M
and M ′ are perfect matchings in G, then M 4M ′ consists of alternating cycles
only.

Problems. Let us now define the other matching problems which we consider.

– Unique perfect matching : Given a graph G, decide whether G has precisely
one perfect matching.

– Weighted perfect matching : Given a graph G, a weight function w on the
edges and a number W , decide whether there is a perfect matching in G of
weight at most W .

– Exact perfect matching : Given a graph G where every edge is colored either
red or blue, and a number k, decide whether there is a perfect matching in G
with exactly k red edges.

– Weighted exact perfect matching : Given a graph G, a weight function w on
the edges, and a number W , decide whether there is a perfect matching in G
of weight exactly W .

– Modk perfect matching : Given a graph G, decide whether the number of
perfect matchings in G is not zero modulo k.

The unique perfect matching problem is in P [9]. For bipartite graphs it is
in NC [19, 14], and for planar graphs it is also in NC [30]. It is an open problem
whether the unique perfect matching problem is in NC.

The weighted perfect matching problem is in P [25, 31]. If the weights are
polynomially bounded, then the problem is in NC for planar graphs [30].

The exact perfect matching problem is a very puzzling problem: it is not even
known to be in P (see, e.g., [28, 32]). It is known to be in RNC [27] and in NC
for planar graphs [30].
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The weighted exact perfect matching problem with polynomially bounded
weights is (logspace) equivalent to the exact perfect matching problem. To re-
duce from the latter to the former we do the following: in a given red-blue
graph G, assign weight 1 to each red edge and weight 0 to each blue edge. Then
a perfect matching with weight k is a perfect matching with k red edges in G.
The reduction in the other direction is also simple: in a given weighted graph G,
replace each edge e = (a, b) with a simple path of length 2w(e) − 1 from a
to b. Color the edges of the path with red and blue colors alternatingly, such
that there are w(e) red and w(e) − 1 blue edges. Only polynomial number of
edges are added. A perfect matching with W red edges corresponds to a perfect
matching of weight W in G.

In contrast, the weighted exact perfect matching problem in general, i.e., with
weights exponential in the number of nodes, is NP-complete. This is mentioned
in [28] without a proof. In fact, we can present a reduction from the subset
sum problem which shows that the problem becomes hard already with a simple
underlying graph structure: the problem is NP-complete for weighted graphs
that consist of disjoint copies of 4-cycles. Hence, in this case the general problem
reduces to the planar problem. As we show, such a reduction is not possible
using planarizing gadgets.

The counting class #P is defined as the class of functions that can be written
as accM (x) : Σ∗ → IN, where M is a nondeterministic polynomial time Turing
machine and accM (x) is the number of accepting computations of M on input x.
As shown in [29], it is complete for #P to compute pm(G), the number of perfect
matchings of a given bipartite graph G [29]. Counting modulo some integer k
leads to the complexity class ModkP of all problems that can be written as

{x ∈ Σ∗ | accM (x) 6≡ 0 (mod k)}.

⊕P is a more common name for Mod2P. Over GF(2), the permanent of a matrix
is the same as the determinant. That is, Mod2 perfect matching in bipartite
graphs can be computed in NC. Therefore, Mod2 perfect matching is unlikely
to be complete for ⊕P. On the other hand, it can be seen that Modk perfect
matching is complete for ModkP for every odd k ≥ 3 (cf. Valiant [29])

Planarizing Gadgets. Let G be a given non-planar graph and consider a
drawing of G in the plane. A planarizing gadget is a planar graph which is used
to replace crossing edges of this drawing of G as shown in Fig. 1. The gadget
graph has four designated vertices v1, . . . , v4, called external vertices which are
identified with the corresponding vertices from the crossing. The other vertices
of the gadget are called internal.

The gadget is independent of the structure of the graph. Hence, every crossing
of edges is replaced by a copy of the same gadget. Let G′ be the resulting planar
graph. The gadget is called planarizing for a language L of graphs if

G ∈ L⇐⇒ G′ ∈ L. (1)

More generally L may be a language of pairs 〈G, k〉, where G is a (possibly
weighted) graph and k is a parameter. Then in the planarizing reduction it is
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Fig. 1. Planarizing gadget: the two crossing edges on the left are replaced by a planar
graph which is indicated by the gray box on the right.

suitable to allow a modification of the parameter k with respect to the number
of gadgets introduced by the reduction. We call the (possibly weighted) gadget
graph planarizing for L if 〈G, k〉 ∈ L⇐⇒ 〈G′, k′〉 ∈ L, where k′ may depend on
k, the number t of crossings in the considered drawing of G and the number n
of nodes. Also, in case of weighted graphs the weights in the gadget may depend
on the weights of the crossing edges and the reduction may modify the weights
of G using a linear function depending on t and n.

For our purpose where we want to show that no planarizing gadget exists,
it suffices to consider the case when each edge crosses at most one other edge.
We will show that even for this case there is no planarizing gadget for various
languages L.

3 Perfect Matching Problems

First, we look more closely at the properties of a planarizing gadget for perfect
matching problems.

Note that it suffices to consider the case where the gadget contains a single
edge connected to vi, for i ∈ [4] = {1, 2, 3, 4}. For if there would be several
connections from nodes of the gadget to vi, we could introduce a new node yi to
the gadget and redirect these edges to yi instead of vi. Then we add one more
node xi to the gadget and connect it via the path (vi, xi, yi). Now this modified
gadget has the structure from Fig. 2 and there is a direct correspondence between
the perfect matchings in both gadgets.

v3

v2 v1

v4

v3

v2

v4

v1

e

e2

v′3

v′2

e′

e3

e1

e4

v′1

v′4

Fig. 2. More details on the planarizing gadget.

As shown in Fig. 2, let e = (v2, v4) and e′ = (v1, v3) be the crossing edges
in G and let v′i be the node in the gadget that is connected with vi via edge ei,
for i ∈ [4].
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Definition 1. For I ⊆ [4] let MI be the set of matchings M of a gadget that
cover all internal nodes of the gadget, and M ∩ {e1, e2, e3, e4} = { ei | i ∈ I}.

The legal matchings are the matchings that belong to a set in L, where

L = {M∅,M{1,3},M{2,4},M[4]}.

The illegal matchings are the matchings that belong to a set in I, where

I = {M{1,2},M{2,3},M{3,4},M{1,4}}.

The next Lemma 1 states that in a planarizing gadget for PM legal matchings
need to exists and illegal matchings cannot exist which is the actual reason
behind naming these classes as legal and illegal. The existence of legal matchings
also implies that the gadget needs to have an even number of nodes. This directly
implies that MI = ∅ for odd |I| and we do not need to consider these sets.

Lemma 1. A gadget is planarizing for PM only if

– each set in L is non-empty, and
– there is no illegal matching.

Proof . Consider Fig. 3. Parts (a), (b), and (c) show thatM[4],M{2,4}, andM∅

(a) (b) (c) (d)
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Fig. 3. Graphs G with a perfect matching that contains (a) both, (b) one, and (c)
none of the crossing edges. Matching edges are drawn with bold lines. Note that, for
graphs G′ to have a perfect matching, the gadget should have the legal matchings
which contain (a) all four, (b) two opposite, and (c) none of the edges e1, . . . , e4. In
(d), graph G has no perfect matching. If the gadget would allow the illegal perfect
matching that contains e3, e4 and not e1, e2, then the resulting graph G′ would have a
perfect matching. Hence, such a gadget does not work.

should be non-empty (respectively). The case M{1,3} is symmetric to M{2,4}.
Part (d) shows that a gadget which allows an illegal matching (a matching in

M{3,4}) is not planarizing for PM. The cases where two other neighboring edges
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of e1, . . . , e4 are used, are symmetric. Therefore, no illegal matching is allowed
to exist. �

In the proof of Lemma 1, we argued with the graphs shown in Fig. 3. For sim-
plicity, these graphs are planar, but are drawn with two edges crossing. Clearly,
the gadget has to work also in such cases, and hence, we do not need to deal with
more complicated non-planar graphs. However, it is easy to extend our graphs to
non-planar graphs in such a way, that the perfect matchings are preserved: Let
G be one of the above graphs. For every pair of non-adjacent nodes u, v in G,
we add two additional nodes xu,v, yu,v which are connected by an edge, and con-
nect u and v with yu,v. Let G∗ be the resulting graph. Since the only neighbor
of xu,v is yu,v, every perfect matching in G∗ has to use edge (xu,v, yu,v). The
other edges in the perfect matching are all from G. Hence, perfect matchings
in G and G∗ differ only by the newly introduced edges (xu,v, yu,v).

If G has n nodes, then G∗ has the complete graph Kn as minor. Therefore,
G∗ is non-planar for n ≥ 5. Only the graph in Fig. 3 (a) has just 4 nodes. But it
is easy to enlarge it by a few extra nodes and still cover the same case. Hence,
things do not change if we restrict our arguments to non-planar graphs only.

3.1 Perfect Matching

Next, we show that no planarizing gadget for the perfect matching problem
exists. The proof constructs an illegal perfect matching out of legal ones.

Theorem 1. There is no planarizing gadget for the perfect matching problem.

Proof . Suppose there is a planarizing gadget. We refer to the denotation in Fig. 2
and Definition 1. According to Lemma 1 there are legal matchings M1,3 ∈M{1,3}
and M2,4 ∈M{2,4}.

Consider the subgraph with edges M1,34M2,4 of the gadget: as explained
in the preliminary section, M1,34M2,4 consists of some alternating cycles and
paths. The nodes v1, v2, v3, v4 must lie on alternating paths. Since the two match-
ings cover all nodes in the gadget, there are precisely two disjoint alternating
paths p and q, each of which connects two nodes in {v1, v2, v3, v4}. The remaining
edges of M1,34M2,4 form alternating cycles.

Let p denote the path that contains node v1. We distinguish three cases:

(i) Suppose that p connects v1 with v3. Therefore, q connects v2 with v4. As
we assume that there is a planar drawing of the gadget where v1, v2, v3, v4
are placed like in Fig. 2, the two paths must cross in at least one common
vertex. Since p and q are disjoint, this is not possible.

(ii) Suppose that p = p1,2 connects v1 with v2, and q = p3,4 connects v3 with v4.
From M1,3 and M2,4 we now construct two illegal matchings M2,3 and M1,4

by exchanging the edges on path p1,2 between these two sets. Let E(p1,2)
denote the set of edges on path p1,2. We define

M2,3 = M1,34E(p1,2).
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Fig. 4. Matchings M1,3 and M2,4 are indicated, M2,4 with bold edges. The upper
alternating path p = p1,2 connects v1 with v2, the lower path q = p3,4 connects v3
with v4. The illegal matching M2,3 is defined as the bold edges on p1,2 and the non-
bold edges on p3,4 and the other edges from M1,3 that are not on these paths. M1,4

consists of the remaining edges on both paths and the other edges from M2,4.

Similarly we define M1,4 = M2,44E(p1,2). Fig. 4 gives an example of the
construction. Now both matchings M1,3 and M2,4 cover each internal node
of the gadget, and
– e2, e3 ∈M2,3 and e1, e4 6∈M2,3 and
– e1, e4 ∈M1,4 and e2, e3 6∈M1,4.

Hence, M2,3 and M1,4 are illegal. Therefore, this case is not possible either.
(iii) The case that p connects v1 with v4 is analogous to case (ii).

Hence, all cases lead to a contradiction. Therefore, no such gadget exists. �

3.2 Unique Perfect Matching

A planarizing gadget for the unique perfect matching problem needs to have
the property that in each of the four legal cases, the matching inside the gadget
must be unique, i.e., each set in L of Definition 1 contains exactly one element.
Otherwise, it would not maintain uniqueness in Fig. 3 (a)–(c). However, as shown
in the proof of Theorem 1, we cannot avoid getting additional illegal matchings
in the gadget. This can be used to destroy the uniqueness in G′. The details can
be found in the full version of the paper.

Corollary 1. There is no planarizing gadget for the unique perfect matching
problem.

3.3 Weighted Perfect Matching

A planarizing gadget for weighted perfect matching may have illegal matchings.
But it can be seen that in each classM∈ L of legal matchings there is a matching
M ∈ M whose weight is smaller than the weight of each illegal matching. The
proof of Theorem 1 can be extended to show that this is not possible. The details
can be found in the full version of the paper.

Corollary 2. There is no planarizing gadget for the weighted perfect matching
problem.
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3.4 Exact Perfect Matching

Corollary 2 says that no planarizing gadget can preserve the minimum weight
perfect matching. But it might still be possible that a gadget can preserve some
exact weight, which is neither minimum nor maximum.

When replacing crossings of equal weight edges, it can be seen that there are
matchings M1,3 ∈ M{1,3} and M2,4 ∈ M{2,4} with some fixed weights and all
illegal matchings in the gadget have different weights. The proof of Theorem 1
can be extended to show that the gadget has two illegal matchings M2,3, M1,4

such that w(M2,3) + w(M1,4) = w(M1,3) + w(M2,4).
If a graph G is drawn with t ≥ 2 crossings, then we will have t gadgets in G′.

When the reduction increases the weight by some Wt then there is a combination
with two illegal matchings that gives the same increasing weight. We can use this
to show that there is no planarizing gadget that works correctly for all graphs.
A detailed proof can be found in the full version of the paper.

Theorem 2. There is no planarizing gadget for the weighted exact perfect
matching problem.

The proofs of Corollary 2 and Theorem 2 already show the non-existence of a
planarizing gadget for the case when all edge weights are equal which corresponds
to the perfect matching problem. Hence, we can formulate the following corollary.

Corollary 3. There is no planarizing gadget that reduces the perfect matching
problem to the planar weighted perfect matching problem or the planar weighted
exact perfect matching problem.

Similarly the exact perfect matching problem is a special case of the exact
weighted perfect matching problem.

Corollary 4. There is no planarizing gadget for the exact perfect matching
problem. Moreover, there is no planarizing gadget that reduces the exact per-
fect matching problem to the planar weighted exact perfect matching problem.

3.5 Modk Perfect Matching

In the preliminary section we already mentioned that Modk perfect matching
(for short, Modk-PM), is complete for ModkP for odd k ≥ 3. Hence, there is
no planarizing gadget for Modk-PM nor any other NC computable planarizing
reduction, unless ModkP = NC, for odd k ≥ 3. We prove the non-existence of a
planarizing gadget independent of the ModkP 6= NC assumption, for k ≥ 3.

For a gadget to reduce a graph G to its planarized version G′, we must have
pm(G) ≡ 0 (mod k) if and only if pm(G′) ≡ 0 (mod k). From the graphs in
Fig. 3 it follows that we must have

– |M| 6≡ 0 (mod k) for all M∈ L and
– |M| ≡ 0 (mod k) for all M∈ I.

9



A planarizing gadget for Mod2-PM has been provided by [5]. In the following
lemma we observe that the legal types of matching classes all have the same size
modulo k, say a, and a is relatively prime to k. The proof is omitted here.

Lemma 2. For a planarizing gadget for Modk-PM there is a number a such
that |M| ≡ a (mod k) for allM∈ L. Moreover, gcd(a, k) = 1.

Our next goal is to construct a bijection between pairs of legal and illegal
matchings of a gadget. Recall the proof of Theorem 1: we started with two legal
matchings M0 ∈M1,3 and M1 ∈M2,4. Then we defined p to be the alternating
path in M04M1 that contains node v1, and matchings M2 = M04E(p) and
M3 = M14E(p). Path p either ends in v2 or in v4.

– If p ends in v2 then M2 ∈M2,3 and M3 ∈M1,4,
– if p ends in v4 then M2 ∈M3,4 and M3 ∈M1,2.

Now observe that this process is reversible: we have M24M3 = M04M1. That
is,M24M3 defines the same alternating path p through v1 andM24E(p) = M0

and M34E(p) = M1.
The same argument will work if we start with legal matchings M0 ∈M∅ and

M1 ∈M[4]. Hence, we constructed a bijection between the following sets:

S = (M∅ ×M[4]) ∪ (M{1,3} ×M{2,4})
T = (M{1,2} ×M{3,4}) ∪ (M{1,4} ×M{2,3})

We conclude:

Lemma 3. For a planarizing gadget we have |S| = |T |.

Theorem 3. There is no planarizing gadget for Modk-PM for k ≥ 3.

Proof . By Lemma 2, we have |S| ≡ 2a2 (mod k). Since T contains only illegal
classes of matchings, we have |T | ≡ 0 (mod k). By Lemma 3, it follows that
2a2 ≡ 0 (mod k). But since gcd(a, k) = 1, this is not possible for k ≥ 3. �

4 Hamiltonian Cycle

A Hamiltonian cycle in graph G is a simple cycle that visits every node in G.
The Hamiltonian cycle problem, HAM, is to decide whether a given graph G has
a Hamiltonian cycle. A proof can be found in the full version of the paper.

Theorem 4. There is no planarizing gadget for the Hamiltonian cycle problem.

In a straightforward way one can modify the proof of Theorem 4 to obtain
similar results for the (directed) Hamiltonian path problem and the directed
Hamiltonian cycle problem.

Corollary 5. There is no planarizing gadget for the directed Hamiltonian cycle
problem nor for the (directed) Hamiltonian path problem.

A similar argument shows that there is no planarizing gadget for reachability.

10



5 Discussion

Our approach allowed us to show unconditionally that there are no planarizing
gadgets for various graph problems. Clearly, this does not imply that there is
no logspace reduction from the general problem to its planar version. For ex-
ample, for the Hamiltonian cycle problem or the exact weighted perfect match-
ing problem with large weights, the general and the planar versions are both
NP-complete. Nonetheless, we think that the observations are interesting and
give some new insight into the problems. Moreover, for the problems like perfect
matching where it is not clear whether the problem reduces to its planar version,
we eliminated some plausible approach to a reduction.

In our approach, we assumed that the planarizing gadget should work for
basically every drawing of the input graph in the plane. A major improvement
would be to show that there is no (logspace computable) drawing of the input
graph for which a planarizing gadget exists. In fact such a statement can be
made for k-colorability with k ≥ 4: there is no planarizing gadget for the 5-
clique K5, irrespective of the drawing of K5. Such a gadget would guaranty that
the planarized version K ′5 is non-4-colorable, which is not possible. On the other
hand, such an unconditional statement does not hold for the perfect matching
problem nor for the Hamiltonian cycle problem. For these problems there are
drawings that allow a planarizing gadget: If one is able to compute a Hamiltonian
cycle while computing a drawing of a graph, one can draw the graph such that all
edges that belong to the Hamiltonian cycle do not cross any other edge (start by
drawing the cycle as circle). Similarly, for the perfect matching problem there
is a drawing where matching edges do not have crossings. For such drawings
the empty graph is a planarizing gadget (just remove the crossing edges). The
following question arises: if one assumes that the Hamiltonian cycle, resp. the
perfect matching, of a graph G cannot be computed in logspace, can one show
that there is no planarizing gadget for any logspace computable drawing of G?

Acknowledgment We thank an anonymous referee for his helpful comments.
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A Appendix

A.1 NP-completeness of Weighted Exact Perfect Matching

Fig. 5 presents a reduction from the subset sum problem to the weighted exact
perfect matching problem which shows that the problem becomes hard with a
trivial underlying graph structure.

0

0 0 0
. . .

0 00

a1 a2

0

an

0

Fig. 5. Reduction from subset sum to exact perfect matching. Given an instance
a1, a2, . . . , an, b of integers for the subset sum problem, we construct the weighted
graph G shown above, which consists of n copies of C4 with weights as indicated. The
subset sum instance has a solution, i.e., there is an S ⊆ {1, . . . , n} with

∑
i∈S ai = b,

if and only if G has a perfect matching of weight b.

The subset sum problem is known to be NP-complete even under logspace
reductions, like all the NP-complete problems in [16]. Clearly, also the reduction
in Fig. 5 is computable in logspace, and the constructed graph is bipartite and
planar. Therefore, the bipartite planar weighted exact perfect matching problem
is NP-complete under logspace reducibility.

A.2 Proof of Corollary 2

Proof . To show the non-existence it suffices to consider the case when all the
edge weights in the given graph are same, say 1. In this case, any two perfect
matchings in the reduced graph G′, will have any difference in the weights only
inside the gadget. Hence, we do not need to consider the weights outside the
gadget.

Now, it suffices to reconsider case (ii) in the proof of Theorem 1. We have
two legal matchings M1,3,M2,4 and two illegal matchings M2,3, M1,4. The illegal
matchings are allowed to exist, but the weight of each illegal matching has to be
strictly larger than the weight of all legal matchings.

Since M2,3 and M1,4 are constructed from M1,3,M2,4 solely by exchang-
ing some edges between the two sets, i.e., M2,3 ∩ M1,4 = M1,3 ∩ M2,4 and
M2,34M1,4 = M1,34M2,4, we have

w(M2,3) + w(M1,4) = w(M1,3) + w(M2,4).

But this contradicts our assumption that the weight of M2,3, M1,4 is strictly
larger than that of M1,3,M2,4. �
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A.3 Proof of Theorem 2

Proof . As argued in the proof of Corollary 2, we do not need to consider the
weights of the graph outside the gadget. Let G be a graph that is drawn with
t ≥ 2 crossings. Then graph G′ contains t gadgets. We pick two of the gadgets
in G′. It suffices to reconsider case (ii) in the proof of Theorem 1 for both gadgets.

– Let M1,3,M2,4 be two legal matchings and e1, . . . , e4 be the connecting edges
in the first gadget, and let M2,3, M1,4 be two illegal matchings as constructed
in the proof of Theorem 1.

– Let M ′1,3,M
′
2,4,M

′
2,3,M

′
1,4 and e′1, . . . , e

′
4 denote corresponding matchings

and connecting edges in the other gadget.

Define
◦
M i,j= Mi,j \ {ei, ej} to be matching Mi,j without the connecting

edges ei, ej . The legal matchings all have weight W0 inside the gadget. For exam-

ple w(
◦
M1,3) = W0. The illegal matchings should have weights different from W0

inside the gadget.
We have the following equations for the weights of the illegal matchings:

1. w(
◦
M2,3) = w(

◦
M ′2,3) and w(

◦
M1,4) = w(

◦
M ′1,4),

2. w(
◦
M2,3) + w(

◦
M1,4) = w(

◦
M1,3) + w(

◦
M2,4) = 2W0.

Define matching M = M2,3 ∪ M ′1,4. Then M covers both gadgets, is illegal,
and M has weight 2W0 inside the two gadgets. Now we can extend M by legal
matchings of weight W0 each in the other gadgets in G′. This gives an illegal
matching of weight tW0 in all the gadgets together. But for the reduction to
work, all legal matchings should have weight different from all illegal matchings.

�

A.4 Proof of Lemma 2

Proof . We first construct a conditional multiplier gadget Gα for α ≥ 1.

The multiplier Gα on the right has two
external edges and is intended to re-
place an edge in the original graph,
such that the number of matchings that
use this edge is multiplied by α and
the number of matchings that don’t use
this edge stays the same.

α rows

Gα

To see that |M[4]| ≡ |M{2,4}| (mod k), consider the graph Gα,γ in Fig. 6. It
has pm(Gα,γ) = α+ γ matchings.

After replacing the crossing by the planarizing gadget, the number of match-
ings of the planarized graph G′α,γ is

pm(G′α,γ) = α |M{2,4}|+ γ |M[4]| .
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Gα,γ

GγGα Gα

Hα

v1

v3

v4

v2

v1

v3

v4

v1

v3

v4

v2v2

Hα,γ

GγGα

Fig. 6. The graphs shown contain the multiplier gadget from above, indicated by the
shaded boxes. Graph Gα,γ has α + γ perfect matchings. γ of them use both crossing
edges, (v1, v3) and (v2, v4), and α of them just contain (v2, v4).
Graph Hα,γ has α + γ perfect matchings as well. α of them use none of the crossing
edges and γ of them just contain (v1, v3).
Graph Hα has α perfect matchings and none of them contains the crossing edges.

We choose α = |M[4]| mod k and γ = k−(|M{2,4}| mod k). Then pm(G′α,γ) ≡
0 (mod k) and therefore, because it is a reduction, pm(Gα,γ) ≡ 0 (mod k).
Hence, we get |M{2,4}| ≡ |M[4]| (mod k).

By symmetry we get that |M{1,3}| ≡ |M[4]| (mod k). By a similar argument
using graph Hα,γ shown in Fig. 6, we get |M∅| ≡ |M{1,3}| (mod k). Therefore,
modulo k, all the legal classes have the same size a as claimed.

Now let d = gcd(a, k). Consider the Graph Hα in Fig. 6. Let α = k/d. For
the planarized version H ′α we have pm(H ′α) = αa = a

d k ≡ 0 (mod k). Because
we have a reduction, this implies pm(Hα) = k/d ≡ 0 (mod k). Therefore, d = 1.

�

A.5 Proof of Theorem 4

Proof . Assume that there is a planarizing gadget. Consider a drawing of the 8-
cycle C8 that contains one crossing, see Fig. 7. Since C8 has a Hamiltonian cycle,

v4v3

v2 v1

(a)

v3

v2 v1

v4

(b)

Fig. 7. (a) A drawing of C8 with one crossing and (b) its planarization

also the planarized version of the drawing must have a Hamiltonian cycle C.
Since C is simple, it cannot have a crossing in the gadget. Thus cycle C must
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look like the graph in Fig. 7 (b). As a consequence, the gadget must contain two
paths p12 and p34 that connect v1 with v2 and v3 with v4, respectively, such that
(i) p12 and p34 are disjoint and (ii) p12 and p34 together cover each node in the
gadget.

By symmetry (consider the drawing rotated by 90◦) there exists a similar
pair of paths p23 and p14.

Now consider the drawing of the graph G in Fig. 8 (a) which consists of
two copies of C7 . After replacing the crossings with the planarizing gadget, the

(b)(a)

Fig. 8. (a) A drawing of a graph consisting of two copies of C7 and (b) its planarization

graph would have a Hamiltonian cycle, whereas G does not. �

For simplicity we argued with planar graphs in the proof of Theorem 4.
However, it is easy to transform our graphs to non-planar graphs in such a way,
that the Hamiltonian cycle is preserved. For this, consider a graph G = (V,E)
and replace each original node w ∈ V by a path w1, w2, w3, w4, w5, and each
edge {w,w′} ∈ E by the edges {w′5, w1} and {w5, w

′
1}. Clearly, there is a one

to one correspondence for the Hamiltonian cycles. Then add edges {w3, w
′
3} for

all w,w′ ∈ V which yields a clique of size |V | in the transformed graph. Notice
that no Hamiltonian cycle in the transformed graph can traverse through an
edge {w3, w

′
3}, since then one of the nodes in {w2, w

′
2, w4, w

′
4} would remain

unvisited.
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A.6 Figures

v2

v2

G G′

v4

v1

v1

v4

e1

e4

e2

e3v3

v3

Fig. 9. Graph G has a unique perfect matching. As shown in the proof of Theorem 1,
the gadget will have an illegal matching M with e2, e3 ∈ M and e1, e4 6∈ M . The
matching M can be extended to a perfect matching in the resulting graph G′. M
is an additional perfect matching beside the originally unique perfect matching. The
uniqueness is lost.

v3 v4

v1v2

Fig. 10. Planarizing gadget for Mod2-PM provided by [5]. Here we have |M| ≡ 1
(mod 2) for every M∈ L and |M| ≡ 0 (mod 2) for every M∈ I.
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