A pre-Wee

Onli
TG

ALS

enc

_earl

alk on

"
F Talk Series

ng

Purushottam Kar

Outline

* Some Motivating Examples
* Discovering customer preferences
e Learning investment profiles
» Detecting credit card fraud

* The Formal Online Learning Framework

* Notion of regret
* Formalization of motivating examples

e Simple Online Algorithms
* Online classification, regression
* Online ranking
* Batch solvers for large scale learning problems

e Other “Feedback-based” Learning Frameworks

Some Motivating Examples

The Cook’s Dilemma

0

B B g &

~

L S

<
LD PP D

<

Discovering Customer Preferences

~
N
N
N

N

A
N

& P L

& D

S [§
CC
S (N
S 1N
.

(

B B B B =
|§t
\
\
2

J“’:“’i
SNV R R
~—

Loss

Learning Investment Profiles

* k assets a4, a,, ..., a; that give returns proportional to investment

* Asset a; gives back $r; as return per dollar invested

* If linvest $d; in a; then total returnis Yd;r; = d'r
* Return profile r depends on market forces, other investors and keeps changing

* | have corpus of $D that | decide to invest completely in these assets
* Let p; decide proportion of investment in asset a;, i.e. investment is p; D

D(pt,r!)

* Corpus at time T becomes D [[}_1{(pt, 7!): reward to be maximized

Detecting Credit Card Fraud

* Classify credit card payments into {+, —}
* Each payment p € P is described by a vector x), € Re
» Other problems such as branch prediction/churn prediction

* Linear classification model
* Choose w € R? and classify p as sign(WTxp)

* Online process; at each time t
* A credit card payment p; is detected
* We propose a linear classifier w; and classify p; as sign(Wthpt)
* True status of payment y; is made known and our mistake (if any) is revealed

* Wish to minimize the number of mistakes made by us
* Wish to propose a “good” sequence of w

ne Formal Online Learning
ramework

The Online Learning Model

* An attempt to model an interactive and adaptive environment
* We have a set of actions A
* Environment has a set of loss functions £L = {£: 4 - R, }

* Ineachround t
* We play some action a; € A
* Environment responds with a loss function #; € £
* We are forced to incur a loss € (a;)
* Environment can adapt to our actions (or even be adversarial)

e Our goal: minimize cumulative loss Y1 _, £, (a;)
e Can cumulative loss be brought down to zero : mostly no !
* More reasonable measure of performance: single best action in hindsight

* Regret: Ry = Y{_1 ¢ (ay) — {lféid{ll Yi=1t¢(a)

* Why is this a suitable notion of performance ?

Motivating Examples Revisited

 Detecting customer preferences

« Assume we can represent customer ¢ € C as a vector x, € R
» Set of actions are linear functions predicting spice levels for that customer
S, =w'x,
* Loss function given by squared difference between true and preferred spiciness
fabs (W: xc) — (§c - Sc)z
* At time step t customer ¢; comes and £,(w;) = fabs(Wt' xct)
* Goal: make customers as happy as the single best spice level

e Credit card fraud detection
« Actions are the set of linear classifiers W = {w € R%}
* Loss functions are mistake functions

fo/l(w, xp) = H{yprxp < 0} = {

Le(wy) = £0/1(Wt' xpt)
* Detection of credit card fraud might change buying profiles (adversarial)
* Goal: make (almost) as few mistakes as single best classifier

1 ify, # sign(w'x,)
0 otherwise

Motivating Examples Revisited

* Learning investment profiles
* Set of actions is the d-dimensional simplex A = {p € R%,p = 0, [|p|l; = 1}

« Reward received at tth step is (pt, rt) where rt is the return given by market
Total reward (assume w.l.o.g. initial corpusis D = 1)
T T

H(Pt: ¢) = exp Z log(pe, 1t)
t=1 t=1

Returns affected by investment, other market factors (adaptive, adversarial)

Can think of £(p,r) = —log(p, r) as a negative reward or a loss
t:(pe) = —log(pe, 1t)
Regret (equivalently) glven by

Ry = Z £(pe i) mmz £,

Goal: make as much proflt as the single best mvestment profile in hindsight

Simple Online Algorithms

What makes online learning click ?

Online Linear Classification

* Perceptron Algorithm
Start withwg = 0

1
2. Classify o; as sign(w;_1x,,)

3. If correct classification i.e. y, = sign(Wthot), then let wy = wy_4
4

Else wy = wi_q + Vi Xo,

* Loss function €4,1 (w,0) = I{y,w'x, < 0} i.e. 1iff w misclassifies o

* If there exists a perfect linear separator w* such that th*TXOt =Y,
1
Rr = 2£0/1(Wt: 0t) — 230/1(W ,0r) < ﬁ
* |f there exists an imperfect separator w* such that th*Tth >y — &,

1 1
Rr = Xto1(we,00) — Yo (WH,0p) <) + ;th

The Perceptron Algorithm in action

Online Regression

* The Perceptron Algorithm was (almost) a gradient descent algorithm

e Consider the loss function
{)hinge(w' x) = max{1 —yw'x, 0}

« £ is a convex surrogate to the mistake function £o/1(w,x) = I{yw 'x < 0}
ghinge(wr x) = 4o;1 (W, x)

B Hinge Loss

Mistake Loss

* When perceptron makes a mistake i.e. fo/l(w, x) = 1, we have
wahinge(w; X) = —yx
* Thus the perceptron update step w; = wy_q + y¢X,, is a gradient step !

Online Regression via Online Gradient Descent

* Suppose we are taking actions a; € A and receiving losses £ € L
* Assume that all loss function €;: A — R, are convex and Lipchitz
* Examples £,(a) = (a'x; — y,)?, £ (a) = —log(a'x,), £, (a) = [1 — ya'x.]4

* Online Gradient Descent (for linear predictions problems)

1. Startwithay =0

2. Receive object x; and predict value a/_; x; for object x,

3. Receive loss function #; and update a; = a;_; — % V,t:(a;_1)

* Some more work needed to ensure that a; € A as well

 We can ensure that

T T
Rt = Z i(ay) — gréicrﬂ}z ?:(a) < 0(\/7)
t=1 t=1

Online Bipartite Ranking

* Documents dq, d>, ...d;, ... arrive in a continuous stream to be ranked
* Each document in labelled either “relevant” (+) or “irrelevant” (-)

* Goal: somehow rank all relevant documents before irrelevant ones

* Method: assign relevance score r: d; — 1 to document d; and sort

* We incur loss for “swaps” £1qnk (1, de, dy) = I{(ye — v) (1 — 1) < 0}
* Minimize number of swaps Y14 Zflﬂ Crank(de der)
* Problem is equivalent to maximizing area under the ROC curve of TP/FP

* Challenges
* No reference point: no “true” relevance score
* Need pairs of documents to learn a scoring function: get only singles
 Solution: keep (some) of the past points in a buffer to construct pairs on the fly
» Several interesting algorithmic and theoretical problems still open

Batch Solvers

e Statistical learning gets a batch of randomly chosen training examples
(xlt yl) (xn; Yn) ~ X X y
* We wish to learn a function f € F that does well on these examples

min — Z 2(f, x;)

feEF N
where £: F X X — R, is aloss functlon (classification, regression etc)
* Statistical Learning Theory: such an f does well on unseen points as well!
* Solving “batch” problem may be infeasible: n >> 1, distributed storage etc.
* Solution: solve the online problem instead
* E.g. online gradlent descent will solve for a f; € F such that

Z £(fi,x;) < mmZ £(f, %)) + Ry

fEF

where R,, = o(n)

Batch Solvers

* Thus we have an f; EnT such that N

1 1

— . v.) < min — .

nz:i’(ﬁ,xl) < r}ggan(f,xl) +€
1=1 1=1
Rn

where € = — = o(1)

* Online to batch conversion bounds

* Argue for the performance off = % 1 fi on random unseen points
« Expected loss of f on a random unseen point is bounded
A Ry, 1
E N\, x)|<—+0|—
LU <50 ()

 Several batch solvers e.g. PEGASOS, MIDAS, LASVM use techniques such as
Stochastic online gradient descent for large scale learning

Other Feedback based Learning Frameworks

* Two axes of variation: modelling of environment and feedback

* Online Learning: some modelling of environment and full feedback
* Losses are simple functions over linear models (can be made non linear though)
» At each step the loss function itself is given to us: full information
* Models are agnostic: no realizability assumptions are made

* Multi-armed Bandits: weak modelling of environment, weak feedback
e Often no assumptions made on nature of loss function
* Limited feedback: only loss value on played action made available
* Contextual bandits try to model loss function but make realizability assumptions

* Reinforcement Learning: Strong modelling of environment, weak feedback
* Environment modelled as a state space with adaptive stochastic transitions
* Reward functions modeled as functions of state space and action
* Limited feedback available: need to learn, state space as well as reward function

