A pre-Weekend Talk on Online Learning

TGIF Talk Series
Purushottam Kar

Outline

- Some Motivating Examples
 - Discovering customer preferences
 - Learning investment profiles
 - Detecting credit card fraud
- The Formal Online Learning Framework
 - Notion of regret
 - Formalization of motivating examples
- Simple Online Algorithms
 - Online classification, regression
 - Online ranking
 - Batch solvers for large scale learning problems
- Other "Feedback-based" Learning Frameworks

Some Motivating Examples

Why Online Learning can be Useful

The Cook's Dilemma

Discovering Customer Preferences

Loss

Learning Investment Profiles

- k assets $a_1, a_2, ..., a_k$ that give returns proportional to investment
- Asset a_i gives back r_i as return per dollar invested
 - If I invest d_i in a_i then total return is $\sum d_i r_i = d^{\top} r$
 - ullet Return profile r depends on market forces, other investors and keeps changing
- I have corpus of \$D that I decide to invest completely in these assets
 - Let p_i decide proportion of investment in asset a_i , i.e. investment is $p_i D$

• Corpus at time T becomes $D \prod_{t=1}^{T} \langle p^t, r^t \rangle$: reward to be maximized

Detecting Credit Card Fraud

- Classify credit card payments into {+, -}
 - Each payment $p \in \mathcal{P}$ is described by a vector $x_p \in \Re^d$
 - Other problems such as branch prediction/churn prediction
- Linear classification model
 - Choose $w \in \Re^d$ and classify p as $sign(w^T x_p)$
- Online process; at each time t
 - A credit card payment p_t is detected
 - We propose a linear classifier w_t and classify p_t as $\mathrm{sign}(w_t^\mathsf{T} x_{p_t})$
 - ullet True status of payment y_t is made known and our mistake (if any) is revealed
- Wish to minimize the number of mistakes made by us
 - Wish to propose a "good" sequence of w

The Formal Online Learning Framework

How we assess Online Learning Algorithms

The Online Learning Model

- An attempt to model an interactive and adaptive environment
 - We have a set of actions ${\mathcal A}$
 - Environment has a set of loss functions $\mathcal{L} = \{\ell : A \to \Re_+\}$
- In each round t
 - We play some action $a_t \in \mathcal{A}$
 - Environment responds with a loss function $\ell_t \in \mathcal{L}$
 - We are forced to incur a loss $\ell_t(a_t)$
 - Environment can adapt to our actions (or even be adversarial)
- Our goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$
 - Can cumulative loss be brought down to zero: mostly no!
 - More reasonable measure of performance: single best action in hindsight
 - Regret: $R_T \coloneqq \sum_{t=1}^T \ell_t(a_t) \min_{a \in \mathcal{A}} \sum_{t=1}^T \ell_t(a)$
 - Why is this a suitable notion of performance?

Motivating Examples Revisited

- Detecting customer preferences
 - Assume we can represent customer $c \in \mathcal{C}$ as a vector $x_c \in \Re^d$
 - Set of actions are linear functions predicting spice levels for that customer $\hat{s}_c = w^{\mathsf{T}} x_c$
 - Loss function given by squared difference between true and preferred spiciness $\ell_{ahs}(w,x_c)=(\hat{s}_c-s_c)^2$
 - At time step t customer c_t comes and $\ell_t(w_t) = \ell_{abs}(w_t, x_{c_t})$
 - Goal: make customers as happy as the single best spice level
- Credit card fraud detection
 - Actions are the set of linear classifiers $\mathcal{W} = \{w \in \mathbb{R}^d\}$
 - · Loss functions are mistake functions

$$\ell_{0/1}(w, x_p) = \mathbb{I}\{y_p w^{\mathsf{T}} x_p < 0\} = \begin{cases} 1 & \text{if } y_p \neq \text{sign}(w^{\mathsf{T}} x_p) \\ 0 & \text{otherwise} \end{cases}$$

$$\ell_t(w_t) = \ell_{0/1}(w_t, x_{p_t})$$

- Detection of credit card fraud might change buying profiles (adversarial)
- Goal: make (almost) as few mistakes as single best classifier

Motivating Examples Revisited

- Learning investment profiles
 - Set of actions is the d-dimensional simplex $\mathcal{A} = \{p \in \Re^d, p \geq 0, \|p\|_1 = 1\}$
 - Reward received at $t^{ ext{th}}$ step is $\langle p^t, r^t \rangle$ where r^t is the return given by market
 - Total reward (assume w.l.o.g. initial corpus is D=1)

$$\prod_{t=1}^{T} \langle p_t, r_t \rangle = \exp\left(\sum_{t=1}^{T} \log \langle p_t, r_t \rangle\right)$$

- Returns affected by investment, other market factors (adaptive, adversarial)
- Can think of $\ell(p,r)=-\log\langle p,r\rangle$ as a negative reward or a loss $\ell_t(p_t)=-\log\langle p_t,r_t\;\rangle$
- Regret (equivalently) given by

$$\mathcal{R}_T = \sum_{t=1}^T \ell(p_t, r_t) - \min_{p \in \mathcal{A}} \sum_{t=1}^T \ell(p, r_t)$$

Goal: make as much profit as the single best investment profile in hindsight

Simple Online Algorithms

What makes online learning click?

Online Linear Classification

- Perceptron Algorithm
- 1. Start with $w_0 = 0$
- 2. Classify o_t as $sign(w_{t-1}^{\mathsf{T}} x_{o_t})$
- 3. If correct classification i.e. $y_t = \text{sign}(w_t^T x_{o_t})$, then let $w_t = w_{t-1}$
- 4. Else $w_t = w_{t-1} + y_t x_{o_t}$
- Loss function $\ell_{0/1}(w,o) = \mathbb{I}\{y_o w^{\mathsf{T}} x_o < 0\}$ i.e. 1 iff w misclassifies o
- If there exists a perfect linear separator w^* such that $y_t w_t^{*T} x_{o_t} \ge \gamma$,

$$\mathcal{R}_T = \sum \ell_{0/1}(w_t, o_t) - \sum \ell_{0/1}(w^*, o_t) \le \frac{1}{\gamma^2}$$

• If there exists an imperfect separator w^* such that $y_t w^{*^\top} x_{o_t} \ge \gamma - \xi_t$,

$$\mathcal{R}_T = \sum \ell_{0/1}(w_t, o_t) - \sum \ell_{0/1}(w^*, o_t) \le \frac{1}{\gamma^2} + \frac{1}{\gamma} \sum \xi_t$$

Online Regression

- The Perceptron Algorithm was (almost) a gradient descent algorithm
- Consider the loss function

$$\ell_{\text{hinge}}(w, x) = \max\{1 - yw^{\mathsf{T}}x, 0\}$$

• $\tilde{\ell}$ is a convex *surrogate* to the mistake function $\ell_{0/1}(w,x) = \mathbb{I}\{yw^{\mathsf{T}}x < 0\}$ $\ell_{\mathrm{hinge}}(w,x) \geq \ell_{0/1}(w,x)$

- When perceptron makes a mistake i.e. $\ell_{0/1}(w,x)=1$, we have $\nabla_{\!\!w}\ell_{hinge}(w,x)=-yx$
- Thus the perceptron update step $w_t = w_{t-1} + y_t x_{o_t}$ is a gradient step!

Online Regression via Online Gradient Descent

- Suppose we are taking actions $a_t \in \mathcal{A}$ and receiving losses $\ell_t \in \mathcal{L}$
 - Assume that all loss function $\ell_t : \mathcal{A} \to \mathfrak{R}_+$ are convex and Lipchitz
 - Examples $\ell_t(a) = (a^{\mathsf{T}} x_t y_t)^2$, $\ell_t(a) = -\log(a^{\mathsf{T}} x_t)$, $\ell_t(a) = [1 y_t a^{\mathsf{T}} x_t]_+$
- Online Gradient Descent (for linear predictions problems)
- 1. Start with $a_0 = 0$
- 2. Receive object x_t and predict value $a_{t-1}^{\mathsf{T}} x_t$ for object x_t
- 3. Receive loss function ℓ_t and update $a_t = a_{t-1} \frac{1}{\sqrt{t}} \nabla_a \ell_t(a_{t-1})$
 - Some more work needed to ensure that $a_t \in \mathcal{A}$ as well
- We can ensure that

$$R_{T} = \sum_{t=1}^{T} \ell_{t}(a_{t}) - \min_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell_{t}(a) \le \mathcal{O}(\sqrt{T})$$

Online Bipartite Ranking

- Documents $d_1, d_2, \dots d_t, \dots$ arrive in a continuous stream to be ranked
- Each document in labelled either "relevant" (+) or "irrelevant" (-)
- Goal: somehow rank all relevant documents before irrelevant ones
- Method: assign relevance score $r: d_t \to r_t$ to document d_t and sort
- We incur loss for "swaps" $\ell_{\text{rank}}(r, d_t, d_{t'}) = \mathbb{I}\{(y_t y_{t'})(r_t r_{t'}) < 0\}$
 - Minimize number of swaps $\sum_{t=1}^{T} \sum_{t'=1}^{T} \ell_{\text{rank}}(d_t, d_{t'})$
 - Problem is equivalent to maximizing area under the ROC curve of TP/FP

Challenges

- No reference point: no "true" relevance score
- Need pairs of documents to learn a scoring function: get only singles
- Solution: keep (some) of the past points in a buffer to construct pairs on the fly
- Several interesting algorithmic and theoretical problems still open

Batch Solvers

- Statistical learning gets a batch of randomly chosen training examples $(x_1, y_1), \dots, (x_n, y_n) \sim \mathcal{X} \times \mathcal{Y}$
- We wish to learn a function $f \in \mathcal{F}$ that does well on these examples

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i)$$

where $\ell: \mathcal{F} \times \mathcal{X} \to \Re_+$ is a loss function (classification, regression etc)

- Statistical Learning Theory: such an f does well on unseen points as well!
- Solving "batch" problem may be infeasible: $n \gg 1$, distributed storage etc.
- Solution: solve the online problem instead
- E.g. online gradient descent will solve for a $f_i \in \mathcal{F}$ such that

$$\sum_{i=1}^{n} \ell(f_i, x_i) \le \min_{f \in \mathcal{F}} \sum_{i=1}^{n} \ell(f, x_i) + \mathcal{R}_n$$

where $\mathcal{R}_n = o(n)$

Batch Solvers

• Thus we have an $f_t \in \mathcal{F}$ such that

$$\frac{1}{n} \sum_{i=1}^{n} \ell(f_i, x_i) \le \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i) + \epsilon$$

where
$$\epsilon = \frac{\mathcal{R}_n}{n} = o(1)$$

- Online to batch conversion bounds
 - Argue for the performance of $\hat{f} = \frac{1}{n} \sum_{i=1}^{n} f_i$ on random unseen points
- ullet Expected loss of \hat{f} on a random unseen point is bounded

$$\mathbb{E}_{x}[\![\ell(\hat{f},x)]\!] \leq \frac{\mathcal{R}_{n}}{n} + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$$

 Several batch solvers e.g. PEGASOS, MIDAS, LASVM use techniques such as Stochastic online gradient descent for large scale learning

Other Feedback based Learning Frameworks

- Two axes of variation: modelling of environment and feedback
- Online Learning: some modelling of environment and full feedback
 - Losses are simple functions over linear models (can be made non linear though)
 - At each step the loss function itself is given to us: full information
 - Models are agnostic: no realizability assumptions are made
- Multi-armed Bandits: weak modelling of environment, weak feedback
 - Often no assumptions made on nature of loss function
 - Limited feedback: only loss value on played action made available
 - Contextual bandits try to model loss function but make realizability assumptions
- Reinforcement Learning: Strong modelling of environment, weak feedback
 - Environment modelled as a state space with adaptive stochastic transitions
 - Reward functions modeled as functions of state space and action
 - Limited feedback available: need to learn, state space as well as reward function