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Basics

Definition (Metric)

A Metric is a structure (X, p) where p is a distance measure
p: X x X — R which is non-negative, symmetric and satisfies the
triangle inequality.

Definition (Embedding Distortion)

An embedding f : X — Y from a metric space (X, p) to another

metric space (Y, o) is said to have a distortion D if
a(f(x).f(y)) . p(x.y)

D= sup =0 XS;JGPXW'

x,yeX

Such embeddings are also called bi-Lipschitz embeddings.



@ Various criterion used to evaluate embeddings
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Embeddings

@ Various criterion used to evaluate embeddings
@ Distortion, Stress, Residual Variance ...

Definition (Embedding Stress)
The stress for an embedding f : X — Y from a metric space (X, p) to

Discussion

X (@ (f(x):f(y)=p(x.y))?
another metric space (Y, o) is defined to be , | 2% 5

x,yeX

p(x.y)?
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Embeddings

@ Various criterion used to evaluate embeddings
@ Distortion, Stress, Residual Variance ...

Definition (Embedding Stress)
The stress for an embedding f : X — Y from a metric space (X, p) to

Discussion

X (@ (f(x):f(y)=p(x.y))?
another metric space (Y, o) is defined to be , | 2% 5

x,yeX

p(x.y)?

@ Lead to very interesting algorithmic questions
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@ Started out as a branch of functional analysis
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Application in Computer Science

@ Started out as a branch of functional analysis
@ Algorithmic applications

o Metric Embeddings for datasets operating with a non-metric
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Application in Computer Science

@ Started out as a branch of functional analysis
@ Algorithmic applications

o Metric Embeddings for datasets operating with a non-metric

@ Dimensionality reduction to reduce storage space costs, processing
time

o Facilitate pruning procedures in database searches
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Application in Computer Science

@ Started out as a branch of functional analysis
@ Algorithmic applications

o Metric Embeddings for datasets operating with a non-metric

@ Dimensionality reduction to reduce storage space costs, processing
time

o Facilitate pruning procedures in database searches

o Preserve residual variance (PCA), inter-point similarity (Random
Projections), Stress (MDS)
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Application in Computer Science

@ Started out as a branch of functional analysis
@ Algorithmic applications

o Metric Embeddings for datasets operating with a non-metric

@ Dimensionality reduction to reduce storage space costs, processing
time

o Facilitate pruning procedures in database searches

o Preserve residual variance (PCA), inter-point similarity (Random
Projections), Stress (MDS)

@ Streaming Algorithms
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Embedding into /,,

Theorem (Frétchet's Embedding)

Every n-point metric can be isometrically embedded into I

Discussion

@ Fréchet's Embedding technique - non-expansive
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Embedding into /,

Theorem (Frétchet’s Embedding)
Every n-point metric can be isometrically embedded into I, J

@ Fréchet's Embedding technique - non-expansive

@ Choose coordinates as projections onto some fixed sets
@ Triangle inequality ensures contractive embeddings

@ Choice of “landmark” sets gives other algorithms

@ Embedding dimension can be reduced to O(qn% In n) by tolerating a
distortion of 2g — 1.
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Theorem (Bourgain’s Embedding)
Every n-point metric can be O(log n)-embedded into I J

@ Uses a random selection of the landmark sets
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Embedding into /,

Theorem (Bourgain’s Embedding)

Every n-point metric can be O(log n)-embedded into I

Discussion

@ Uses a random selection of the landmark sets

@ Tight - The graph metric of a constant degree expander has
Q(log n) distortion into any Euclidean space
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Embedding into /,

Theorem (Bourgain’s Embedding)
Every n-point metric can be O(log n)-embedded into I J

@ Uses a random selection of the landmark sets

@ Tight - The graph metric of a constant degree expander has
Q(log n) distortion into any Euclidean space

@ Any embedding of the Hamming cube into k incurs Q (\/Iog n)
distortion



Q(1/D?)

@ Impossible - A D-embedding of n points may require n
dimensions
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Dimensionality Reduction in /;

@ Impossible - A D-embedding of n points may require n(1/0%)

dimensions

@ No “flattening” results known for other /, metrics either ...
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. . . . .
Dimensionality Reduction in /;

@ Impossible - A D-embedding of n points may require n(1/0%)
dimensions
@ No “flattening” results known for other /, metrics either ...

@ Except for p =2
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The Johnson-Lindenstrauss Lemma

Theorem (The JL-Lemma)

Given € > 0 and integer n, let k > ko = O(¢~?log n). For every set
P of n points in RY there exists f : RY — RX such that for all
u,veP

(1= &)flu—vi? < [|f (u) — F(V)]* < (1 + €)l|u— v]*.

@ Implementation as a randomized algorithm
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The Johnson-Lindenstrauss Lemma

Theorem (The JL-Lemma)

Given € > 0 and integer n, let k > ko = O(¢~?log n). For every set
P of n points in RY there exists f : RY — RX such that for all
u,vePr

(1= &)llu— v[* < I (v) = F(V)II> < 1+ €)llu—v].

@ Implementation as a randomized algorithm
@ Equivalent interpretations - random projection vs. random rotation
@ Various Proofs known [IM98], [DG99], [AV99], [A01]

@ Common Technique

Point Drafting — Set Drafting """ Set Embedding

23



@ Instead of choosing from an uncountably infinite domain, can we
choose vectors from a finite set of vectors ?
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.
Enter Achlioptas

@ Instead of choosing from an uncountably infinite domain, can we
choose vectors from a finite set of vectors ?

@ Achlioptas: In fact ‘choosing’ from the d-dimensional Hamming
Cube {1, —1}9 works.

Discussion

10
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Enter Achlioptas

Instead of choosing from an uncountably infinite domain, can we
choose vectors from a finite set of vectors ?

Achlioptas: In fact ‘choosing’ from the d-dimensional Hamming
Cube {1, —1}9 works.

Consider a random vector R = (X1, Xz, ..., Xy), where each X; is
chosen from one of the two distributions:

D, — 1 [ -1 with probability 1/2

T /a1l with probability 1/2
—/3  with probability 1/6
0 with probability 2/3
V3 with probability 1/6

D, =

Sl

10 /23



@ Pick k such random vectors Ry, Ro, ... Rx.
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.
Enter Achlioptas

@ Pick k such random vectors Ry, R, ... R.

@ For a given unit vector a = (a3, g, . . ., g), the low
(k-)dimensional vector corresponding to « is

Fla) = \/2((a, Re) o Ro) . o, Re))

11/
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Enter Achlioptas

@ Pick k such random vectors Ry, R, ... R.

@ For a given unit vector a = (a3, g, . . ., g), the low
(k-)dimensional vector corresponding to « is

F(a) = /2o Re) o Ro) . (e, Re))

@ Advantage: Simple and can be implemented as SQL queries.

11
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Main Theorem

o Let S = (a,R)> + (o, R)* + -+ (o, Ri)?

Theorem (Main Theorem)

For every d-dimensional unit vector «, integer k > 1 and € > 0

PriS>(1+ek 1] <eF(=-%)
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.
Main Theorem

o Let S = {a, R1>2 + {a, R2>2 + A, Rk>2

Theorem (Main Theorem)

For every d-dimensional unit vector «, integer k > 1 and € > 0

PriS>(1+ek 1] <eF(=-%)

@ Hence, if kK > % log n, this probability becomes smaller than

nz%ﬁ which is inverse polynomial w.r.t n.

12/
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2
Expected Value of ||f(«)||

@ On expectation the length of a unit vector « is preserved.

ElIf(e)?]

2

Z ZXaJ

i=1

x| Q

'M» ] M»

Il
-

d d
Z )(2]0412 +ZE[)<J'X/]QJ'O£/

j<l

=1=af?

Q_\n—- /\

x| Q

13
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Deviation from Expectation: Proof of Main
Theorem

@ By Markov inequality,
k
Pr [5 > (1+ 6)3] < E [ehs] o—(1re)

Pr [5 <(1- e)g] < E [e_hs] ol1—e) %
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Deviation from Expectation: Proof of Main
Theorem

@ By Markov inequality,
k
Pr [5 > (1+ e)d] < E[e"] o—(1re)
k —hS] L(1—€) 2k
Pr 5<(1_€)E < Efe™]elt=)a

@ Since the vectors R/s are all chosen independently we can rewrite
the above as

prls>arob] < (g[en]) ey
Pr [5 <(1- e)f,] < (e [e—thDk 1=
where Q1 = (a, Ry)

14 /23
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.
Proof of Main Theorem

@ By Taylor's Expansion,

4 k
Pr [5 < e)k] < (E {1 _hQ2 4 thD o (19

d 2
h | REQH (1—c)h
= (1 — E + > > e d
Lemma
For h € [0,d/2) and all d > 1,
Elow] < L (1)
V1—2h/d
3
E[Qf] < = (2)

15/
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Proof of Main Theorem using Inequalities (1)
and (2)

@ If we take h = ﬁ, for the upper bound we have the following:

k
k 1 i
PriS>(1+e¢)=| < |———| e 97
r{ ( e)d} <\/12h/d>

= (1+ee )2 < e%k(é_i).
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Proof of Main Theorem using Inequalities (1)
and (2)

@ If we take h = ﬁ, for the upper bound we have the following:

k
k 1 i
PriS>(1+e¢)=| < |———| e 97
r{ ( e)d} <\/12h/d>

- E2 €
= (1+ee )2 <e?(5-5)
@ For the same value of h, for the lower bound we get:

k 3m2\ ¥ _eyhk
Pr{5<(1—e)d} < <l—h/d+2d2) el=9)7g

w

- 62 (3
< e (T-%)

16 /
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.
Proof of Inequality (2)

@ For inequality (2)
E[Qf] = (X7, Xju)* = Z E[X{of +

(\55) T evciebglatar + () S ebxdlerxiiaad +

i<j —
4
(2,1,1) Z E[X?|EIXE[Xe]a?ajay +
i<j<k

4
(171’ ] 1) > EXIEXEXE[Xi ey
i<j<k<l

= lot +6)atad) <

i<j

17 /23
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.
Proof of Inequality (1)

@ The idea is to first make the random variable Q; independent of «
and then compare the even moments of Q; with a properly scaled
normal distribution.

Lemma (Worst Vector Lemma)

For all unit vectors o, E[Q?*()] < E[Q?*(w)], where
w = \%(1,1,...,1) fork=1,2,....

Lemma (Normal Bound Lemma)

If T ~ N(0,1/d), then E[Q%(w)] < E[T?], where w = \/Lg(l, 1,...,1)
fork=1,2,....

18 / 23



Introduction Embeddings into Normed Spaces Dimensionality Reduction The JL Lemma Discussion

e[

Proof of Inequality (1)

> 1
/ e,\2/2 eh)\Q/d d\
oo V2T

1
VeI
o0 hk T2k
k! ]
k=0
© pkE [T2H]

Zk!

k=0

E

(using MCT)

5 ELE [ oo
k=0 '

19 / 23



Introduction Embeddings into Normed Spaces Dimensionality Reduction Discussion
Proving the Worst Vector Lemma

@ Let r; and r, be i.i.d. r.v. distributed as {—1,+1} with equal
probability. Furthermore let a, b, T be any reals and
¢ =+/(a°+ b?)/2 and k > 0 be any integer, then

E[(T +an + br)?| < E[(T + cn + cr2)?]

20/ 23
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Proving the Worst Vector Lemma

@ Let r; and r, be i.i.d. r.v. distributed as {—1,+1} with equal
probability. Furthermore let a, b, T be any reals and
¢ =+/(a°+ b?)/2 and k > 0 be any integer, then

E[(T +an + br)?| < E[(T + cn + cr2)?]

@ Let Ry = r4). Thus we have

\/E(rl, ...,

R
E [Ql(a)2k] = dk ZE R+a1r1 + 0[21’2 2k Pr [Z Qi = ﬂ]

i=3
< ZE R+cr1+cr2 2" Pr Zar,— R
B dk i=3 \/g
= [Q1() “]
where ¢ = /(a2 + a3)/2
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Proving the Worst Vector Lemma

@ Let r; and r, be i.i.d. r.v. distributed as {—1,+1} with equal
probability. Furthermore let a, b, T be any reals and
¢ =+/(a°+ b?)/2 and k > 0 be any integer, then

E[(T +an + br)?| < E[(T + cn + cr2)?]

@ Let Ry = r4). Thus we have

\/E(rl, ...,

R
E [Ql(a)2k] = dk ZE R+a1r1 + 0[21’2 2k Pr [Z Qi = ﬂ]

i=3

R
< deE R+cr1+cr2 2k Prl;ar,—ﬂ]
= E[Qu(6)*]

where ¢ = /(a2 + a3)/2

@ 0 is a more “uniform” unit vector than «a.

20 / 23



@ Let {T;}¢_, bei.i.d. normal r.v.. By stability of normal distribution

d
T=%;T;~N(O,1/d)
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Proving the Normal Bound Lemma

@ Let {T;}¢, bei.i.d. normal r.v.. By stability of normal distribution

d
T:%§ﬂ~N(o,1/d)

It

@ We also have Qi(w) =13 r

d d
1
E[ka(w)] Wz Z E[r,-l...r,-Zk]
n=1 hr=1
1 d d
E[TH = > D> ElTi . Tyl
=1 k=1
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Proving the Normal Bound Lemma

@ Let {T;}¢, bei.i.d. normal r.v.. By stability of normal distribution

d
T:%§ﬂ~N(o,1/d)

@ We also have Qi(w) =13 r

It

d d
1
E[lek(w)] Wz Z E[r,-l...r,-Zk]
h=1 k=1
1 d d
E[T] = WZ“' > E[T, ... Tyl
h=1 k=1

@ For each index assignment we have

E[r,-l r,-Zk] S E[T,'1 . Tizk]

21 /23



@ Plenty !

SIGTACS Seminar Series

S SEYET]




@ Plenty !

@ No-flattening results for other I, metrics, non metrics
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Open questions

@ Plenty !
@ No-flattening results for other /, metrics, non metrics

@ Embeddability of non-metrics into metric spaces - useful in
databases, learning

22/
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Open questions

@ Plenty !
@ No-flattening results for other /, metrics, non metrics

@ Embeddability of non-metrics into metric spaces - useful in
databases, learning

@ Information Theoretic Metrics - KL, Bhattacharyya, Mahalanobis -
widely used

22
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THANK YOU
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