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Basics

Definition (Metric)

A Metric is a structure (X , ρ) where ρ is a distance measure
ρ : X × X → R which is non-negative, symmetric and satisfies the
triangle inequality.

Definition (Embedding Distortion)

An embedding f : X → Y from a metric space (X , ρ) to another
metric space (Y , σ) is said to have a distortion D if

D = sup
x ,y∈X

σ(f (x),f (y))
ρ(x ,y) · sup

x ,y∈X

ρ(x ,y)
σ(f (x),f (y)) .

Such embeddings are also called bi-Lipschitz embeddings.
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Embeddings

Various criterion used to evaluate embeddings

Distortion, Stress, Residual Variance ...

Definition (Embedding Stress)

The stress for an embedding f : X → Y from a metric space (X , ρ) to

another metric space (Y , σ) is defined to be

√√√√ ∑
x,y∈X

(σ(f (x),f (y))−ρ(x,y))2∑
x,y∈X

ρ(x,y)2 .

Lead to very interesting algorithmic questions
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Application in Computer Science

Started out as a branch of functional analysis

Algorithmic applications

Metric Embeddings for datasets operating with a non-metric
Dimensionality reduction to reduce storage space costs, processing
time
Facilitate pruning procedures in database searches
Preserve residual variance (PCA), inter-point similarity (Random
Projections), Stress (MDS)

Streaming Algorithms
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Embedding into l∞

Theorem (Frétchet’s Embedding)

Every n-point metric can be isometrically embedded into l∞

Fréchet’s Embedding technique - non-expansive

Choose coordinates as projections onto some fixed sets

Triangle inequality ensures contractive embeddings

Choice of “landmark” sets gives other algorithms

Embedding dimension can be reduced to O(qn
1
q ln n) by tolerating a

distortion of 2q − 1.
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Embedding into l2

Theorem (Bourgain’s Embedding)

Every n-point metric can be O(log n)-embedded into l2

Uses a random selection of the landmark sets

Tight - The graph metric of a constant degree expander has
Ω(log n) distortion into any Euclidean space

Any embedding of the Hamming cube into l2 incurs Ω
(√

log n
)

distortion
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Dimensionality Reduction in l1

Impossible - A D-embedding of n points may require nΩ(1/D2)

dimensions

No “flattening” results known for other lp metrics either ...

Except for p = 2

8 / 23
SIGTACS Seminar Series



Introduction Embeddings into Normed Spaces Dimensionality Reduction The JL Lemma Discussion

Dimensionality Reduction in l1

Impossible - A D-embedding of n points may require nΩ(1/D2)

dimensions

No “flattening” results known for other lp metrics either ...

Except for p = 2

8 / 23
SIGTACS Seminar Series



Introduction Embeddings into Normed Spaces Dimensionality Reduction The JL Lemma Discussion

Dimensionality Reduction in l1

Impossible - A D-embedding of n points may require nΩ(1/D2)

dimensions

No “flattening” results known for other lp metrics either ...

Except for p = 2

8 / 23
SIGTACS Seminar Series



Introduction Embeddings into Normed Spaces Dimensionality Reduction The JL Lemma Discussion

The Johnson-Lindenstrauss Lemma

Theorem (The JL-Lemma)

Given ε > 0 and integer n, let k ≥ k0 = O(ε−2 log n). For every set
P of n points in Rd there exists f : Rd −→ Rk such that for all
u, v ∈ P

(1− ε)‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε)‖u − v‖2.

Implementation as a randomized algorithm

Equivalent interpretations - random projection vs. random rotation

Various Proofs known [IM98], [DG99], [AV99], [A01]

Common Technique

Point Drafting −→ Set Drafting
Union Bound−→ Set Embedding
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Enter Achlioptas

Instead of choosing from an uncountably infinite domain, can we
choose vectors from a finite set of vectors ?

Achlioptas: In fact ‘choosing’ from the d-dimensional Hamming
Cube {1,−1}d works.

Consider a random vector R = (X1,X2, . . . ,Xd), where each Xi is
chosen from one of the two distributions:

D1 =
1√
d

{
−1 with probability 1/2
1 with probability 1/2

D2 =
1√
d

 −
√

3 with probability 1/6
0 with probability 2/3√

3 with probability 1/6

10 / 23
SIGTACS Seminar Series



Introduction Embeddings into Normed Spaces Dimensionality Reduction The JL Lemma Discussion

Enter Achlioptas

Instead of choosing from an uncountably infinite domain, can we
choose vectors from a finite set of vectors ?

Achlioptas: In fact ‘choosing’ from the d-dimensional Hamming
Cube {1,−1}d works.

Consider a random vector R = (X1,X2, . . . ,Xd), where each Xi is
chosen from one of the two distributions:

D1 =
1√
d

{
−1 with probability 1/2
1 with probability 1/2

D2 =
1√
d

 −
√

3 with probability 1/6
0 with probability 2/3√

3 with probability 1/6

10 / 23
SIGTACS Seminar Series



Introduction Embeddings into Normed Spaces Dimensionality Reduction The JL Lemma Discussion

Enter Achlioptas

Instead of choosing from an uncountably infinite domain, can we
choose vectors from a finite set of vectors ?

Achlioptas: In fact ‘choosing’ from the d-dimensional Hamming
Cube {1,−1}d works.

Consider a random vector R = (X1,X2, . . . ,Xd), where each Xi is
chosen from one of the two distributions:

D1 =
1√
d

{
−1 with probability 1/2
1 with probability 1/2

D2 =
1√
d

 −
√

3 with probability 1/6
0 with probability 2/3√

3 with probability 1/6

10 / 23
SIGTACS Seminar Series



Introduction Embeddings into Normed Spaces Dimensionality Reduction The JL Lemma Discussion

Enter Achlioptas

Pick k such random vectors R1,R2, . . .Rk .

For a given unit vector α = (α1, α2, . . . , αd), the low
(k-)dimensional vector corresponding to α is

f (α) =
√

d
k (〈α,R1〉 , 〈α,R2〉 , . . . , 〈α,Rk〉)

Advantage: Simple and can be implemented as SQL queries.
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Main Theorem

Let S = 〈α,R1〉2 + 〈α,R2〉2 + · · · 〈α,Rk〉2

Theorem (Main Theorem)

For every d-dimensional unit vector α, integer k ≥ 1 and ε > 0

Pr
[
S ≥ (1± ε) k

d · 1
]
≤ e

−k
2 ( ε

2

2 −
ε3

3 )

Hence, if k ≥ 4+2β
ε2/2−ε3/3 log n, this probability becomes smaller than

2
n2+β which is inverse polynomial w.r.t n.
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Expected Value of ‖f (α)‖2

On expectation the length of a unit vector α is preserved.

E
[
‖f (α)‖2

]
= E

 k∑
i=1

d

k

 d∑
j=1

Xjαj

2


=
d

k

k∑
i=1

 d∑
j=1

E [X 2
j ]α2

j +
d∑

j<l

E [XjXl ]αjαl


=

d

k

k∑
i=1

1

d
= 1 = ‖α‖2
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Deviation from Expectation: Proof of Main
Theorem

By Markov inequality,

Pr

[
S > (1 + ε)

k

d

]
< E

[
ehS
]
e−(1+ε) hk

d

Pr

[
S < (1− ε)k

d

]
< E

[
e−hS

]
e(1−ε) hk

d

Since the vectors R ′i s are all chosen independently we can rewrite
the above as

Pr

[
S > (1 + ε)

k

d

]
<

(
E
[
ehQ2

1

])k

e−(1+ε) hk
d

Pr

[
S < (1− ε)k

d

]
<

(
E
[
e−hQ2

1

])k

e(1−ε) hk
d

where Q1 = 〈α,R1〉
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Proof of Main Theorem

By Taylor’s Expansion,

Pr

[
S < (1− ε)k

d

]
<

(
E

[
1− hQ2

1 +
hQ4

1

2

])k

e−(1+ε) hk
d

=

(
1− h

d
+

h2E [Q4
1 ]

2

)k

e(1−ε) hk
d

Lemma

For h ∈ [0, d/2) and all d ≥ 1,

E
[
ehQ2

1

]
≤ 1√

1− 2h/d
(1)

E
[
Q4

1

]
≤ 3

d2
(2)
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Proof of Main Theorem using Inequalities (1)
and (2)

If we take h = dε
2(1+ε) , for the upper bound we have the following:

Pr

[
S > (1 + ε)

k

d

]
<

(
1√

1− 2h/d

)k

e−(1+ε) hk
d

= ((1 + ε)e−ε)k/2 < e
−k

2 ( ε
2

2 −
ε3

3 ).

For the same value of h, for the lower bound we get:

Pr

[
S < (1− ε)k

d

]
<

(
1− h/d +

3h2

2d2

)k

e(1−ε) hk
d

< e
−k

2 ( ε
2

2 −
ε3

3 ).
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Proof of Inequality (2)

For inequality (2)

E [Q4
1 ] = (

∑d
i=1 Xiαi )

4 =
∑

i

E [X 4
i ]α4

i +(
4

1, 3

)∑
i<j

E [X 3
i ]E [Xj ]α

3
i αi +

(
4

2, 2

)∑
i<j

E [X 2
i ]E [X 2

j ]α2
i α

2
j +(

4

2, 1, 1

) ∑
i<j<k

E [X 2
i ]E [Xj ]E [Xk ]α2

i αjαk +(
4

1, 1, 1, 1

) ∑
i<j<k<l

E [Xi ]E [Xj ]E [Xk ]E [Xl ]αiαjαkαl

=
1

d2
(α4 + 6

∑
i<j

α2
i α

2
j ) ≤ 3

d2
.
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Proof of Inequality (1)

The idea is to first make the random variable Q1 independent of α
and then compare the even moments of Q1 with a properly scaled
normal distribution.

Lemma (Worst Vector Lemma)

For all unit vectors α, E [Q2k
1 (α)] ≤ E [Q2k

1 (w)], where
w = 1√

d
(1, 1, . . . , 1) for k = 1, 2, . . . .

Lemma (Normal Bound Lemma)

If T ∼ N(0, 1/d), then E [Q2k
1 (w)] ≤ E [T 2k ], where w = 1√

d
(1, 1, . . . , 1)

for k = 1, 2, . . . .
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Proof of Inequality (1)

E
[
ehT 2

]
=

∫ ∞
−∞

1√
2π

eλ
2/2ehλ2/ddλ

=
1√

1− 2h/d

= E

[ ∞∑
k=0

hkT 2k

k!

]
(using MCT)

=
∞∑

k=0

hkE
[
T 2k

]
k!

≥
∞∑

k=0

hkE
[
Q2k

1 (w)
]

k!
= E

[
ehQ1(w)2

]
≥ E

[
ehQ1(α)2

]
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Proving the Worst Vector Lemma

Let r1 and r2 be i.i.d. r.v. distributed as {−1,+1} with equal
probability. Furthermore let a, b,T be any reals and
c =

√
(a2 + b2)/2 and k > 0 be any integer, then

E
[
(T + ar1 + br2)2k

]
≤ E

[
(T + cr1 + cr2)2k

]

Let R1 = 1√
d

(r1, r2, . . . , rd). Thus we have

E
[
Q1(α)2k

]
=

1

dk

∑
R

E
[
(R + α1r1 + α2r2)2k

]
Pr

[
d∑

i=3

αi ri =
R√
d

]

≤ 1

dk

∑
R

E
[
(R + cr1 + cr2)2k

]
Pr

[
d∑

i=3

αi ri =
R√
d

]
= E

[
Q1(θ)2k

]
where c =

√
(α2

1 + α2
2)/2

θ is a more “uniform” unit vector than α.
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Proving the Normal Bound Lemma

Let {Ti}di=1 be i.i.d. normal r.v.. By stability of normal distribution

T = 1
d

d∑
i=1

Ti ∼ N(0, 1/d)

We also have Q1(w) = 1
d

d∑
i=1

r1

E [Q2k
1 (w)] =

1

d2k

d∑
i1=1

. . .

d∑
i2k =1

E [ri1 . . . ri2k
]

E [T 2k ] =
1

d2k

d∑
i1=1

. . .

d∑
i2k =1

E [Ti1 . . .Ti2k
]

For each index assignment we have

E [ri1 . . . ri2k
] ≤ E [Ti1 . . .Ti2k

]
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Open questions

Plenty !

No-flattening results for other lp metrics, non metrics

Embeddability of non-metrics into metric spaces - useful in
databases, learning

Information Theoretic Metrics - KL, Bhattacharyya, Mahalanobis -
widely used
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THANK YOU
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