
Algorithms for Processing Massive Data Sets

Purushottam Kar

Department of Computer Science and
Engineering,

Indian Institute of Technology, Kanpur

March 11, 2010

Overview

Introduction
An example from Massive Databases
An example from Network Monitoring

A Useful Tool
The Random Projection Method

Beating the Curse of Dimensionality
Dimensionality Reduction
Sketching

Other Methods

Conclusion

2 of 43

Overview

Introduction
An example from Massive Databases
An example from Network Monitoring

A Useful Tool
The Random Projection Method

Beating the Curse of Dimensionality
Dimensionality Reduction
Sketching

Other Methods

Conclusion

2 of 43

Overview

Introduction
An example from Massive Databases
An example from Network Monitoring

A Useful Tool
The Random Projection Method

Beating the Curse of Dimensionality
Dimensionality Reduction
Sketching

Other Methods

Conclusion

2 of 43

Overview

Introduction
An example from Massive Databases
An example from Network Monitoring

A Useful Tool
The Random Projection Method

Beating the Curse of Dimensionality
Dimensionality Reduction
Sketching

Other Methods

Conclusion

2 of 43

Overview

Introduction
An example from Massive Databases
An example from Network Monitoring

A Useful Tool
The Random Projection Method

Beating the Curse of Dimensionality
Dimensionality Reduction
Sketching

Other Methods

Conclusion

2 of 43

The story so far ...

3 of 43

Algorithm Design 101

• Goal : Solve a computational problem P using an algorithm A.

• Assume P is formalized as a function f : {0, 1}∗ −→ {0, 1}∗.

• Given input x ∈ {0, 1}∗, A has to output f (x).

• A is called an efficient algorithm if given input x , A uses
◦ at most |x |c1 space for some absolute constant c1

◦ at most |x |c2 time for some absolute constant c2

to give the correct answer.

• Here |x | denotes the size of the input and can be variously defined.

4 of 43

Algorithm Design 101

• Goal : Solve a computational problem P using an algorithm A.

• Assume P is formalized as a function f : {0, 1}∗ −→ {0, 1}∗.

• Given input x ∈ {0, 1}∗, A has to output f (x).

• A is called an efficient algorithm if given input x , A uses
◦ at most |x |c1 space for some absolute constant c1

◦ at most |x |c2 time for some absolute constant c2

to give the correct answer.

• Here |x | denotes the size of the input and can be variously defined.

4 of 43

Algorithm Design 101

• Goal : Solve a computational problem P using an algorithm A.

• Assume P is formalized as a function f : {0, 1}∗ −→ {0, 1}∗.

• Given input x ∈ {0, 1}∗, A has to output f (x).

• A is called an efficient algorithm if given input x , A uses
◦ at most |x |c1 space for some absolute constant c1

◦ at most |x |c2 time for some absolute constant c2

to give the correct answer.

• Here |x | denotes the size of the input and can be variously defined.

4 of 43

Algorithm Design 101

• Goal : Solve a computational problem P using an algorithm A.

• Assume P is formalized as a function f : {0, 1}∗ −→ {0, 1}∗.

• Given input x ∈ {0, 1}∗, A has to output f (x).

• A is called an efficient algorithm if given input x , A uses
◦ at most |x |c1 space for some absolute constant c1

◦ at most |x |c2 time for some absolute constant c2

to give the correct answer.

• Here |x | denotes the size of the input and can be variously defined.

4 of 43

Algorithm Design 101

• Goal : Solve a computational problem P using an algorithm A.

• Assume P is formalized as a function f : {0, 1}∗ −→ {0, 1}∗.

• Given input x ∈ {0, 1}∗, A has to output f (x).

• A is called an efficient algorithm if given input x , A uses
◦ at most |x |c1 space for some absolute constant c1

◦ at most |x |c2 time for some absolute constant c2

to give the correct answer.

• Here |x | denotes the size of the input and can be variously defined.

4 of 43

Some finer points

• A is presented the complete input in one go.

(Assumption 1)

• The input is presented in a RAM-like data structure so that A can
revisit parts of the input again and again.

(Assumption 2)

• Small integral values of the constants c1 and c2 usually translate to
algorithms that are efficient in practice.

(Assumption 3)

5 of 43

Some finer points

• A is presented the complete input in one go.

(Assumption 1)

• The input is presented in a RAM-like data structure so that A can
revisit parts of the input again and again.

(Assumption 2)

• Small integral values of the constants c1 and c2 usually translate to
algorithms that are efficient in practice.

(Assumption 3)

5 of 43

Some finer points

• A is presented the complete input in one go.

(Assumption 1)

• The input is presented in a RAM-like data structure so that A can
revisit parts of the input again and again.

(Assumption 2)

• Small integral values of the constants c1 and c2 usually translate to
algorithms that are efficient in practice.

(Assumption 3)

5 of 43

Some finer points

• A is presented the complete input in one go. (Assumption 1)

• The input is presented in a RAM-like data structure so that A can
revisit parts of the input again and again.

(Assumption 2)

• Small integral values of the constants c1 and c2 usually translate to
algorithms that are efficient in practice.

(Assumption 3)

5 of 43

Some finer points

• A is presented the complete input in one go. (Assumption 1)

• The input is presented in a RAM-like data structure so that A can
revisit parts of the input again and again. (Assumption 2)

• Small integral values of the constants c1 and c2 usually translate to
algorithms that are efficient in practice.

(Assumption 3)

5 of 43

Some finer points

• A is presented the complete input in one go. (Assumption 1)

• The input is presented in a RAM-like data structure so that A can
revisit parts of the input again and again. (Assumption 2)

• Small integral values of the constants c1 and c2 usually translate to
algorithms that are efficient in practice. (Assumption 3)

5 of 43

A twist in the tale ...

6 of 43

Working with High Dimensional Databases

• Find the nearest neighbor of a query point in the database.

• Even for moderately high dimensions (d = 20), any nearest
neighbor search algorithm essentially reduces to sequential search

Example (taken from [Bhattacharya])

Even to obtain a selectivity of 0.0001 on a database having points
from the unit cube in 20 dimensions, the range required to be queried
in each dimension is 0.63.

Example (taken from [Dasgupta and Freund2008])

Sizes of indexing structures like k-d trees grow exponentially with
dimension (depth grows linearly).

The Curse of Dimensionality

7 of 43

Working with High Dimensional Databases

• Find the nearest neighbor of a query point in the database.

• Even for moderately high dimensions (d = 20), any nearest
neighbor search algorithm essentially reduces to sequential search

Example (taken from [Bhattacharya])

Even to obtain a selectivity of 0.0001 on a database having points
from the unit cube in 20 dimensions, the range required to be queried
in each dimension is 0.63.

Example (taken from [Dasgupta and Freund2008])

Sizes of indexing structures like k-d trees grow exponentially with
dimension (depth grows linearly).

The Curse of Dimensionality

7 of 43

Working with High Dimensional Databases

• Find the nearest neighbor of a query point in the database.

• Even for moderately high dimensions (d = 20), any nearest
neighbor search algorithm essentially reduces to sequential search

Example (taken from [Bhattacharya])

Even to obtain a selectivity of 0.0001 on a database having points
from the unit cube in 20 dimensions, the range required to be queried
in each dimension is 0.63.

Example (taken from [Dasgupta and Freund2008])

Sizes of indexing structures like k-d trees grow exponentially with
dimension (depth grows linearly).

The Curse of Dimensionality

7 of 43

Working with High Dimensional Databases

• Find the nearest neighbor of a query point in the database.

• Even for moderately high dimensions (d = 20), any nearest
neighbor search algorithm essentially reduces to sequential search

Example (taken from [Bhattacharya])

Even to obtain a selectivity of 0.0001 on a database having points
from the unit cube in 20 dimensions, the range required to be queried
in each dimension is 0.63.

Example (taken from [Dasgupta and Freund2008])

Sizes of indexing structures like k-d trees grow exponentially with
dimension (depth grows linearly).

The Curse of Dimensionality

7 of 43

Working with High Dimensional Databases

• Find the nearest neighbor of a query point in the database.

• Even for moderately high dimensions (d = 20), any nearest
neighbor search algorithm essentially reduces to sequential search

Example (taken from [Bhattacharya])

Even to obtain a selectivity of 0.0001 on a database having points
from the unit cube in 20 dimensions, the range required to be queried
in each dimension is 0.63.

Example (taken from [Dasgupta and Freund2008])

Sizes of indexing structures like k-d trees grow exponentially with
dimension (depth grows linearly).

The Curse of Dimensionality

7 of 43

Working with High Dimensional Databases

• Typical database sizes are huge > 1, 000, 000 entries.

• If each entry is very high dimensional then huge amounts of
storage required.

• More importantly, a linear scan through such a database would be
very slow - leading to slow response times.

• Hence Assumption 3 does not hold !

8 of 43

Working with High Dimensional Databases

• Typical database sizes are huge > 1, 000, 000 entries.

• If each entry is very high dimensional then huge amounts of
storage required.

• More importantly, a linear scan through such a database would be
very slow - leading to slow response times.

• Hence Assumption 3 does not hold !

8 of 43

Working with High Dimensional Databases

• Typical database sizes are huge > 1, 000, 000 entries.

• If each entry is very high dimensional then huge amounts of
storage required.

• More importantly, a linear scan through such a database would be
very slow - leading to slow response times.

• Hence Assumption 3 does not hold !

8 of 43

Working with High Dimensional Databases

• Typical database sizes are huge > 1, 000, 000 entries.

• If each entry is very high dimensional then huge amounts of
storage required.

• More importantly, a linear scan through such a database would be
very slow - leading to slow response times.

• Hence Assumption 3 does not hold !

8 of 43

Another example ...

9 of 43

Working with Streaming Data

• Problem of network monitoring - data being received at a network
switch at high (Gigabit) rates (Example taken from [Ganguly])

◦ Wish to detect malicious activity in the network (eg. a Distributed
Denial of Service attack)

◦ Wish to keep track of most visited Internet websites, users with
highest usage

• All these aggregate statistics can be computed if we have the
Frequency Vector for the network stream.

Figure: A network stream and the corresponding frequency vector

10 of 43

Working with Streaming Data

• Problem of network monitoring - data being received at a network
switch at high (Gigabit) rates (Example taken from [Ganguly])
◦ Wish to detect malicious activity in the network (eg. a Distributed

Denial of Service attack)

◦ Wish to keep track of most visited Internet websites, users with
highest usage

• All these aggregate statistics can be computed if we have the
Frequency Vector for the network stream.

Figure: A network stream and the corresponding frequency vector

10 of 43

Working with Streaming Data

• Problem of network monitoring - data being received at a network
switch at high (Gigabit) rates (Example taken from [Ganguly])
◦ Wish to detect malicious activity in the network (eg. a Distributed

Denial of Service attack)
◦ Wish to keep track of most visited Internet websites, users with

highest usage

• All these aggregate statistics can be computed if we have the
Frequency Vector for the network stream.

Figure: A network stream and the corresponding frequency vector

10 of 43

Working with Streaming Data

• Problem of network monitoring - data being received at a network
switch at high (Gigabit) rates (Example taken from [Ganguly])
◦ Wish to detect malicious activity in the network (eg. a Distributed

Denial of Service attack)
◦ Wish to keep track of most visited Internet websites, users with

highest usage

• All these aggregate statistics can be computed if we have the
Frequency Vector for the network stream.

Figure: A network stream and the corresponding frequency vector

10 of 43

Working with Streaming Data

• Problem of network monitoring - data being received at a network
switch at high (Gigabit) rates (Example taken from [Ganguly])
◦ Wish to detect malicious activity in the network (eg. a Distributed

Denial of Service attack)
◦ Wish to keep track of most visited Internet websites, users with

highest usage

• All these aggregate statistics can be computed if we have the
Frequency Vector for the network stream.

Figure: A network stream and the corresponding frequency vector
10 of 43

Working with Streaming Data

• Problem of network monitoring - data being received at a network
switch at high (Gigabit) rates (Example taken from [Ganguly])
◦ Wish to detect malicious activity in the network (eg. a Distributed

Denial of Service attack)
◦ Wish to keep track of most visited Internet websites, users with

highest usage

• All these aggregate statistics can be computed if we have the
Frequency Vector for the network stream.

Figure: A network stream and the corresponding frequency vector
10 of 43

Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because

◦ The frequency vector is only available as a series of updates
◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.

11 of 43

Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because
◦ The frequency vector is only available as a series of updates

◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.

11 of 43

Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because
◦ The frequency vector is only available as a series of updates
◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.

11 of 43

Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because
◦ The frequency vector is only available as a series of updates
◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.

11 of 43

Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because
◦ The frequency vector is only available as a series of updates
◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.

11 of 43

Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because
◦ The frequency vector is only available as a series of updates
◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.

11 of 43

Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because
◦ The frequency vector is only available as a series of updates
◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.

11 of 43

Beating this curse ...

12 of 43

The Main Idea

• Working with the actual input is not possible because of high
dimensionality.

• Why not try getting a lower dimensional “compressed” version of
the input ?

• This version should retain all the interesting properties of the
original input.

• Note : This usually means working with approximately correct
answers.

• If the correct answer is L then our algorithms return a value L̂ such
that |L− L̂| < εL for small ε > 0.

13 of 43

The Main Idea

• Working with the actual input is not possible because of high
dimensionality.

• Why not try getting a lower dimensional “compressed” version of
the input ?

• This version should retain all the interesting properties of the
original input.

• Note : This usually means working with approximately correct
answers.

• If the correct answer is L then our algorithms return a value L̂ such
that |L− L̂| < εL for small ε > 0.

13 of 43

The Main Idea

• Working with the actual input is not possible because of high
dimensionality.

• Why not try getting a lower dimensional “compressed” version of
the input ?

• This version should retain all the interesting properties of the
original input.

• Note : This usually means working with approximately correct
answers.

• If the correct answer is L then our algorithms return a value L̂ such
that |L− L̂| < εL for small ε > 0.

13 of 43

The Main Idea

• Working with the actual input is not possible because of high
dimensionality.

• Why not try getting a lower dimensional “compressed” version of
the input ?

• This version should retain all the interesting properties of the
original input.

• Note : This usually means working with approximately correct
answers.

• If the correct answer is L then our algorithms return a value L̂ such
that |L− L̂| < εL for small ε > 0.

13 of 43

The Main Idea

• Working with the actual input is not possible because of high
dimensionality.

• Why not try getting a lower dimensional “compressed” version of
the input ?

• This version should retain all the interesting properties of the
original input.

• Note : This usually means working with approximately correct
answers.

• If the correct answer is L then our algorithms return a value L̂ such
that |L− L̂| < εL for small ε > 0.

13 of 43

The Random Projection Method

• Think of it as a very high dimensional camera

• Key observation : most of our photographs (unless taken from a
very weird angle) resemble us

• Hence a random photograph preserves all the features of our faces
approximately

14 of 43

The Random Projection Method

• Think of it as a very high dimensional camera

• Key observation : most of our photographs (unless taken from a
very weird angle) resemble us

• Hence a random photograph preserves all the features of our faces
approximately

14 of 43

The Random Projection Method

• Think of it as a very high dimensional camera

• Key observation : most of our photographs (unless taken from a
very weird angle) resemble us

• Hence a random photograph preserves all the features of our faces
approximately

14 of 43

The Random Projection Method

Figure: A Random Photograph is good enough !
15 of 43

The Random Projection Method

• Apply this to high dimensional point sets - a random
low-dimensional photograph should approximately preserve most
interesting properties of any point set.

Example
In a database where every entry is a 1000-dimensional vector, if I
randomly map every entry to a 150-dimensional vector then

◦ I should not lose too many interesting properties of the database
◦ i.e. my query routines should return almost the same answers
◦ only that the routines would be faster since dimensionality has reduced

16 of 43

The Random Projection Method

• Apply this to high dimensional point sets - a random
low-dimensional photograph should approximately preserve most
interesting properties of any point set.

Example
In a database where every entry is a 1000-dimensional vector, if I
randomly map every entry to a 150-dimensional vector then

◦ I should not lose too many interesting properties of the database
◦ i.e. my query routines should return almost the same answers
◦ only that the routines would be faster since dimensionality has reduced

16 of 43

The Random Projection Method

• Apply this to high dimensional point sets - a random
low-dimensional photograph should approximately preserve most
interesting properties of any point set.

Example
In a database where every entry is a 1000-dimensional vector, if I
randomly map every entry to a 150-dimensional vector then
◦ I should not lose too many interesting properties of the database

◦ i.e. my query routines should return almost the same answers
◦ only that the routines would be faster since dimensionality has reduced

16 of 43

The Random Projection Method

• Apply this to high dimensional point sets - a random
low-dimensional photograph should approximately preserve most
interesting properties of any point set.

Example
In a database where every entry is a 1000-dimensional vector, if I
randomly map every entry to a 150-dimensional vector then
◦ I should not lose too many interesting properties of the database
◦ i.e. my query routines should return almost the same answers

◦ only that the routines would be faster since dimensionality has reduced

16 of 43

The Random Projection Method

• Apply this to high dimensional point sets - a random
low-dimensional photograph should approximately preserve most
interesting properties of any point set.

Example
In a database where every entry is a 1000-dimensional vector, if I
randomly map every entry to a 150-dimensional vector then
◦ I should not lose too many interesting properties of the database
◦ i.e. my query routines should return almost the same answers
◦ only that the routines would be faster since dimensionality has reduced

16 of 43

The Random Projection Method

• Several key results in the fields of dimensionality reduction and
data streaming look at various classes of interesting properties and
demonstrate how can random projections preserve them.

• The most celebrated of these results is the Johnson-Lindenstrauss
Lemma that deals with data sets in Euclidean spaces - the
interesting property of a set of points in this result is the pairwise
inter-point Euclidean distances.

Definition (Low-distortion embeddings)

Given two metric spaces (X , ρ) and (Y , σ), a mapping f : X −→ Y is
called a D-embedding where D ≥ 1, if there exists a number r > 0
such that for all x , y ∈ X ,

r · ρ(x , y) ≤ σ (f (x), f (y)) ≤ D · r · ρ(x , y)

17 of 43

The Random Projection Method

• Several key results in the fields of dimensionality reduction and
data streaming look at various classes of interesting properties and
demonstrate how can random projections preserve them.

• The most celebrated of these results is the Johnson-Lindenstrauss
Lemma that deals with data sets in Euclidean spaces - the
interesting property of a set of points in this result is the pairwise
inter-point Euclidean distances.

Definition (Low-distortion embeddings)

Given two metric spaces (X , ρ) and (Y , σ), a mapping f : X −→ Y is
called a D-embedding where D ≥ 1, if there exists a number r > 0
such that for all x , y ∈ X ,

r · ρ(x , y) ≤ σ (f (x), f (y)) ≤ D · r · ρ(x , y)

17 of 43

The Random Projection Method

• Several key results in the fields of dimensionality reduction and
data streaming look at various classes of interesting properties and
demonstrate how can random projections preserve them.

• The most celebrated of these results is the Johnson-Lindenstrauss
Lemma that deals with data sets in Euclidean spaces - the
interesting property of a set of points in this result is the pairwise
inter-point Euclidean distances.

Definition (Low-distortion embeddings)

Given two metric spaces (X , ρ) and (Y , σ), a mapping f : X −→ Y is
called a D-embedding where D ≥ 1, if there exists a number r > 0
such that for all x , y ∈ X ,

r · ρ(x , y) ≤ σ (f (x), f (y)) ≤ D · r · ρ(x , y)

17 of 43

The Johnson Lindenstrauss Lemma

Theorem ([Johnson and Lindenstrauss1984])

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.

• How to implement a random mapping from Rd to Rk ?

• A simple linear mapping - multiply each vector in Rd with a
random k × d matrix P

• The d-dimensional vector x is mapped to the k-dimensional vector
Px .

• It suffices to choose each entry from the set {−1, 1} randomly.

• Linear mappings have other benefits - more on this later

18 of 43

The Johnson Lindenstrauss Lemma

Theorem ([Johnson and Lindenstrauss1984])

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.

• How to implement a random mapping from Rd to Rk ?

• A simple linear mapping - multiply each vector in Rd with a
random k × d matrix P

• The d-dimensional vector x is mapped to the k-dimensional vector
Px .

• It suffices to choose each entry from the set {−1, 1} randomly.

• Linear mappings have other benefits - more on this later

18 of 43

The Johnson Lindenstrauss Lemma

Theorem ([Johnson and Lindenstrauss1984])

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.

• How to implement a random mapping from Rd to Rk ?

• A simple linear mapping - multiply each vector in Rd with a
random k × d matrix P

• The d-dimensional vector x is mapped to the k-dimensional vector
Px .

• It suffices to choose each entry from the set {−1, 1} randomly.

• Linear mappings have other benefits - more on this later

18 of 43

The Johnson Lindenstrauss Lemma

Theorem ([Johnson and Lindenstrauss1984])

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.

• How to implement a random mapping from Rd to Rk ?

• A simple linear mapping - multiply each vector in Rd with a
random k × d matrix P

• The d-dimensional vector x is mapped to the k-dimensional vector
Px .

• It suffices to choose each entry from the set {−1, 1} randomly.

• Linear mappings have other benefits - more on this later

18 of 43

The Johnson Lindenstrauss Lemma

Theorem ([Johnson and Lindenstrauss1984])

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.

• How to implement a random mapping from Rd to Rk ?

• A simple linear mapping - multiply each vector in Rd with a
random k × d matrix P

• The d-dimensional vector x is mapped to the k-dimensional vector
Px .

• It suffices to choose each entry from the set {−1, 1} randomly.

• Linear mappings have other benefits - more on this later

18 of 43

The Johnson Lindenstrauss Lemma

Theorem ([Johnson and Lindenstrauss1984])

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.

• How to implement a random mapping from Rd to Rk ?

• A simple linear mapping - multiply each vector in Rd with a
random k × d matrix P

• The d-dimensional vector x is mapped to the k-dimensional vector
Px .

• It suffices to choose each entry from the set {−1, 1} randomly.

• Linear mappings have other benefits - more on this later
18 of 43

Random Projections

• Why cant I just choose k of the d dimensions and get a
deterministic projection ?

• Alignment problems - most of the interesting information in the
vector may lie in the dimensions we have chosen to throw away

• A random matrix undoes any such alignments - referred to as
incoherence in Compressed Sensing literature

Figure: Shortcomings of a deterministic projection

19 of 43

Random Projections

• Why cant I just choose k of the d dimensions and get a
deterministic projection ?

• Alignment problems - most of the interesting information in the
vector may lie in the dimensions we have chosen to throw away

• A random matrix undoes any such alignments - referred to as
incoherence in Compressed Sensing literature

Figure: Shortcomings of a deterministic projection

19 of 43

Random Projections

• Why cant I just choose k of the d dimensions and get a
deterministic projection ?

• Alignment problems - most of the interesting information in the
vector may lie in the dimensions we have chosen to throw away

• A random matrix undoes any such alignments - referred to as
incoherence in Compressed Sensing literature

Figure: Shortcomings of a deterministic projection

19 of 43

Random Projections

• Why cant I just choose k of the d dimensions and get a
deterministic projection ?

• Alignment problems - most of the interesting information in the
vector may lie in the dimensions we have chosen to throw away

• A random matrix undoes any such alignments - referred to as
incoherence in Compressed Sensing literature

Figure: Shortcomings of a deterministic projection

19 of 43

Random Projection at work ...

20 of 43

Other notions of interesting properties

• What if the interesting properties of a data set are the inter-point
distance for some distance measure other than the Euclidean ?

• For example statistical distance measures (Mahalanobis,
Kullback-Leibler, Bhattacharyya) that are useful in image retrieval,
bio-informatics etc.

• Two possible ways of handling high-dimensional databases that use
these measures
◦ Find ways to project (randomly) to lower dimensions directly so that

inter-point distances are preserved.

◦ Embed these distances in Euclidean spaces and then use
Johnson-Lindenstrauss Lemma to reduce dimensionality.

21 of 43

Other notions of interesting properties

• What if the interesting properties of a data set are the inter-point
distance for some distance measure other than the Euclidean ?

• For example statistical distance measures (Mahalanobis,
Kullback-Leibler, Bhattacharyya) that are useful in image retrieval,
bio-informatics etc.

• Two possible ways of handling high-dimensional databases that use
these measures
◦ Find ways to project (randomly) to lower dimensions directly so that

inter-point distances are preserved.
◦ Embed these distances in Euclidean spaces and then use

Johnson-Lindenstrauss Lemma to reduce dimensionality.

21 of 43

Other notions of interesting properties

• What if the interesting properties of a data set are the inter-point
distance for some distance measure other than the Euclidean ?

• For example statistical distance measures (Mahalanobis,
Kullback-Leibler, Bhattacharyya) that are useful in image retrieval,
bio-informatics etc.

• Two possible ways of handling high-dimensional databases that use
these measures
◦ Find ways to project (randomly) to lower dimensions directly so that

inter-point distances are preserved.
◦ Embed these distances in Euclidean spaces and then use

Johnson-Lindenstrauss Lemma to reduce dimensionality.

21 of 43

Some Positive Results

Definition (Bhattacharyya Distance)

For two vectors P = (p1, p2, . . . , pd) and Q = (q1, q2, . . . qd) with∑d
i=1 pi =

∑n
i=1 qi = 1 and each pi , qi ≥ 0, the Bhattacharyya

distance between them is defined to be

BD(P,Q) = − ln

(
n∑

i=1

√
piqi

)
.

Definition (Mahalanobis Distance Measure)

A d × d positive definite matrix A defines a Mahalanobis Distance
measure over Rd given by MA(x , y) =

√
(x − y)T A(x − y).

Theorem ([Bhattacharya et al.2009])

One can project data sets using the Bhattacharyya and the
Mahalanobis distance measures to low dimensional spaces using linear
random projections.

22 of 43

Some Positive Results

Definition (Bhattacharyya Distance)

For two vectors P = (p1, p2, . . . , pd) and Q = (q1, q2, . . . qd) with∑d
i=1 pi =

∑n
i=1 qi = 1 and each pi , qi ≥ 0, the Bhattacharyya

distance between them is defined to be

BD(P,Q) = − ln

(
n∑

i=1

√
piqi

)
.

Definition (Mahalanobis Distance Measure)

A d × d positive definite matrix A defines a Mahalanobis Distance
measure over Rd given by MA(x , y) =

√
(x − y)T A(x − y).

Theorem ([Bhattacharya et al.2009])

One can project data sets using the Bhattacharyya and the
Mahalanobis distance measures to low dimensional spaces using linear
random projections.

22 of 43

Some Positive Results

Definition (Bhattacharyya Distance)

For two vectors P = (p1, p2, . . . , pd) and Q = (q1, q2, . . . qd) with∑d
i=1 pi =

∑n
i=1 qi = 1 and each pi , qi ≥ 0, the Bhattacharyya

distance between them is defined to be

BD(P,Q) = − ln

(
n∑

i=1

√
piqi

)
.

Definition (Mahalanobis Distance Measure)

A d × d positive definite matrix A defines a Mahalanobis Distance
measure over Rd given by MA(x , y) =

√
(x − y)T A(x − y).

Theorem ([Bhattacharya et al.2009])

One can project data sets using the Bhattacharyya and the
Mahalanobis distance measures to low dimensional spaces using linear
random projections.
22 of 43

A (partial) Negative Result

Definition (Kullback Leibler Divergence)

Given two vectors P = {p1, p2, . . . , pd} and Q = {q2, q2 . . . qd}, the
Kullback-Leibler divergence between the two vectors is defined as

KL(P,Q) =
d∑

i=1
pi ln pi

qi
.

Theorem ([Bhattacharya et al.2009])

Point sets using the Kullback-Leibler divergence cannot be embedded
into any metric space (in particular the Euclidean space) without
distorting the inter-point distances by large amounts.

23 of 43

A (partial) Negative Result

Definition (Kullback Leibler Divergence)

Given two vectors P = {p1, p2, . . . , pd} and Q = {q2, q2 . . . qd}, the
Kullback-Leibler divergence between the two vectors is defined as

KL(P,Q) =
d∑

i=1
pi ln pi

qi
.

Theorem ([Bhattacharya et al.2009])

Point sets using the Kullback-Leibler divergence cannot be embedded
into any metric space (in particular the Euclidean space) without
distorting the inter-point distances by large amounts.

23 of 43

Processing Massive Data Streams
using Random Projections ...

24 of 43

Norm Estimation in Streams

• A very important problem in Data Streaming is estimating the L2

norm of the frequency vector.

• Useful in database query optimization and network traffic anomaly
detection.

• The Lp norm of a vector (f1, f2, . . . , fd) for p > 0 is
d∑

i=1
f p
i .

• Note that the L2 norm of a vector is just the squared Euclidean
length of the vector.

• In a series of seminal papers [Alon et al.1999, Indyk2006], the
random projection technique was extended to the problem of
estimating Fp for 0 < p ≤ 2.

• Using random projections that are linear mappings is crucial here
since the frequency vector is never available to us.

25 of 43

Norm Estimation in Streams

• A very important problem in Data Streaming is estimating the L2

norm of the frequency vector.

• Useful in database query optimization and network traffic anomaly
detection.

• The Lp norm of a vector (f1, f2, . . . , fd) for p > 0 is
d∑

i=1
f p
i .

• Note that the L2 norm of a vector is just the squared Euclidean
length of the vector.

• In a series of seminal papers [Alon et al.1999, Indyk2006], the
random projection technique was extended to the problem of
estimating Fp for 0 < p ≤ 2.

• Using random projections that are linear mappings is crucial here
since the frequency vector is never available to us.

25 of 43

Norm Estimation in Streams

• A very important problem in Data Streaming is estimating the L2

norm of the frequency vector.

• Useful in database query optimization and network traffic anomaly
detection.

• The Lp norm of a vector (f1, f2, . . . , fd) for p > 0 is
d∑

i=1
f p
i .

• Note that the L2 norm of a vector is just the squared Euclidean
length of the vector.

• In a series of seminal papers [Alon et al.1999, Indyk2006], the
random projection technique was extended to the problem of
estimating Fp for 0 < p ≤ 2.

• Using random projections that are linear mappings is crucial here
since the frequency vector is never available to us.

25 of 43

Norm Estimation in Streams

• A very important problem in Data Streaming is estimating the L2

norm of the frequency vector.

• Useful in database query optimization and network traffic anomaly
detection.

• The Lp norm of a vector (f1, f2, . . . , fd) for p > 0 is
d∑

i=1
f p
i .

• Note that the L2 norm of a vector is just the squared Euclidean
length of the vector.

• In a series of seminal papers [Alon et al.1999, Indyk2006], the
random projection technique was extended to the problem of
estimating Fp for 0 < p ≤ 2.

• Using random projections that are linear mappings is crucial here
since the frequency vector is never available to us.

25 of 43

Norm Estimation in Streams

• A very important problem in Data Streaming is estimating the L2

norm of the frequency vector.

• Useful in database query optimization and network traffic anomaly
detection.

• The Lp norm of a vector (f1, f2, . . . , fd) for p > 0 is
d∑

i=1
f p
i .

• Note that the L2 norm of a vector is just the squared Euclidean
length of the vector.

• In a series of seminal papers [Alon et al.1999, Indyk2006], the
random projection technique was extended to the problem of
estimating Fp for 0 < p ≤ 2.

• Using random projections that are linear mappings is crucial here
since the frequency vector is never available to us.

25 of 43

Norm Estimation in Streams

• A very important problem in Data Streaming is estimating the L2

norm of the frequency vector.

• Useful in database query optimization and network traffic anomaly
detection.

• The Lp norm of a vector (f1, f2, . . . , fd) for p > 0 is
d∑

i=1
f p
i .

• Note that the L2 norm of a vector is just the squared Euclidean
length of the vector.

• In a series of seminal papers [Alon et al.1999, Indyk2006], the
random projection technique was extended to the problem of
estimating Fp for 0 < p ≤ 2.

• Using random projections that are linear mappings is crucial here
since the frequency vector is never available to us.

25 of 43

L2-estimation in Streams

• The trick is to identify j th stream element say with a
frequency vector update sj

• The frequency vector f =
m∑

j=1
sj where m is the length of the

stream. Thus, for any linear mapping P, Pf =
m∑

j=1
Psj .

• This allows us to incrementally update low-dimensional sketches.
• Construct P by choosing every element randomly from {−1, 1}.
• [Alon et al.1999] Reducing a d-dimensional frequency vector to

k = O
(

log d
ε2

)
dimensions does not change the L2 norm by more

than an ε fraction.

26 of 43

L2-estimation in Streams

• The trick is to identify j th stream element say with a
frequency vector update sj

• The frequency vector f =
m∑

j=1
sj where m is the length of the

stream. Thus, for any linear mapping P, Pf =
m∑

j=1
Psj .

• This allows us to incrementally update low-dimensional sketches.
• Construct P by choosing every element randomly from {−1, 1}.
• [Alon et al.1999] Reducing a d-dimensional frequency vector to

k = O
(

log d
ε2

)
dimensions does not change the L2 norm by more

than an ε fraction.

26 of 43

L2-estimation in Streams

• The trick is to identify j th stream element say with a
frequency vector update sj

• The frequency vector f =
m∑

j=1
sj where m is the length of the

stream. Thus, for any linear mapping P, Pf =
m∑

j=1
Psj .

• This allows us to incrementally update low-dimensional sketches.

• Construct P by choosing every element randomly from {−1, 1}.
• [Alon et al.1999] Reducing a d-dimensional frequency vector to

k = O
(

log d
ε2

)
dimensions does not change the L2 norm by more

than an ε fraction.

26 of 43

L2-estimation in Streams

• The trick is to identify j th stream element say with a
frequency vector update sj

• The frequency vector f =
m∑

j=1
sj where m is the length of the

stream. Thus, for any linear mapping P, Pf =
m∑

j=1
Psj .

• This allows us to incrementally update low-dimensional sketches.
• Construct P by choosing every element randomly from {−1, 1}.

• [Alon et al.1999] Reducing a d-dimensional frequency vector to

k = O
(

log d
ε2

)
dimensions does not change the L2 norm by more

than an ε fraction.

26 of 43

L2-estimation in Streams

• The trick is to identify j th stream element say with a
frequency vector update sj

• The frequency vector f =
m∑

j=1
sj where m is the length of the

stream. Thus, for any linear mapping P, Pf =
m∑

j=1
Psj .

• This allows us to incrementally update low-dimensional sketches.
• Construct P by choosing every element randomly from {−1, 1}.
• [Alon et al.1999] Reducing a d-dimensional frequency vector to

k = O
(

log d
ε2

)
dimensions does not change the L2 norm by more

than an ε fraction.
26 of 43

Processing an Update

↓
p11 p12 p13 . . . p1j . . . p1d

p21 p22 p23 . . . p2j . . . p2d

p31 p32 p33 . . . p3j . . . p3d
...

...
...

. . .
...

. . .
...

pk1 pk2 pk3 . . . pkj . . . pkd

0
0
0
...
1
...
0

← j th element
=

p1j

p2j

p3j
...

pkj

Sketchnew = Sketchold +

p1j

p2j

p3j
...

pkj

27 of 43

A small problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.

28 of 43

A small problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.

28 of 43

A small problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.

28 of 43

A BIG problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.

28 of 43

A BIG problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.

28 of 43

A BIG problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.

28 of 43

A BIG problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.

28 of 43

More Applications in Data Streams

• By constructing the matrix P differently we can estimate Lp for
any 0 < p ≤ 2.

• Other random projection techniques allow us to maintain short
sketches of the frequency vector that allow us to
◦ estimate the number of non-zero coordinates in the frequency vector

(F0 estimation)
◦ return the coordinates that have the highest values (Heavy Hitter

estimation)
◦ ...

29 of 43

More Applications in Data Streams

• By constructing the matrix P differently we can estimate Lp for
any 0 < p ≤ 2.

• Other random projection techniques allow us to maintain short
sketches of the frequency vector that allow us to
◦ estimate the number of non-zero coordinates in the frequency vector

(F0 estimation)
◦ return the coordinates that have the highest values (Heavy Hitter

estimation)
◦ ...

29 of 43

Some other techniques ...

30 of 43

Locality Sensitive Hashing

• Introduced by [Indyk and Motwani1998] as a solution to the
approximate Nearest Neighbor Problem in high dimensions.

• The idea is to come up with a family of hash functions such that
nearby points attain the same value under the hash functions and
far away points hash to different values.

• More formally, a Locality Sensitive Hash Family for a distance
measure d on a set X is a set of functions H that map points in X
to some small universe U from such that for any two points
x , y ∈ X ,
◦ if d(x , y) < r , then at least 90% of the hash functions in the hash

family hash them to the same value i.e. h(x) = h(y).
◦ if d(x , y) > R, then at least 90% of the hash functions in the hash

family hash them to different values i.e. h(x) 6= h(y).

• We now know efficient constructions of such hash families. See
[Andoni and Indyk2008] for a survey.

31 of 43

Locality Sensitive Hashing

• Introduced by [Indyk and Motwani1998] as a solution to the
approximate Nearest Neighbor Problem in high dimensions.

• The idea is to come up with a family of hash functions such that
nearby points attain the same value under the hash functions and
far away points hash to different values.

• More formally, a Locality Sensitive Hash Family for a distance
measure d on a set X is a set of functions H that map points in X
to some small universe U from such that for any two points
x , y ∈ X ,
◦ if d(x , y) < r , then at least 90% of the hash functions in the hash

family hash them to the same value i.e. h(x) = h(y).
◦ if d(x , y) > R, then at least 90% of the hash functions in the hash

family hash them to different values i.e. h(x) 6= h(y).

• We now know efficient constructions of such hash families. See
[Andoni and Indyk2008] for a survey.

31 of 43

Locality Sensitive Hashing

• Introduced by [Indyk and Motwani1998] as a solution to the
approximate Nearest Neighbor Problem in high dimensions.

• The idea is to come up with a family of hash functions such that
nearby points attain the same value under the hash functions and
far away points hash to different values.

• More formally, a Locality Sensitive Hash Family for a distance
measure d on a set X is a set of functions H that map points in X
to some small universe U from such that for any two points
x , y ∈ X ,
◦ if d(x , y) < r , then at least 90% of the hash functions in the hash

family hash them to the same value i.e. h(x) = h(y).
◦ if d(x , y) > R, then at least 90% of the hash functions in the hash

family hash them to different values i.e. h(x) 6= h(y).

• We now know efficient constructions of such hash families. See
[Andoni and Indyk2008] for a survey.

31 of 43

Locality Sensitive Hashing

• Introduced by [Indyk and Motwani1998] as a solution to the
approximate Nearest Neighbor Problem in high dimensions.

• The idea is to come up with a family of hash functions such that
nearby points attain the same value under the hash functions and
far away points hash to different values.

• More formally, a Locality Sensitive Hash Family for a distance
measure d on a set X is a set of functions H that map points in X
to some small universe U from such that for any two points
x , y ∈ X ,
◦ if d(x , y) < r , then at least 90% of the hash functions in the hash

family hash them to the same value i.e. h(x) = h(y).
◦ if d(x , y) > R, then at least 90% of the hash functions in the hash

family hash them to different values i.e. h(x) 6= h(y).

• We now know efficient constructions of such hash families. See
[Andoni and Indyk2008] for a survey.

31 of 43

Compressed Sensing

• Addresses the problem of dimensionality at the data acquisition
phase itself

• Often one applies compression techniques to raw data that is very
high dimensional (eg. JPEG-2000 compression to raw images)

• Thus the high-resolution acquisition is wasteful since the
compressed data usually has a very sparse representation (eg.
JPEG images have very sparse Fourier representations)

• Compressed Sensing seeks to address this problem by acquiring the
sparse representations directly and using algorithms for data
reconstruction from these sparse representations.

• The method was introduced in two seminal papers by
Candes-Romberg-Tao and Donoho [Candes]

• Has led to the development of compressed sensing hardware - eg.
Single pixel camera

32 of 43

Compressed Sensing

• Addresses the problem of dimensionality at the data acquisition
phase itself

• Often one applies compression techniques to raw data that is very
high dimensional (eg. JPEG-2000 compression to raw images)

• Thus the high-resolution acquisition is wasteful since the
compressed data usually has a very sparse representation (eg.
JPEG images have very sparse Fourier representations)

• Compressed Sensing seeks to address this problem by acquiring the
sparse representations directly and using algorithms for data
reconstruction from these sparse representations.

• The method was introduced in two seminal papers by
Candes-Romberg-Tao and Donoho [Candes]

• Has led to the development of compressed sensing hardware - eg.
Single pixel camera

32 of 43

Compressed Sensing

• Addresses the problem of dimensionality at the data acquisition
phase itself

• Often one applies compression techniques to raw data that is very
high dimensional (eg. JPEG-2000 compression to raw images)

• Thus the high-resolution acquisition is wasteful since the
compressed data usually has a very sparse representation (eg.
JPEG images have very sparse Fourier representations)

• Compressed Sensing seeks to address this problem by acquiring the
sparse representations directly and using algorithms for data
reconstruction from these sparse representations.

• The method was introduced in two seminal papers by
Candes-Romberg-Tao and Donoho [Candes]

• Has led to the development of compressed sensing hardware - eg.
Single pixel camera

32 of 43

Compressed Sensing

• Addresses the problem of dimensionality at the data acquisition
phase itself

• Often one applies compression techniques to raw data that is very
high dimensional (eg. JPEG-2000 compression to raw images)

• Thus the high-resolution acquisition is wasteful since the
compressed data usually has a very sparse representation (eg.
JPEG images have very sparse Fourier representations)

• Compressed Sensing seeks to address this problem by acquiring the
sparse representations directly and using algorithms for data
reconstruction from these sparse representations.

• The method was introduced in two seminal papers by
Candes-Romberg-Tao and Donoho [Candes]

• Has led to the development of compressed sensing hardware - eg.
Single pixel camera

32 of 43

Compressed Sensing

• Addresses the problem of dimensionality at the data acquisition
phase itself

• Often one applies compression techniques to raw data that is very
high dimensional (eg. JPEG-2000 compression to raw images)

• Thus the high-resolution acquisition is wasteful since the
compressed data usually has a very sparse representation (eg.
JPEG images have very sparse Fourier representations)

• Compressed Sensing seeks to address this problem by acquiring the
sparse representations directly and using algorithms for data
reconstruction from these sparse representations.

• The method was introduced in two seminal papers by
Candes-Romberg-Tao and Donoho [Candes]

• Has led to the development of compressed sensing hardware - eg.
Single pixel camera

32 of 43

Compressed Sensing

• Addresses the problem of dimensionality at the data acquisition
phase itself

• Often one applies compression techniques to raw data that is very
high dimensional (eg. JPEG-2000 compression to raw images)

• Thus the high-resolution acquisition is wasteful since the
compressed data usually has a very sparse representation (eg.
JPEG images have very sparse Fourier representations)

• Compressed Sensing seeks to address this problem by acquiring the
sparse representations directly and using algorithms for data
reconstruction from these sparse representations.

• The method was introduced in two seminal papers by
Candes-Romberg-Tao and Donoho [Candes]

• Has led to the development of compressed sensing hardware - eg.
Single pixel camera

32 of 43

Single Pixel Camera (Rice University)

Figure: Compressed Sensing in Practice

33 of 43

Manifold Identification Techniques

Figure: A 2-dimensional dataset
34 of 43

Manifold Identification Techniques

Figure: The dataset is intrinsically 1-dimensional
35 of 43

Manifold Identification Techniques

• Applies to situations when the high dimensional data has support
only on some low dimensional surface (manifold) i.e. the data is
intrinsically low-dimensional but is embedded in a high dimensional
space.

• For example : datasets of images of handwritten numerals - the
images may by high dimensional (number of pixels) but the
intrinsic dimensionality is low - eg. there are only a few degrees of
freedom for images of the numeral zero which is essentially an
ellipse

• Various approaches used to exploit the low intrinsic dimensionality

◦ Discover embeddings of the data into spaces of dimensionality equal
to the intrinsic dimensionality - ISOMAP algorithm
[Tenenbaum et al.2009, Clarkson2008]

◦ Use the low intrinsic dimensionality implicitly to speed up data
structures like k-d Trees [Dasgupta and Freund2008].

36 of 43

Manifold Identification Techniques

• Applies to situations when the high dimensional data has support
only on some low dimensional surface (manifold) i.e. the data is
intrinsically low-dimensional but is embedded in a high dimensional
space.

• For example : datasets of images of handwritten numerals - the
images may by high dimensional (number of pixels) but the
intrinsic dimensionality is low - eg. there are only a few degrees of
freedom for images of the numeral zero which is essentially an
ellipse

• Various approaches used to exploit the low intrinsic dimensionality

◦ Discover embeddings of the data into spaces of dimensionality equal
to the intrinsic dimensionality - ISOMAP algorithm
[Tenenbaum et al.2009, Clarkson2008]

◦ Use the low intrinsic dimensionality implicitly to speed up data
structures like k-d Trees [Dasgupta and Freund2008].

36 of 43

Manifold Identification Techniques

• Applies to situations when the high dimensional data has support
only on some low dimensional surface (manifold) i.e. the data is
intrinsically low-dimensional but is embedded in a high dimensional
space.

• For example : datasets of images of handwritten numerals - the
images may by high dimensional (number of pixels) but the
intrinsic dimensionality is low - eg. there are only a few degrees of
freedom for images of the numeral zero which is essentially an
ellipse

• Various approaches used to exploit the low intrinsic dimensionality

◦ Discover embeddings of the data into spaces of dimensionality equal
to the intrinsic dimensionality - ISOMAP algorithm
[Tenenbaum et al.2009, Clarkson2008]

◦ Use the low intrinsic dimensionality implicitly to speed up data
structures like k-d Trees [Dasgupta and Freund2008].

36 of 43

Manifold Identification Techniques

• Applies to situations when the high dimensional data has support
only on some low dimensional surface (manifold) i.e. the data is
intrinsically low-dimensional but is embedded in a high dimensional
space.

• For example : datasets of images of handwritten numerals - the
images may by high dimensional (number of pixels) but the
intrinsic dimensionality is low - eg. there are only a few degrees of
freedom for images of the numeral zero which is essentially an
ellipse

• Various approaches used to exploit the low intrinsic dimensionality
◦ Discover embeddings of the data into spaces of dimensionality equal

to the intrinsic dimensionality - ISOMAP algorithm
[Tenenbaum et al.2009, Clarkson2008]

◦ Use the low intrinsic dimensionality implicitly to speed up data
structures like k-d Trees [Dasgupta and Freund2008].

36 of 43

Manifold Identification Techniques

• Applies to situations when the high dimensional data has support
only on some low dimensional surface (manifold) i.e. the data is
intrinsically low-dimensional but is embedded in a high dimensional
space.

• For example : datasets of images of handwritten numerals - the
images may by high dimensional (number of pixels) but the
intrinsic dimensionality is low - eg. there are only a few degrees of
freedom for images of the numeral zero which is essentially an
ellipse

• Various approaches used to exploit the low intrinsic dimensionality
◦ Discover embeddings of the data into spaces of dimensionality equal

to the intrinsic dimensionality - ISOMAP algorithm
[Tenenbaum et al.2009, Clarkson2008]

◦ Use the low intrinsic dimensionality implicitly to speed up data
structures like k-d Trees [Dasgupta and Freund2008].

36 of 43

Concluding Remarks

37 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -

◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -

◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -

◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -

◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -
◦ Dimensionality Reduction, Sketching and Compressed Sensing

◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -
◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing

◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -
◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -
◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.

38 of 43

References (1)

Alon, N., Matias, Y., & Szegedy, M. (1999).
The Space Complexity of Approximating the Frequency
Moments.
Journal of Computer Systems and Sciences, 58(1):137–147.

Andoni, A. & Indyk, P. (2008).
Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions.
Communications of the ACM, 51(1):117–122.

Bhattacharya, A.
CS618 : Indexing and Searching Techniques in Databases.
Course Notes for the Fall’09 offering at Dept of CSE, IIT Kanpur.

39 of 43

References (2)

Bhattacharya, A., Kar, P., & Pal, M. (2009).
On Low Distortion Embeddings of Statistical Distance Measures
into Low Dimensional Spaces.
In: 20th International Conference on Database and Expert
Systems Applications (DEXA), pages 164–172.

Candes, E.
Compressive Sensing.
Tutorial given at Neural Information Processing Systems
Conference, 2008.

Clarkson, K. L. (2008).
Tighter Bounds for Random Projections of Manifolds.
In: ACM Symposium on Computational Geometry.

40 of 43

References (3)

Dasgupta, S. & Freund, Y. (2008).
Random Projection Trees and Low Dimensional Manifolds.
In: 40th Annual ACM Symposium on Theory of Computing,
pages 537–546.

Ganguly, S.
CS719 : Data Stream Algorithms.
Course Notes for the Spring’10 offering at Dept of CSE, IIT
Kanpur.

Indyk, P. (2006).
Stable Distributions, Pseudorandom Generators, Embeddings and
Data Stream Computations.
Journal of the ACM, 53(3):307–323.

41 of 43

References (4)

Indyk, P. & Motwani, R. (1998).
Approximate Nearest Neighbors : Towards Removing the Curse of
Dimensionality.
In: 30th Annual ACM Symposium on Theory of Computing,
pages 604–613.

Johnson, W. B. & Lindenstrauss, J. (1984).
Extensions of Lipschitz maps into a Hilbert Space.
Contemporary Mathematics, 26:189–206.

Nisan, N. (1992).
Pseudorandom Generators for Space Bounded Computations.
Combinatorica, 12(4):449–461.

42 of 43

References (5)

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2009).
A Global Geometric Framework for Nonlinear Dimensionality
Reduction.
Science.

43 of 43

	Introduction
	An example from Massive Databases
	An example from Network Monitoring

	A Useful Tool
	The Random Projection Method

	Beating the Curse of Dimensionality
	Dimensionality Reduction
	Sketching

	Other Methods
	Conclusion

