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The story so far ...
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Algorithm Design 101

• Goal : Solve a computational problem P using an algorithm A.

• Assume P is formalized as a function f : {0, 1}∗ −→ {0, 1}∗.

• Given input x ∈ {0, 1}∗, A has to output f (x).

• A is called an efficient algorithm if given input x , A uses
◦ at most |x |c1 space for some absolute constant c1

◦ at most |x |c2 time for some absolute constant c2

to give the correct answer.

• Here |x | denotes the size of the input and can be variously defined.
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Some finer points

• A is presented the complete input in one go.

(Assumption 1)

• The input is presented in a RAM-like data structure so that A can
revisit parts of the input again and again.

(Assumption 2)

• Small integral values of the constants c1 and c2 usually translate to
algorithms that are efficient in practice.

(Assumption 3)
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A twist in the tale ...
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Working with High Dimensional Databases

• Find the nearest neighbor of a query point in the database.

• Even for moderately high dimensions (d = 20), any nearest
neighbor search algorithm essentially reduces to sequential search

Example (taken from [Bhattacharya])

Even to obtain a selectivity of 0.0001 on a database having points
from the unit cube in 20 dimensions, the range required to be queried
in each dimension is 0.63.

Example (taken from [Dasgupta and Freund2008])

Sizes of indexing structures like k-d trees grow exponentially with
dimension (depth grows linearly).

The Curse of Dimensionality
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Working with High Dimensional Databases

• Typical database sizes are huge > 1, 000, 000 entries.

• If each entry is very high dimensional then huge amounts of
storage required.

• More importantly, a linear scan through such a database would be
very slow - leading to slow response times.

• Hence Assumption 3 does not hold !
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Another example ...
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Working with Streaming Data

• Problem of network monitoring - data being received at a network
switch at high (Gigabit) rates (Example taken from [Ganguly])

◦ Wish to detect malicious activity in the network (eg. a Distributed
Denial of Service attack)

◦ Wish to keep track of most visited Internet websites, users with
highest usage

• All these aggregate statistics can be computed if we have the
Frequency Vector for the network stream.

Figure: A network stream and the corresponding frequency vector
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Working with Streaming Data

• The most obvious solution of working directly with the frequency
vector does not work because

◦ The frequency vector is only available as a series of updates
◦ The vector is too large to be stored explicitly and updated

Example

The number of IP addresses - which is the size of the frequency
vector in the network monitoring examples is 232 (this will become
2128 with the introduction of IPv6).

• The network stream is too large to be stored as well.

• This means random access into the input is not possible.

• Hence Assumption 1 and 2 do not hold ! Assumption 3 does not
hold either.
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Beating this curse ...

12 of 43



The Main Idea

• Working with the actual input is not possible because of high
dimensionality.

• Why not try getting a lower dimensional “compressed” version of
the input ?

• This version should retain all the interesting properties of the
original input.

• Note : This usually means working with approximately correct
answers.

• If the correct answer is L then our algorithms return a value L̂ such
that |L− L̂| < εL for small ε > 0.
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The Random Projection Method

• Think of it as a very high dimensional camera

• Key observation : most of our photographs (unless taken from a
very weird angle) resemble us

• Hence a random photograph preserves all the features of our faces
approximately
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The Random Projection Method

Figure: A Random Photograph is good enough !
15 of 43



The Random Projection Method

• Apply this to high dimensional point sets - a random
low-dimensional photograph should approximately preserve most
interesting properties of any point set.

Example
In a database where every entry is a 1000-dimensional vector, if I
randomly map every entry to a 150-dimensional vector then

◦ I should not lose too many interesting properties of the database
◦ i.e. my query routines should return almost the same answers
◦ only that the routines would be faster since dimensionality has reduced
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The Random Projection Method

• Several key results in the fields of dimensionality reduction and
data streaming look at various classes of interesting properties and
demonstrate how can random projections preserve them.

• The most celebrated of these results is the Johnson-Lindenstrauss
Lemma that deals with data sets in Euclidean spaces - the
interesting property of a set of points in this result is the pairwise
inter-point Euclidean distances.

Definition (Low-distortion embeddings)

Given two metric spaces (X , ρ) and (Y , σ), a mapping f : X −→ Y is
called a D-embedding where D ≥ 1, if there exists a number r > 0
such that for all x , y ∈ X ,

r · ρ(x , y) ≤ σ (f (x), f (y)) ≤ D · r · ρ(x , y)
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The Johnson Lindenstrauss Lemma

Theorem ([Johnson and Lindenstrauss1984])

Let X be an n-point set in a d-dimensional Euclidean space (i.e.
(X , `2) ⊂

(
Rd , `2

)
), and let ε ∈ (0, 1] be given. Then there exists a

(1 + ε)-embedding of X into (Rk , `2) where k = O
(
ε−2 log n

)
.

Furthermore, this embedding can be found out in randomized
polynomial time.

• How to implement a random mapping from Rd to Rk ?

• A simple linear mapping - multiply each vector in Rd with a
random k × d matrix P

• The d-dimensional vector x is mapped to the k-dimensional vector
Px .

• It suffices to choose each entry from the set {−1, 1} randomly.

• Linear mappings have other benefits - more on this later
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Random Projections

• Why cant I just choose k of the d dimensions and get a
deterministic projection ?

• Alignment problems - most of the interesting information in the
vector may lie in the dimensions we have chosen to throw away

• A random matrix undoes any such alignments - referred to as
incoherence in Compressed Sensing literature

Figure: Shortcomings of a deterministic projection
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Random Projection at work ...

20 of 43



Other notions of interesting properties

• What if the interesting properties of a data set are the inter-point
distance for some distance measure other than the Euclidean ?

• For example statistical distance measures (Mahalanobis,
Kullback-Leibler, Bhattacharyya) that are useful in image retrieval,
bio-informatics etc.

• Two possible ways of handling high-dimensional databases that use
these measures
◦ Find ways to project (randomly) to lower dimensions directly so that

inter-point distances are preserved.

◦ Embed these distances in Euclidean spaces and then use
Johnson-Lindenstrauss Lemma to reduce dimensionality.

21 of 43



Other notions of interesting properties

• What if the interesting properties of a data set are the inter-point
distance for some distance measure other than the Euclidean ?

• For example statistical distance measures (Mahalanobis,
Kullback-Leibler, Bhattacharyya) that are useful in image retrieval,
bio-informatics etc.

• Two possible ways of handling high-dimensional databases that use
these measures
◦ Find ways to project (randomly) to lower dimensions directly so that

inter-point distances are preserved.
◦ Embed these distances in Euclidean spaces and then use

Johnson-Lindenstrauss Lemma to reduce dimensionality.

21 of 43



Other notions of interesting properties

• What if the interesting properties of a data set are the inter-point
distance for some distance measure other than the Euclidean ?

• For example statistical distance measures (Mahalanobis,
Kullback-Leibler, Bhattacharyya) that are useful in image retrieval,
bio-informatics etc.

• Two possible ways of handling high-dimensional databases that use
these measures
◦ Find ways to project (randomly) to lower dimensions directly so that

inter-point distances are preserved.
◦ Embed these distances in Euclidean spaces and then use

Johnson-Lindenstrauss Lemma to reduce dimensionality.

21 of 43



Some Positive Results

Definition (Bhattacharyya Distance)

For two vectors P = (p1, p2, . . . , pd) and Q = (q1, q2, . . . qd) with∑d
i=1 pi =

∑n
i=1 qi = 1 and each pi , qi ≥ 0, the Bhattacharyya

distance between them is defined to be

BD(P,Q) = − ln

(
n∑

i=1

√
piqi

)
.

Definition (Mahalanobis Distance Measure)

A d × d positive definite matrix A defines a Mahalanobis Distance
measure over Rd given by MA(x , y) =

√
(x − y)T A(x − y).

Theorem ([Bhattacharya et al.2009])

One can project data sets using the Bhattacharyya and the
Mahalanobis distance measures to low dimensional spaces using linear
random projections.
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A (partial) Negative Result

Definition (Kullback Leibler Divergence)

Given two vectors P = {p1, p2, . . . , pd} and Q = {q2, q2 . . . qd}, the
Kullback-Leibler divergence between the two vectors is defined as

KL(P,Q) =
d∑

i=1
pi ln pi

qi
.

Theorem ([Bhattacharya et al.2009])

Point sets using the Kullback-Leibler divergence cannot be embedded
into any metric space (in particular the Euclidean space) without
distorting the inter-point distances by large amounts.
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Processing Massive Data Streams
using Random Projections ...
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Norm Estimation in Streams

• A very important problem in Data Streaming is estimating the L2

norm of the frequency vector.

• Useful in database query optimization and network traffic anomaly
detection.

• The Lp norm of a vector (f1, f2, . . . , fd) for p > 0 is
d∑

i=1
f p
i .

• Note that the L2 norm of a vector is just the squared Euclidean
length of the vector.

• In a series of seminal papers [Alon et al.1999, Indyk2006], the
random projection technique was extended to the problem of
estimating Fp for 0 < p ≤ 2.

• Using random projections that are linear mappings is crucial here
since the frequency vector is never available to us.
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L2-estimation in Streams

• The trick is to identify j th stream element say with a
frequency vector update sj

• The frequency vector f =
m∑

j=1
sj where m is the length of the

stream. Thus, for any linear mapping P, Pf =
m∑

j=1
Psj .

• This allows us to incrementally update low-dimensional sketches.
• Construct P by choosing every element randomly from {−1, 1}.
• [Alon et al.1999] Reducing a d-dimensional frequency vector to

k = O
(

log d
ε2

)
dimensions does not change the L2 norm by more

than an ε fraction.
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Processing an Update

↓
p11 p12 p13 . . . p1j . . . p1d

p21 p22 p23 . . . p2j . . . p2d

p31 p32 p33 . . . p3j . . . p3d
...

...
...

. . .
...

. . .
...

pk1 pk2 pk3 . . . pkj . . . pkd





0
0
0
...
1
...
0

← j th element
=


p1j

p2j

p3j
...

pkj



Sketchnew = Sketchold +


p1j

p2j

p3j
...

pkj
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A small problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ

(
1
ε2 log d

)
space.
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(
1
ε2 log d

)
space.

28 of 43



A BIG problem ...

• How do we store the projection matrix P ?? Recall that P has
dimensions k × d .

• We agreed that the d-dimensional vector f is too big to be stored.

• ??

• The key is to use tools from Computational Complexity called
Pseudo-random Generators [Nisan1992].

• These allow us to generate parts of the matrix as and when needed
and do not require us to store the entire matrix explicitly

• Thus, in order to get and ε-approximation to the L2 norm of a data
stream frequency vector, we need only Õ
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More Applications in Data Streams

• By constructing the matrix P differently we can estimate Lp for
any 0 < p ≤ 2.

• Other random projection techniques allow us to maintain short
sketches of the frequency vector that allow us to
◦ estimate the number of non-zero coordinates in the frequency vector

(F0 estimation)
◦ return the coordinates that have the highest values (Heavy Hitter

estimation)
◦ ...
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Some other techniques ...
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Locality Sensitive Hashing

• Introduced by [Indyk and Motwani1998] as a solution to the
approximate Nearest Neighbor Problem in high dimensions.

• The idea is to come up with a family of hash functions such that
nearby points attain the same value under the hash functions and
far away points hash to different values.

• More formally, a Locality Sensitive Hash Family for a distance
measure d on a set X is a set of functions H that map points in X
to some small universe U from such that for any two points
x , y ∈ X ,
◦ if d(x , y) < r , then at least 90% of the hash functions in the hash

family hash them to the same value i.e. h(x) = h(y).
◦ if d(x , y) > R, then at least 90% of the hash functions in the hash

family hash them to different values i.e. h(x) 6= h(y).

• We now know efficient constructions of such hash families. See
[Andoni and Indyk2008] for a survey.
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Compressed Sensing

• Addresses the problem of dimensionality at the data acquisition
phase itself

• Often one applies compression techniques to raw data that is very
high dimensional (eg. JPEG-2000 compression to raw images)

• Thus the high-resolution acquisition is wasteful since the
compressed data usually has a very sparse representation (eg.
JPEG images have very sparse Fourier representations)

• Compressed Sensing seeks to address this problem by acquiring the
sparse representations directly and using algorithms for data
reconstruction from these sparse representations.

• The method was introduced in two seminal papers by
Candes-Romberg-Tao and Donoho [Candes]

• Has led to the development of compressed sensing hardware - eg.
Single pixel camera
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Single Pixel Camera (Rice University)

Figure: Compressed Sensing in Practice
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Manifold Identification Techniques

Figure: A 2-dimensional dataset
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Manifold Identification Techniques

Figure: The dataset is intrinsically 1-dimensional
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Manifold Identification Techniques

• Applies to situations when the high dimensional data has support
only on some low dimensional surface (manifold) i.e. the data is
intrinsically low-dimensional but is embedded in a high dimensional
space.

• For example : datasets of images of handwritten numerals - the
images may by high dimensional (number of pixels) but the
intrinsic dimensionality is low - eg. there are only a few degrees of
freedom for images of the numeral zero which is essentially an
ellipse

• Various approaches used to exploit the low intrinsic dimensionality

◦ Discover embeddings of the data into spaces of dimensionality equal
to the intrinsic dimensionality - ISOMAP algorithm
[Tenenbaum et al.2009, Clarkson2008]

◦ Use the low intrinsic dimensionality implicitly to speed up data
structures like k-d Trees [Dasgupta and Freund2008].
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Concluding Remarks
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Summarizing

• Improvements in our capability to acquire high-dimensional,
continuous and massive data have posed the challenges of
processing/storing this data in a resource efficient manner.

• High dimensional data poses peculiar challenges to algorithms in
terms of space utilization and processing time (Curse of
Dimensionality)

• The Random Projection Method gives us an elegant technique to
overcome the curse of dimensionality

• The method can be adapted to various algorithms -

◦ Dimensionality Reduction, Sketching and Compressed Sensing
◦ Locality Sensitive Hashing
◦ Manifold Identification techniques

• The areas of sketching, dimensionality reduction and manifold
identification techniques continue to pose challenges and require a
deeper understanding of the Random Projection Method.
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