Semantic Structure of the Indian Sign Language

Purushottam Kar and Achla M. Raina
Indian Institute of Technology Kanpur

6 January 2008
Overview

- **Indian Sign Language** – An Introduction
 - Sociolinguistic and Linguistic perspectives
 - Past Research in Sign Languages
 - Research in ISL

- Surface Characterization of ISL
 - Sentence level constructs
 - Inter-sentential constructs

- A Schematization model for ISL
 - The **COMPOSE** schema, Perceptual Schema …
Introduction

Indian Sign Language

- Used by the deaf communities in the India
 - Dialectal variations observed
 - Not much known about geographical extent

- A much neglected “minority language”
 - Overwhelming oralist approach to deaf education
 - (Deshmukh ’96)
 - Has seen very little research
Introduction

Indian Sign Language

• Visuo-spatial language
 - Extensive use of space
 - Iconic signs, Role play, Directional verbs, Non-manual markers, Person and Space deixis

• “Sentences” are predicate final

• Non manuals markers
 - Facial Expression, Body Posture, Head orientation
 - Negation, Interrogatives, Causal Expressions, Conditionals
Introduction

Past Research in Sign Languages

• Theoretical
 – Structural/Descriptive
 • (Zeshan ’02), (Sexton ’99), (Stokoe ’60)
 – Neuro-physiological
 • (Damasio ’86), (Gordon ’04)

• Computational
 – Representation Schemes
 • (Speers ’02)
 – Translation Systems
 • (Kar et al ’07), (Wray et al ’04), (Zhao et al ’00)
Introduction

Research in Indian Sign Language

• Structural/Descriptive
 - (Zeshan ’00, ’03, ’04) – Description of surface forms
 - (Vasishta ’86) – Sign language dictionaries
• Deaf Education
 - (Deshmukh ’96) – Deaf education in India
• Computational
 - (Kar et al ’07) – INGIT – MT from Hindi to ISL*
 - (Dasgupta et al ’08) – Text to ISL MT

Surface Characterization of ISL

Simple Predication

SIGN: \(\text{TIME-YESTERDAY} \{^\top 3\text{PERS-IND-DEIX}^{pos1} \} \langle D \rangle \text{PLACE-IND-DEIX GO} \)

TRAN: \(\text{वह कल दिखी गया था} \)

- Predicate final structure
- Absence of articles, copula
- Tense is a discourse level phenomenon
- Spatial deixis – markers of grammatical roles
 - Spatial Location
 - Body Orientation
- Mono-transitive events
 - Constituent ordering doesn’t play a major role

SIGN: \(\{^\text{nom} 3\text{PERS-IND-DEIX}^{pos1} \} \text{WALK INCEP} \)

TRAN: \(\text{उसने चलना शुरू किया} \)
Surface Characterization of ISL

Simple Predication

• Di-transitive events
 – In case of asymmetric relation between similar participating entities – directional signs used
 – Constituent order flexible

 \[
 \begin{align*}
 \text{SIGN: } & \{^{\text{nom}} 1\text{PERS-IND-DEIX }\} \quad \text{BOOK READ COMPL} \\
 \text{TRAN: } & \quad \text{मैंने किताब पढ़ ली है}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{SIGN: } & \{^{\text{top}} \text{RAM } 3\text{PERS-IND-DEIX}^{\text{pos1}} \} \quad \text{pos1TEACH}_{\text{pos-1pers}} \\
 \text{TRAN: } & \quad \text{राम मुझे पढ़ाता है}
 \end{align*}
 \]

• Trivalent events
 – Similar structure – directional verbs used to indicate grammatical roles
Surface Characterization of ISL

Simple Predication

- Constituent orderings
 - Rarely involved in marking grammatical relations
 \[\text{SIGN: } \{\text{nom} \text{ RAM} \} \{\text{nom} \text{ SITA} \} \text{HEAR} \]
 \[\text{TRAN: } \text{राम ने सीता को सुना} \]
 - Mostly the “relation” between the constituents is specified last
 - If entities \(E_1, E_2, \ldots, E_n \) are related as \(\mathcal{R}(E_1, E_2, \ldots, E_n) \) then the signing is \(\langle E_1, E_2, \ldots, E_n, \mathcal{R}(E_1, E_2, \ldots, E_n) \rangle \)
 - However relaxation in ordering if constituent is a fully specified relation
 \[\text{SIGN: } \{\text{nom} \text{ 1PERS-IND-DEIX} \} \text{THINK} \{\text{nom} \text{ 3PERS-IND-DEIX}^{pos1} \} \text{TEACHER} \]
 \[\text{SIGN: } \{\text{nom} \text{ 3PERS-IND-DEIX}^{pos1} \} \text{TEACHER} \{\text{nom} \text{ 1PERS-IND-DEIX} \} \text{THINK} \]
 \[\text{TRAN: } \text{मुझे लगता है कि वह अध्यापक है} \]
Sentence level constructs

• Negative Assertions
 • Associated with a manual sign for negation
 • Parallel non manual component

\[
\begin{align*}
\text{SIGN: } & \{^{top} 1\text{PERS-IND-DEIX } \} \text{ SCHOOL } \{^{neg} \text{ GO NEG } \} \\
\text{TRAN: } & \text{मैं स्कूल नहीं जा रहा}
\end{align*}
\]

• Affirmative Interrogative
 • Non redundant role played by non manual markers
 • Manual signing identical to corresponding affirmative

\[
\begin{align*}
\text{SIGN: } & \{^{yninter} \{^{top} \text{FEM 3PERS-IND-DEIX}^{pos1} \} \} \{^{hold} \text{TEACHER} \} \} \\
\text{TRAN: } & \text{क्या वह औरत अध्यापक है?}
\end{align*}
\]
Surface Characterization of ISL

Sentence level constructs

• Sentential Embeddings
 – Two signing patterns observed

SIGN: \{^nom^ 1PERS-IND-DEIX \} THINK \{^cinter^ Q \} \{^nom^ 3PERS-IND-DEIX^{pos1} \} TEACHER
SIGN: \{^nom^ 3PERS-IND-DEIX^{pos1} \} TEACHER \{^nom^ 1PERS-IND-DEIX \} THINK
TRAN: मुझे लगता है कि वह अध्यापक है

• Content Interrogatives
 – Both manual as well as non-manual component
 – Composed signs for temporal, location, person queries

SIGN: \{^cinter^ SHOP OPEN TIME-Q \}
TRAN: दुकान कब खुलती है?
Surface Characterization of ISL

Inter-sentential constructs

• Conditional Statements
 - Exhibit embeddings in ISL
 - The premise is terminated with a non manual marker
 - A variant observed involves use of a finger-spelled IF

```
SIGN: {\textit{incomp} TIME-TODAY HOLIDAY \{\textit{neg} NEG \} \{\textit{top} SHOP \} OPEN
TRAN: यदि आज छुट्टी नहीं है तो दुकान खुली होगी
```

• Conjunctions –Disjunctions
 - “ISL has no … conjunctions” (Zeshan ’03)
 - However finger-spelled AND is encountered
 - More investigation required
Surface Characterization of ISL

Inter-sentential constructs

- Causal Expressions
 - Realized in a dialogic form as a question answer tuple

 \[
 \text{SIGN: } \{^{top} 1\text{PERS-IND-DEIX SON } \} \text{ SCHOOL } \{^{neg} \text{GO NEG } \} \{^{inter} \text{Q } \} \text{ SICK } 3\text{PERS-IND-DEIX}
 \]

 \[
 \text{TRAN: } \text{मेरा बेटा स्कूल नहीं जा रहा क्योंकि वह बिल्ली है}
 \]

- Relational Embeddings
 - Embedded clause signed after a non manual marker
 - Example of surface embeddings in ISL
 - More detailed investigation required

 \[
 \text{SIGN: } \{^{top} \text{BOOK } 3\text{PERS-IND-DEIX}{^{pos1}} \} \ldots
 \]

 \[
 \ldots \{^{top} \text{TIME-YESTERDAY } 1\text{PERS-IND-DEIX } {^{pos-1}}\text{PERS GIVE}{^{pos-2}}\text{PERS} \} \ldots
 \]

 \[
 \ldots \{^{top} 3\text{PERS-IND-DEIX}{^{pos1}} \} 1\text{PERS-IND-DEIX}
 \]

 \[
 \text{TRAN: } \text{मैंने जो किताब तुम्हें कल दी थी वह मेरी है}
 \]
Semantic Schematization in ISL

Conceptual Intentional System

CI Representations

Schematization Module

Schematized Form

Articulatory Perceptual System

ICOSAL '08: Eighth International Conference on South Asian Languages
Semantic Schematization in ISL

Input CIR

Output s-form
A Schematization Model

The Interface

• Autonomous, amodal, CI System
• CI Representations (CIR) – “Semantic parses”
• Schematized forms (s-forms)
 – weakly structured trees
 – Leaves contain individual signs
 – Leaves have a template
 \[
 \begin{bmatrix}
 \text{MANUAL} = *
 \\
 \text{FACIAL} = *
 \\
 \text{BODY-POSTURE} = *
 \\
 \text{BODY-ORIENTATION} = *
 \end{bmatrix}
 \]
 – Non-leaves contain temporal sequencing information
A Schematization Model

The Global store

• A mutable store being modified constantly
• Stores discourse level information
 – Tense Information
 – Spatial deixis type used – one of the following
 • Spatial Location (SL)
 • Body Orientation (BO)
 – Mappings of type
 • Spatial Location \rightarrow Participating entity
 • Body Orientation \rightarrow Pairs of participating entities
A Schematization Model

The COMPOSE schema

- Takes as input – a CIR and a template
- Schematizes the CIR according to the template and outputs an s-form that adheres to the template
- COMPOSE(book) is simply an articulation of the sign
- COMPOSE(give(ram,sita,book)) is handled by a schema for the concept GIVE
- Schema can recursively call COMPOSE for arguments
A Schematization Model

The Sentence schema

- Negation
 - CIR is of form C = neg(E): negation of the event E
 - Template
 \[
 \left(C, O, seq \begin{array}{c}
 MANUAL = * \\
 FACIAL = f \\
 BODY-POSTURE = bp \\
 BODY-ORIENTATION = bo \\
 \end{array} \right)
 \]
 - Simply call COMPOSE with the arguments
 \[
 \left(T, O, seq \begin{array}{c}
 MANUAL = * \\
 FACIAL = f \\
 BODY-POSTURE = bp \\
 BODY-ORIENTATION = bo \\
 \end{array} \right), \left(REL \begin{array}{c}
 MANUAL = * \\
 FACIAL = f + negexp \\
 BODY-POSTURE = bp + leanback \\
 BODY-ORIENTATION = bo \\
 \end{array} \right)
 \]
A Schematization Model

The Event Schema

- **SEE**
 - Has a **Perceptual Articulatory Schema (PAS)**
 - The CIR see(ram, sita) would be “composed” as
 \[
 \text{seq}(\text{COMPOSE}(\text{ram}), \text{COMPOSE}(\text{sita}), P_{A_{\text{see}}}(\text{loc}_{\text{ram}}, \text{loc}_{\text{sita}}))
 \]

- **GIVE**
 - The PAS for GIVE
 - is similar to that of SEE: both involve directed movement
 - is dissimilar from SEE: different hand shapes

- **THINK**
 - Non-directional verb
 - PAS simply consists of the hand shape, orientation and place of articulation
An Example

<table>
<thead>
<tr>
<th>Sentence corresponding to a CIR s-form output</th>
</tr>
</thead>
</table>

Initial Global Store

<table>
<thead>
<tr>
<th>[global store]</th>
</tr>
</thead>
</table>

Example

Yesterday, Ram met Sita

\[\text{seq}(\text{COMPOSE}(\text{yesterday}), \text{COMPOSE}(\text{ram}), \text{COMPOSE}(\text{sita}), \text{COMPOSE}(\text{meet})) \]

He gave her a book

\[\text{seq}(\text{COMPOSE}(\text{book}), \text{PA}_\text{give}(\text{loc1}, \text{loc2})) \]

He thought that she should go to school

\[\text{seq}(\text{IND}(\text{loc1}), \text{COMPOSE}(\text{think}), \text{COMPOSE}(\text{Q}), \text{seq}(\text{IND}(\text{loc2}), \text{COMPOSE}(\text{school}), \text{COMPOSE}(\text{go}), \text{COMPOSE}(\text{imperative}))) \]

Radha, who is Sita’s sister, goes to school

\[\text{seq}(\text{COMPOSE}(\text{radha}), \text{POSS}(\text{loc2}), \text{COMPOSE}(\text{sister}), \text{HOLD}, \text{seq}(\text{IND}(\text{loc3}), \text{COMPOSE}(\text{school}), \text{COMPOSE}(\text{go}))) \]

ICOSAL ’08: Eighth International Conference on South Asian Languages
Future Work

• A broader surface characterization based on a larger corpus of data
 – adverbials, adjectives, adjuncts
 – conjunctions, disjunctions

• May lead to a refined schematization model

• Explore the COMPOSE schema in detail
 – Possibility of arriving at a unified schematization model for spoken and sign languages
For questions or suggestions, please contact Purushottam Kar at purushot@cse.iitk.ac.in or Achla M. Raina at achla@iitk.ac.in