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Learning

Learning as pattern recognition

Binary classification

Multi-class classification
Multi-label classification
Regression
Clustering
Ranking
...
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Learning

Binary classification

Learning Dichotomies from examples

Learning the distinction between a bird and a non-bird
Main approaches :

I Generative (Bayesian classification)
I Predictive

F Feature Based
F Kernel Based

This talk : Kernel Based predictive approaches to binary
classification
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Learning

Probably Approximately Correct learning
[Kearns and Vazirani, 1997]

Definition
A class of boolean functions F defined on a domain X is said to be
PAC-learnable if there exists a class of boolean functions H defined on
X , an algorithm A and a function S : R+ × R+ such that for all
distributions µ defined on X , all t ∈ F , all ε, δ > 0 : A, when given
(xi , f (xi))n

i=1, xi ∈R µ where n = S(1/ε,1/δ), returns with probability
(taken over the choice of x1, . . . , xn) greater than 1− δ, a function
h ∈ H such that

Pr
x∈Rµ

[h(x) 6= t(x)] ≤ ε.

t is the Target function, F the Concept Class

h is the Hypothesis, H the Hypothesis Class
S is the Sample Complexity of the algorithm A
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Learning

Limitations of PAC learning

Most interesting function classes are not PAC learnable with
polynomial sample complexities eg. Regular Languages

Adversarial combinations of target functions and distributions can
make learning impossible
Weaker notions of learning

I Weak-PAC learning - require only that ε be bounded away from 1
2

I Restrict oneself to benign distributions (uniform, mixture of
Gaussians)

I Restrict oneself to benign learning scenarios (target
function-distribution pairs that are benign)

I Vaguely defined in literature
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Learning

Weak∗-Probably Approximately Correct learning

Definition
A class of boolean functions F defined on a domain X is said to be
weak∗-PAC-learnable if for every t ∈ F and distribution µ defined on X ,
there exists a class of boolean functions H defined on X , an algorithm
A and a function S : R+ × R+ such that for all ε, δ > 0 : A, when given
(xi , f (xi))n

i=1, xi ∈R µ where n = S(1/ε,1/δ), returns with probability
(taken over the choice of x1, . . . , xn) greater than 1− δ, a function
h ∈ H such that

Pr
x∈Rµ
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Kernels

Kernels

Definition
Given a non-empty set X , a symmetric real-valued (resp. Hermitian
complex valued) function f : X × X → R (resp f : X × X → C) is called
a kernel.

All notions of (symmetric) distances, similarities are kernels

Alternatively kernels can be thought of as measures of similarity
or distance
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Kernels

Definiteness

Definition
A matrix A ∈ Rn×n is said to be positive definite if ∀c ∈ Rn, c 6= 0,
c>Ac > 0.

Definition
A kernel K defined on a domain X is said to be positive definite if
∀n ∈ N, ∀x1, . . . xn ∈ X , the matrix G = (Gij) = (K (xi , xj)) is positive
definite. Alternatively, for every g ∈ L2(X ),

∫∫
X g(x)g(x ′)K (x , x ′) ≥ 0.

Definition
A kernel K is said to be indefinite if it is neither positive definite nor
negative definite.
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Kernels

The Kernel Trick

All PD Kernels turn out to be inner products in some Hilbert space

Thus, any algorithm that only takes as input pairwise inner
products can be made to implicitly work in such spaces
Results known as Representer Theorems keep any Curses of
dimensionality at bay
...
Testing the Mercer condition difficult
Indefinite kernels known to give good performance
Ability to use indefinite kernels increases the scope of
learning-the-kernel algorithms
Learning paradigm somewhere between PAC and weak∗-PAC
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Kernels as distances

Kernels as distances
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Kernels as distances Landmarking based approaches

Nearest neighbor classification [Duda et al., 2000]

Learning domain is some distance (possibly metric) space (X ,d)

Given T = (xi , t(xi))n
i=1, xi ∈ X , yi ∈ {−1,+1}, T = T + ∪ T−

Classify a new point x as + if d(x ,T +) < d(x ,T−) otherwise as −
When will this work ?

I Intuitively when a large fraction of domain points are closer
(according to d) to points of the same label than points of the
different label

I Pr
x∈Rµ

[
d(x ,X t(x)) < d(x ,X t(x))

]
≥ 1− ε
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Kernels as distances Landmarking based approaches

What is a good distance function

Definition
A distance function d is said to be strongly (ε, γ)-good for a learning
problem, if at least 1− ε probability mass of examples x ∈ µ satisfy

Pr
x ,x ′′∈Rµ

[
d(x , x ′) < d(x , x ′′)|x ′ ∈ X t(x), x ′′ ∈ X t(x)

]
≥ 1

2
+ γ.

A smoothed version of the earlier intuitive notion of good distance
function

Correspondingly the algorithm is also a smoothed version of the
classical NN algorithm
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Kernels as distances Landmarking based approaches

Learning with a good distance function

Theorem ([Wang et al., 2007])
Given a strongly (ε, γ)-good distance function, the following classifier
h, for any ε, δ > 0, when given n = 1

γ2 lg
(1
δ

)
pairs of positive and

negative training points, (ai ,bi)
n
i=1,ai ∈R µ+,bi ∈R µ− with probability

greater than 1− δ, has an error no more than ε+ δ

h(x) = sgn [f (x)] , f (x) =
1
n

n∑
i=1

sgn [d(x ,bi)− d(x ,ai)]

What about the NN algorithm - any guarantees for that ?

For metric distances - in a few slides
Note that this is an instance of weak∗-PAC learning
Guarantees for NN on non-metric distances ?
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Kernels as distances Landmarking based approaches

Other landmarking approaches

[Weinshall et al., 1998], [Jacobs et al., 2000] investigate
algorithms where a (set of) representative(s) is chosen for each
label: eg the centroid of all training points with that label

[Pȩkalska and Duin, 2001] consider combining classifiers based
on different dissimilarity functions as well as building classifiers on
combinations of different dissimilarity functions
[Weinberger and Saul, 2009] propose methods to learn a
Mahalanobis distance to improve NN classification

Purushottam Kar (CSE/IITK) Learning in Indefiniteness August 2, 2010 18 / 60



Kernels as distances Landmarking based approaches

Other landmarking approaches

[Weinshall et al., 1998], [Jacobs et al., 2000] investigate
algorithms where a (set of) representative(s) is chosen for each
label: eg the centroid of all training points with that label
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Kernels as distances Landmarking based approaches

Other landmarking approaches

[Gottlieb et al., 2010] present efficient schemes for NN classifiers
(Lipschitz extension classifiers) in doubling spaces

h(x) = sgn [f (x)] , f (x) = min
xi∈T

(
t(xi) + 2

d(x , xi)

d(T +,T−)

)

I make use of approximate nearest neighbor search algorithms
I show that pseudo dimension of Lipschitz classifiers in doubling

spaces is bounded
I are able to provides schemes for optimizing the bias-variance

trade-off
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Kernels as distances PE space approaches

Data sensitive embeddings

Landmarking based approaches can be seen as implicitly
embedding the domain into an n dimensional feature space

Perform an explicit embedding of training data to some vector
space that is isometric and learn a classifier
Perform (approximately) isometric embeddings of test data into
the same vector space to classify them
Exact for transductive problems, approximate for inductive ones
Long history of such techniques from early AI - Multidimensional
scaling
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Kernels as distances Pseudo Euclidean spaces

The Minkowski space-time

Definition
R4 = R3 ⊕ R1 := R(3,1) endowed with the inner product
〈(x1, y1, z1, t1), (x2, y2, z2, t2)〉 = x1x2 + y1y2 + z1z2 − t1t2 is a
4-dimensional Minkowski space with signature (3,1). The norm
imposed by this inner product is ‖(x1, y1, z1, t1)‖2 = x2

1 + y2
1 + z2

1 − t2
1

Can have vectors of negative length due to the imaginary time
coordinate

The definition an be extended to arbitrary R(p,q) (PE Spaces)

Theorem ([Goldfarb, 1984], [Haasdonk, 2005])
Any finite pseudo metric (X ,d), |X | = n can be isometrically
embedded in

(
R(p,q), ‖ · ‖2

)
for some values of p + q < n.
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Kernels as distances Pseudo Euclidean spaces

The Embedding

Embedding the training set
Given a distance matrix Rn×n 3 D = (d(xi , xj)), find the corresponding
inner products in the PE space as G = −1

2JDJ where J = I − 1
n 11>.

Do an eigendecomposition of B = QΛQ> = Q|Λ|
1
2 M|Λ|

1
2 Q> where

M =

[
Ip×p 0

0 −Iq×q

]
. The representation of the points is X = Q|Λ|

1
2

Embedding a new point
Perform a linear projection into the space found above. Given
d = (d(x , xi)), the vector of distances to the old points, the inner
products to all the old points is found as g = −1

2

(
d − 1

n 11>D
)

J. Now
find the mean square error solution to xMX> = b as x = bX |Λ|−1M.
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Kernels as distances PE space approaches

Classification in PE spaces

Earliest observations by [Goldfarb, 1984] who realized the link
between landmarking and embedding approaches

[Pȩkalska and Duin, 2000],[Pȩkalska et al., 2001],
[Pȩkalska and Duin, 2002] use this space to learn SVM, LPM,
Quadratic Discriminant and Fisher Linear Discriminant classifiers
[Harol et al., 2006] propose enlarging the PE space to allow for
lesser distortion in embeddings test points
[Duin and Pȩkalska, 2008] propose refinements to the distance
measure by making modifications to the PE space allowing for
better NN classification
Guarantees for classifiers learned in PE spaces ?
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Kernels as distances Banach space approaches

Data insensitive embeddings

Possible if the distance measure can be isometrically embedded
into some space

Learn a simple classifier there and interpret it in terms of the
distance measure
Require algorithms that can work without explicit embeddings
Exact for transductive as well as inductive problems
Recent interest due to advent of large margin classifiers
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Kernels as distances Banach spaces

Normed Spaces

Definition
Given a vector space V over a field F ⊆ C, a norm is a function
‖ · ‖ : V → R such that ∀u,v ∈ V ,a ∈ F , ‖av‖ = |a|‖v‖,
‖u + v‖ ≤ ‖u‖+ ‖v‖ and ‖v‖ = 0 if and only if v = 0. A vector space
that is complete with respect to a norm is called a Banach space.

Theorem ([von Luxburg and Bousquet, 2004])
Given a metric spaceM = (X ,d) and the space of all Lipschitz
functions Lip(X ) defined onM, there exists a Banach Space B and
maps Φ : X → B and Ψ : Lip(X )→ B′, the operator norm on B′ giving
the Lipschitz constant for each function f ∈ Lip(X ) such that both can
be realized simultaneously as isomorphic isometries.

The Kuratowski embedding gives a constructive proof
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Kernels as distances Banach spaces

Classification in Banach spaces

[von Luxburg and Bousquet, 2004] proposes large margin
classification schemes on Banach spaces relying on Convex hull
interpretations of SVM classifiers

inf
p+∈C+,p−∈C−

‖p+ − p−‖ (1)

sup
t∈B′

inf
p+∈C+,p−∈C−

〈T ,p+ − p−〉
‖T‖

(2)

inf
T∈B′,b∈R

‖T‖ = L(T )

subject to t(xi) (〈T , xi〉+ b) ≥ 1,∀i = 1, . . . ,n.
(3)

inf
T∈B′,b∈R

L(T ) + C
n∑

i=1
ξi

subject to t(xi) (〈T , xi〉+ b) ≥ 1− ξi , ξ ≥ 0∀i = 1, . . . ,n.
(4)
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classification schemes on Banach spaces relying on Convex hull
interpretations of SVM classifiers

inf
p+∈C+,p−∈C−

‖p+ − p−‖ (1)

sup
t∈B′

inf
p+∈C+,p−∈C−

〈T ,p+ − p−〉
‖T‖

(2)

inf
T∈B′,b∈R

‖T‖ = L(T )

subject to t(xi) (〈T , xi〉+ b) ≥ 1,∀i = 1, . . . ,n.
(3)

inf
T∈B′,b∈R

L(T ) + C
n∑

i=1
ξi

subject to t(xi) (〈T , xi〉+ b) ≥ 1− ξi , ξ ≥ 0∀i = 1, . . . ,n.
(4)

Purushottam Kar (CSE/IITK) Learning in Indefiniteness August 2, 2010 26 / 60



Kernels as distances Banach spaces

Representer Theorems

Lets us escape the curse of dimensionality

Theorem (Lipschitz extension)
Given a Lipschitz function f defined on a finite subset X ⊂ X , one can
extend f to f ′ on the entire domain such that Lip(f ′) = Lip(f ).

Solution to Program 3 is always of the form

f (x) =
d(x ,T−)− d(x ,T +)

d(T +,T−)

Solution to Program 4 is always of the form

g(x) = αmin
i

(t(xi) + L0d(x , xi)) + (1− α)max
i

(t(xi)− L0d(x , xi))
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Kernels as distances Banach spaces

But ...

Not a representer theorem involving distances to individual
training points

Shown not to exist in certain cases - but the examples don’t seem
natural
By restricting oneself to different subspaces of Lip(X ) one
recovers the SVM, LPM and NN algorithms
Can one use bi-Lipschitz embeddings instead ?
Can one define “distance kernels” that allow one to restrict oneself
to specific subspaces of Lip(X )
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Kernels as distances Banach spaces

Other Banach Space Approaches

[Hein et al., 2005] consider low distortion embeddings into Hilbert
spaces giving a re-derivation of the SVM algorithm

Definition
A matrix A ∈ Rn×n is said to be conditionally positive definite if
∀c ∈ Rn, c>1 = 0, c>Ac > 0.

Definition
A kernel K defined on a domain X is said to be conditionally positive
definite if ∀n ∈ N, ∀x1, . . . xn ∈ X , the matrix G = (Gij) = (K (xi , xj)) is
conditionally positive definite.

Theorem
A metric d is Hibertian if it can be isometrically embedded into a
Hilbert space iff −d2 is conditionally positive definite
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Kernels as distances Banach spaces

Other Banach Space Approaches

[Der and Lee, 2007] consider exploiting the semi-inner product
structure present in Banach space to yield SVM formulations

I Aim for a kernel trick for general metrics
I Lack of symmetry and bi-linearity for semi inner products prevents

such kernel tricks for general metrics
[Zhang et al., 2009] propose Reproducing Kernel Banach Spaces
akin to RKHS that admit kernel tricks

I Use a bilinear form on B × B′ instead of B × B
I No succinct characterizations of what can yield an RKBS
I For finite domains, any kernel is a reproducing kernel for some

RKBS (trivial)
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Kernels as distances Banach spaces

Kernel Trick for Distances ?

Theorem ([Schölkopf, 2000])
A kernel C defined on some domain X is CPD iff for some fixed
x0 ∈ X , the kernel K (x , x ′) = C(x , x ′)− C(x , x0)− C(x ′, x0) is PD.
Such a C is also a Hilbertian metric.

The SVM algorithm is incapable of distinguishing between C and
K [Boughorbel et al., 2005]

n∑
i,j=1

αiαjyiyjK (xi , xj) =
n∑

i,j=1
αiαjyiyjC(xi , xj) subject to

n∑
i=1

αiyi = 0

What about higher order CPD kernels - their characterization ?
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Kernels as similarity

Kernels as similarity
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Kernels as similarity

The Kernel Trick

Mercer’s theorem tells us that a similarity space (X ,K ) is
embeddable in a Hilbert space iff K is a PSD kernel

Quite similar to what we had for Banach spaces only with more
structure now
Can formulate large margin classifiers as before
Representer Theorem [Schölkopf and Smola, 2001] : solution of

the form f (x) =
n∑

i=1
K (x , xi)

Generalization Guarantees : method of Rademacher Averages
[Mendelson, 2003]
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Kernels as similarity Indefinite Similarity Kernels

The Lazy approaches

Why bother building a theory when one already exists !

I Use a PD approximation to the given indefinite kernel !!
[Chen et al., 2009] Spectrum Shift, Spectrum Clip, Spectrum Flip

I [Luss and d’Aspremont, 2007] folds this process into the SVM
algorithm by treating an indefinite kernel as a noisy version of a
Mercer kernel

I Tries to handle test points consistently but no theoretical
justification of the process

I Mercer kernels are not dense in the space of symmetric kernels

[Haasdonk and Bahlmann, 2004] propose distance substitution
kernels : substituting distance/similarity measures into kernels of
the form K (‖x− y‖),K (〈x,y〉)

I These yield PD kernels iff the distance measure is Hilbertian
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Kernels as similarity PE space approaches

Working with Indefinite Similarities

Embed Training sets into PE spaces (Minkowski spaces) as before

[Graepel et al., 1998] proposes to learn SVMs in this space -
unfortunately not a large margin formulation
[Graepel et al., 1999] propose LP machines in a ν-SVM like
formulation to obtain sparse classifiers
[Mierswa, 2006] proposes using evolutionary algorithms to solve
non-convex formulations involving indefinite kernels
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Kernels as similarity PE space approaches

Working with Indefinite Similarities

[Haasdonk, 2005] embeds training data into a PE space and
formulates a ν-SVM-like classifier there

Not a margin maximization formulation
New points are not embedded into this space - rather the SVM like
representation is used (without justification)
Optimization not possible since program formulations are
non-convex - stabilization used
Can any guarantees be given for this formulation ?
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Kernels as similarity Kreı̌n space approaches

Kreı̌n spaces

Definition
An inner product space (K, 〈, 〉K) is called a Kreı̌n space if there exist
two Hilbert spaces H+ and H− such K = H+ ⊕H− and ∀f ,g ∈ K,
〈f ,g〉K = 〈f ,g〉H+

− 〈f ,g〉H− .

Definition
Given a domain X , a subset K ⊂ RX is called a Reproducing Kernel
Kreı̌n space if the evaluation functional Tx : f 7→ f (x) is continuous on
K with respect to its strong topology.

Theorem ([Ong et al., 2004])
A kernel K on X is a reproducing kernel for some Kreı̌n space K iff
there exist PD kernels K+ and K− such that K = K+ − K−.
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Kernels as similarity Kreı̌n space approaches

Classification in Kreı̌n spaces

[Ong et al., 2004] proves all the necessary results for learning
large margin classifiers

Prove that even stabilization leads to an SVM-like Representer
Theorem
No large margin formulations considered due to singularity issues

I Instead regularization is performed by truncating the spectrum of K
I Iterative methods to minimize squared error lead to regularizations

Proves generalization error bounds using method of Rademacher
averages
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Kernels as similarity Landmarking based approaches

Landmarking approaches

[Graepel et al., 1999] consider landmarking with indefinite kernels

Perform L1 regularization for large margin classifier to obtain
sparse solutions - yields an LP formulation
Also propose the ν-SVM formulation to get control over number of
margin violations
Allows us to perform optimizations in the bias-variance trade-off
However no guarantees given - were provided later by
[Hein et al., 2005], [von Luxburg and Bousquet, 2004]
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Kernels as similarity Landmarking based approaches

What is a good similarity function

Definition
A kernel function K is said to be (ε, γ)-kernel good for a learning
problem, if ∃β ∈ KK

Pr
x∈Rµ

[t(x)(〈β,ΦK (x)〉 > γ)] ≥ 1− ε.

Definition
A kernel function K is said to be strongly (ε, γ)-good for a learning
problem, if at least a 1− ε probablity mass of the domain satisfies

E
x ′∈Rµ+

[
K (x , x ′)

]
> E

x ′∈Rµ−

[
K (x , x ′)

]
+ γ

Purushottam Kar (CSE/IITK) Learning in Indefiniteness August 2, 2010 40 / 60



Kernels as similarity Landmarking based approaches

Learning with a good distance function

Theorem ([Balcan et al., 2008a])
Given a strongly (ε, γ)-good distance function, the following classifier
h, for any ε, δ > 0, when given n = 16

γ2 lg
(2
δ

)
pairs of positive and

negative training points, (ai ,bi)
n
i=1,ai ∈R µ+,bi ∈R µ− with probability

greater than 1− δ, has an error no more than ε+ δ

h(x) = sgn [f (x)] , f (x) =
1
n

n∑
i=1

K (x ,ai)−
1
n

n∑
i=1

K (x ,bi)

Have to introduce a weighing function to extend scope of the
algorithm

Can be shown to imply that the landmarking kernel induced by a
random sample is good kernel with high probability
Yet another instance of weak∗-PAC learning
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Kernels as similarity Landmarking based approaches

Kernels as Kernels vs. Kernels as Similarity

Similarity→ Kernel : (ε, γ)-good⇒ (ε+ δ, γ/2)-kernel good

Kernel→ Similarity : (ε, γ)-kernel good⇒
(ε+ ε0,

1
2(1− ε)ε0γ2)-kernel good

[Srebro, 2007] There exist learning instances for which kernels
perform better as kernels than as similarity functions
[Balcan et al., 2008b] There exist function classes and
distributions such that no kernel performs well on all the functions.
However there exist similarity functions that give optimal
performance
Role of the weighing function not investigated
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Conclusion

Conclusion
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Conclusion

The big picture

Finite-dimensional embeddings (PE, Minkowski spaces)

I Work well in transductive settings
I Allow for support vector like effects
I Not much work on generalization guarantees
I Not much known about distortion incurred when embedding test

points
I Should work well owing to Representer Theorems
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Conclusion

The big picture

Exact embeddings (Banach, Keı̌n spaces)

I Work well in inductive settings
I Allow for support vector like effects
I Generalization guarantees well studied
I Embeddings are isometric or “isosimilar”
I Too much power though ([von Luxburg and Bousquet, 2004],

[Ong et al., 2004])
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Conclusion

The big picture

Landmarking approaches

I Work well in inductive settings
I Dont allow support vector like effects (got to keep all the landmarks)
I Generalization guarantees there
I But how does one find a “good” kernel ?
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Conclusion

Open questions

Choosing the kernel : still requires one to attend Hogwarts

Existing approaches to learning kernels are pathetic
[Balcan et al., 2008c] proposes to learn with multiple similarity
functions
Need testable definitions of goodness of kernels
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Conclusion

Open questions

Application of indefinite kernels to other tasks

I clustering [Balcan et al., 2008d]
I principal components
I multi-class classification [Balcan and Blum, 2006]

Analysis of the feature maps induced by embeddings into Banach,
Keı̌n spaces [Balcan et al., 2006]
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