

Problem Formulation: Recover the original curve in the face of

Try random sets S, estimate ${f w}$ using each and choose best

Two unknowns: clean set of points S^* , original curve \mathbf{w}^*

Observation 1: given S^* , finding original curve \mathbf{w}^* easy

Observation 2: given \mathbf{w}^* , finding clean points S^* easy

Proposal: can we alternate between estimating S^* and \mathbf{w}^* ?

Microsoft® Research

1. Start with any ar 2. Repeat until conv i. $r_i = y_i - x $ ii. Update $S_t \leftarrow$ iii. $\mathbf{w}^t \leftarrow$ UPE iv. Increment ti Thresholding Op
TC
UPDATE TORRENT-F $\mathbf{w}_{t+1} \leftarrow$
UPDATE TORRENT- \mathbf{G} $\mathbf{w}_{t+1} \leftarrow \mathbf{W}_{t+1}$
UPDATE TORRENT-H
$\begin{aligned} & f S_t \backslash S_{t-1} \geq \Delta \\ & \mathbf{w}_{t+1} \leftarrow \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
Fyn

On regression analysis tasks, TORRENT is up to ZOX faster than leading methods on low, as well as high dimensional data and can tolerate up to 40% corruption!

Structured noise

70% S/P

On face recognition tasks, TORRENT is able to recover the correct identity of the person in the presence of as much as 70% corruption!

Full Paper: http://tinyurl.com/robustreg

TORRENT

- rbitrary curve \mathbf{w}^0 and set timer $t \leftarrow 0$ vergence $|\tilde{w}^{t-1}|$ for all points - Points with minimum r_i DATE using S_t
- ime counter $t \leftarrow t+1$

perator-based Robust RegrEssioN meThod

RRENT-Variants

- arg min
$$\sum_{i \in S_t} (y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle)^2$$

$$-\mathbf{w}_t - \eta X_{S_t} \left(X^\top \mathbf{w} - y_{S_t} \right)$$

HYB

- UPDATE TORRENT-GD
- UPDATE TORRENT-FC

$$-\inf_{\|w\|_0 \le s} \sum_{i \in S_t} \left(y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle \right)^2$$

Experimental Results

 Λ_{γ}) if the following holds:

$$\lambda_{\gamma} \le \min_{S \in \mathcal{S}_{\gamma}} \lambda_{\min}(X_S X_S^{\top})$$

If X has columns sampled i.i.d. from $\mathcal{N}(\mathbf{0}, I)$, w.h.p.

$$\Lambda_{\gamma}^{\text{Gauss}} \leq \gamma n \left(1 + \chi \right)$$
$$\lambda_{\gamma}^{\text{Gauss}} \geq n - (1 - \gamma) n$$

 $\mathbf{y} = X\mathbf{w}^* + \mathbf{b} + \boldsymbol{\eta}$

- η : bounded dense noise
- **b**: sparse adversarial corruption, $\|\mathbf{b}\|_0 \leq \alpha \cdot n$, chosen in a fully adaptive manner

Theoretical Guarantees

Low-Dimensional Setting

Theorem 1 (TORRENT-FC, $\eta = 0$): If X satisfies SSC and SSS at level γ with constants λ_{γ} and Λ_{γ} such that $\frac{(1+\sqrt{2})\Lambda_{\alpha}}{\lambda_{1-\alpha}} < 1$, then after $\log \frac{1}{2}$ iterations, $\|\mathbf{w}^t - \mathbf{w}^*\|_2 \le \epsilon$ If each $x_i \sim \mathcal{N}(\mathbf{0}, \Sigma)$, $lpha \leq rac{1}{65}$ and $n \geq \Omega(p \log p)$, then w.h.p. $rac{(1+\sqrt{2})\Lambda_{lpha}}{\lambda_{1-lpha}} < 0.9$ Theorem 2 (TORRENT-FC, $\eta \neq 0$): If X satisfies SSC and SSS at level γ with constants λ_{γ} and Λ_{γ} such that $\frac{4\sqrt{\Lambda_{\alpha}}}{\sqrt{\lambda_{1-\alpha}}} < 1$, then after $\log \frac{1}{2}$ iterations, $\|\mathbf{w}^t - \mathbf{w}^*\|_2 \le \epsilon + C \frac{\|\eta\|_2}{\sqrt{n}}$ Similar convergence results proven for TORRENT-GD and TORRENT-HUB

High-Dimensional Setting

with each $x_i \sim \mathcal{N}(\mathbf{0}, \Sigma)$ and $\alpha \leq \frac{1}{65}$, similar convergence guarantees can be proven for TORRENT-HD

Design Properties

If X satisfies "restricted" equivalents of SSC and SSS, $n \ge \Omega(s \kappa \log p)$,