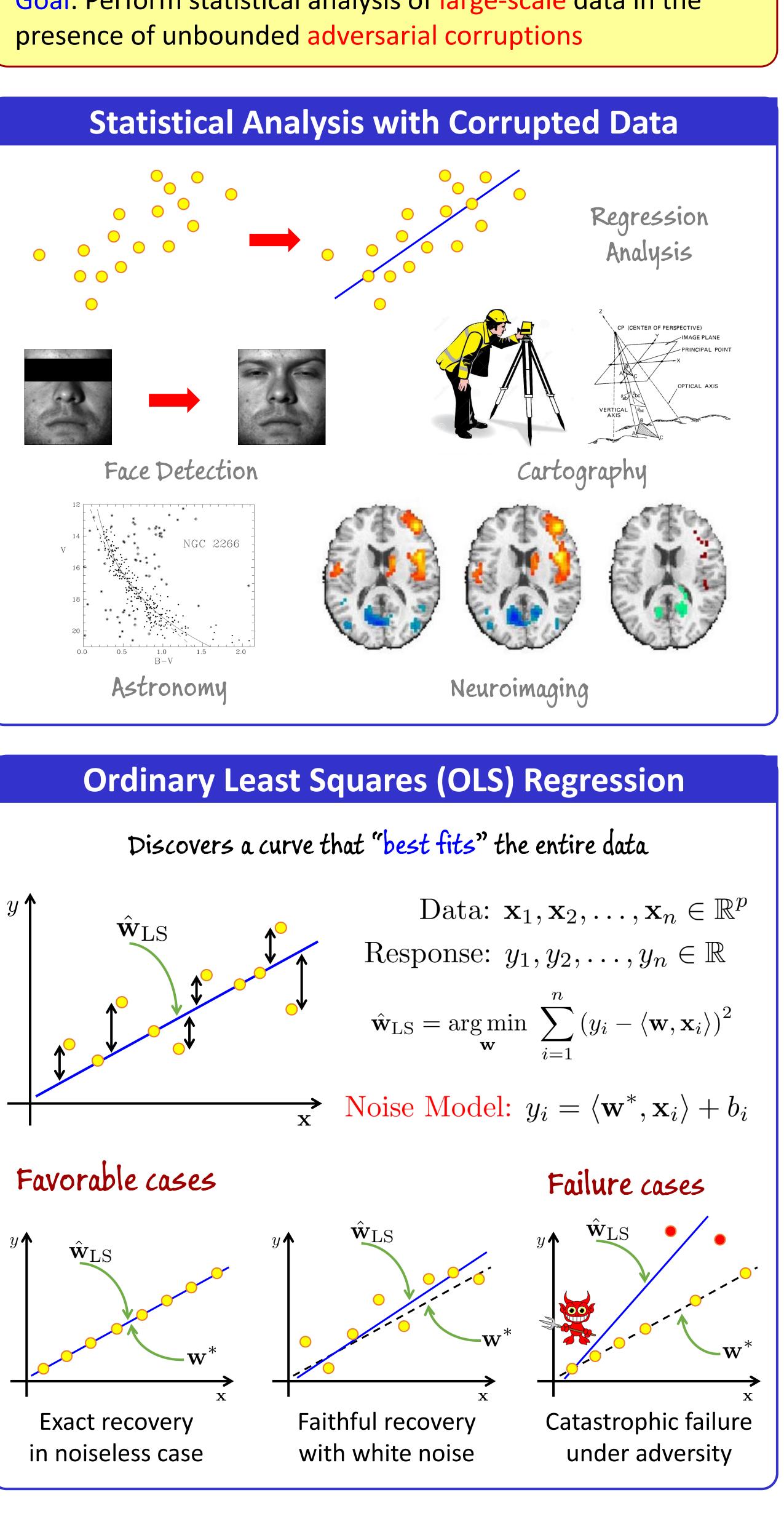
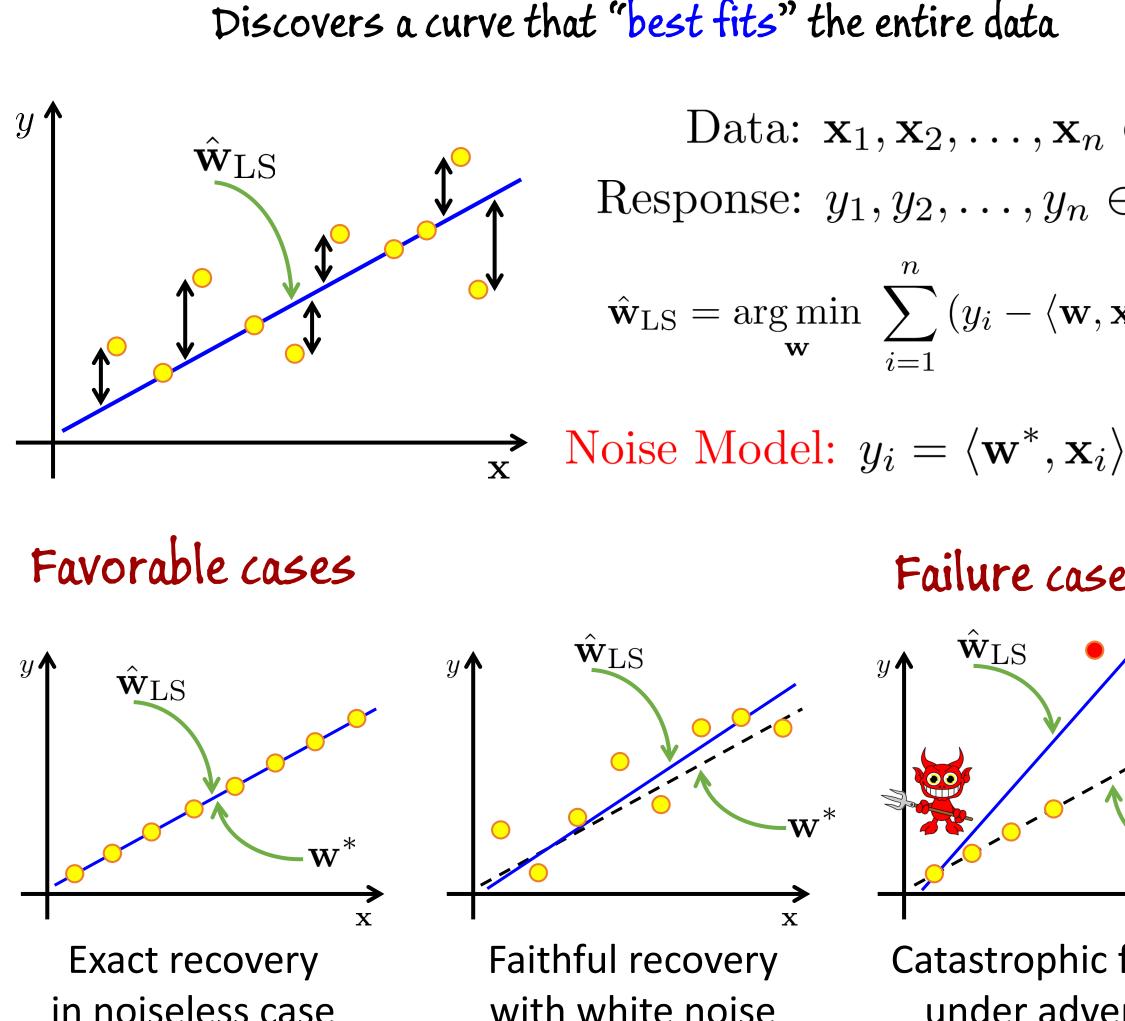
Robust Regression

Kush Bhatia, Prateek Jain and Purushottam Kar Microsoft Research, Bengaluru, INDIA

Goal: Perform statistical analysis of large-scale data in the





Problem Formulation: Recover the original curve in the face of a bounded number of adversarial corruptions

$$\underset{\mathbf{w},S}{\operatorname{arg\,min}} \sum_{i \in S} \left(y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle \right)^2, \qquad \left| \overline{S} \right|$$

Some existing approaches

Brute Force

Try out all possible sets S and estimate w using each aRandom Selection (RANSAC)

Try random sets S, estimate \mathbf{w} using each and choose \mathbf{w}

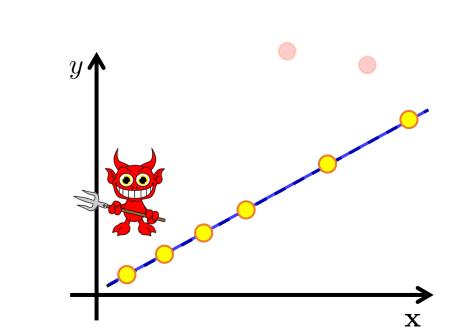
L, Relaxations

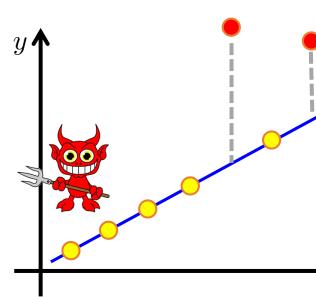
DEA

KE

 $\hat{\mathbf{w}}_{L_1} = \operatorname*{arg\,min}_{\mathbf{w}} \sum |y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle|$

Two unknowns: clean set of points S^* , original **Observation 1**: given S^* , finding original curve **v Observation 2**: given \mathbf{w}^* , finding clean points S^* easy





Proposal: can we alternate between estimating

TORRENT

- 1. Start with any arbitrary curve \mathbf{w}^0 and set timer \mathbf{w}^0
- Repeat until convergence
 - Create active set S_t using points "close" to \mathbf{w}^t
 - Create updated* curve \mathbf{w}^{t+1} using active set S_t
 - Increment time counter $t \leftarrow t+1$ 111.
- Return final curve

*4 update variants FC, GD, HYB for low-dimensional and HD for high-dimensional problems Thresholding Operator-based Robust RegrEssioN meThod

$$\leq \alpha \cdot n$$

curve
$$\mathbf{w}^*$$

w^{*}easy

$$\overrightarrow{x}$$

$$S^*$$
 and \mathbf{w}^* ?

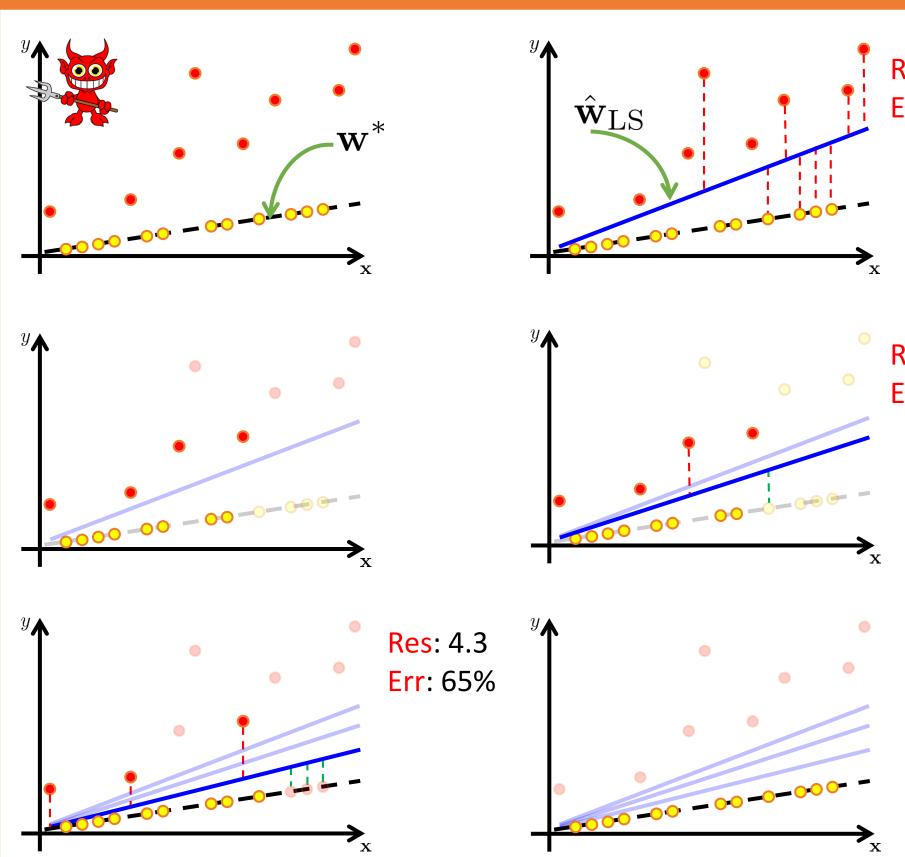
$$t \leftarrow 0$$

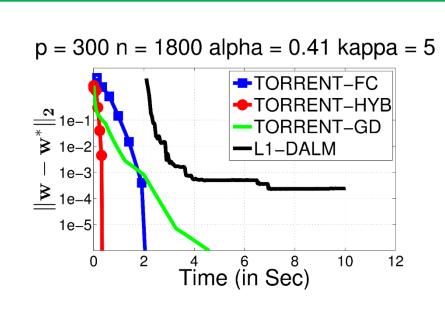
Theoretical Guarantees

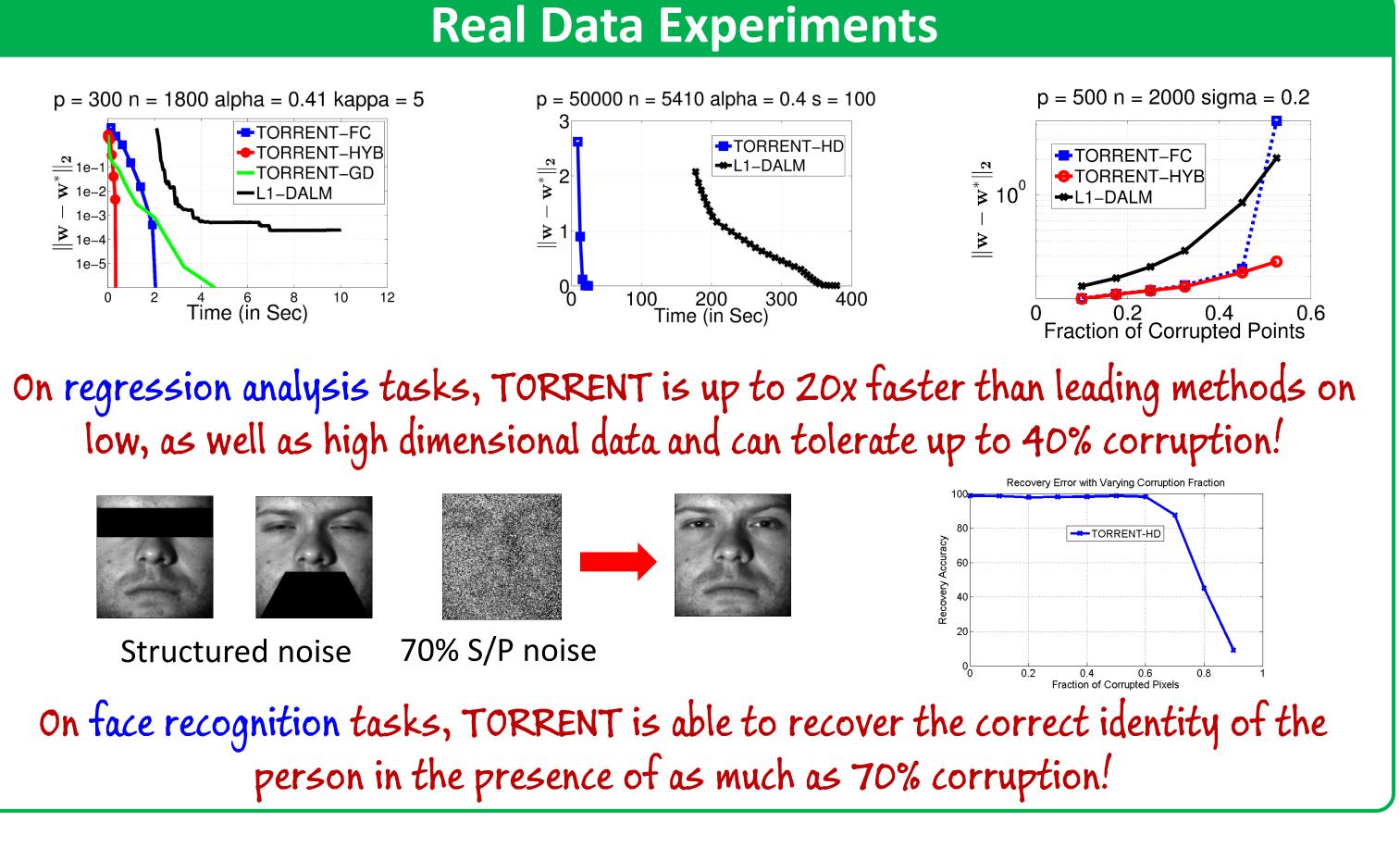
Theorem: TORRENT can resist even an all powerful adversary that corrupts after viewing data and the curve (if $< 1/65^{th}$ fraction of data is corrupted) **Theorem:** TORRENT converges to an ϵ -optimal solution i.e. $\|\mathbf{w}^t - \mathbf{w}^*\|_2 \le \epsilon$

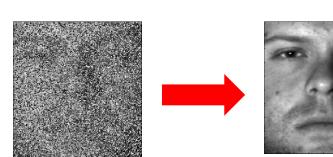
after no more than $\log \frac{1}{2}$ iterations. In contrast, RANSAC offers no guarantees, and L₁ relaxation based methods give very poor guarantees in the face of all-powerful adversaries

TORRENT in action









Structured noise

70% S/P noise

