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The Goal
Analyze a class of memory-efficient online learning
algorithms for pairwise loss functions.
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Example: Metric learning for NN classification
A metric is penalized if it brings oppositely labeled
points close or sets points of same label far apart

(M, (x,y), %, y) = ¢ (v (1 - M?(x,X))))

@ is the hinge loss function.

Put simply:
e Loss functions that operate on two input points
o General form /- H x Z x Z — R*

Other examples: Bipartite ranking, AUC maximiza-
tion, Multiple kernel learning

The Big Question

Can Online Learning techniques be used to obtain
scalable learning algorithms for problems involving
pairwise loss functions?

Challenges in Higher Order Learning

Algorithmic Challenges
e Training data often not available as i.i.d. pairs
e How to create pairs from online data ?

o Expensive to process all §) (nQ) data pairs

Learning Theoretic Challenges
e [raining data that is used is non-i.i.d

o Intersection in the pairs causes coupling issues
o Decoupling method for online setting needed

Existing Work

e [1]: Online AUC maximization

o RS stream sampling algorithm for pair creation
o Regret bound does not hold

e [2]: Online-to-batch conversion bounds for online
algorithms applied to pairwise problems
o Require online algorithm to store past history
o Bounds depend linearly on input dimension
o Don't handle sparsity promoting regularizers

Our Contributions

Algorithmic
e A memory efficient online learning algorithm

o Memory usage : poly-log in number of samples
o Sublinear regret w.r.t oo memory algorithms
o Novel stream sampling based pair creation

Online-to-Batch Conversion Bounds
e Applicable to bounded-memory algorithms [1]
e [ight dimension independent bounds

o Use of Rademacher complexity as capacity
e Handle sparsity-promoting regularizers
e [ast rates for strongly convex loss functions
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Learning Models

Unbounded Memory Model (UMM)
e At time ¢, posit a hypothesis h;_1 € H
e Receive a new point | Z¢ | = (X, y¢)

e Pair it up with previously seen points
=1,
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Bounded Memory Model (BMM)
e Buffer B of size s (updated S.O. at each step)

e Incur loss £t(ht |
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e At time ¢, pair new point with points in B
o Incur loss  L™M(hy_;) = ﬁZZEBtZ(ht_l, Zt,7)

The Desired Bounds

Generalization:
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Online-to-Batch Conversion Bounds
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Martingale term Residual term
|[Azuma /Bernstein] [Uniform Convergence]

e Problem: Classical symmetrization fails

Un(Zt, Zr) — Un(Ze, Z27) & Cp(2, Z7) — £ (Z¢, Z7)

e Solution: Symmetrization of expectations

C[0n(z,2,)] — E [z, 2,)]
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e Rademacher avg. for bivariate function classes
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Applications

AUC Max.: maximize area under ROC curve
olw,z,2)=¢((y—y)w' (x—x))
o L, regularized w, p > 1: C; = O (1)
e [ regularized sparse w: Cy = O (\/@)

Mahalanobis metric learning

o ((M,z,2') = ¢ (yy (1 — M*(x,X)))
e Frobenius norm regularized M: C; = O (1)
e Trace norm regularized M: C; = O (vlog d)

MKL: K, (x,x) = 37 pK(x, %)
o ((p,2,2') = ¢ (yy' Ku(x,x'))
e [,y norm regularized u: Cy = O (\/]3)

e [,y norm regularized u: Cy = O (\/logp)
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The RS-x Algorithm

Theorem: At any time step t > s, each buffer item
is an i.i.d sample from the set {zq,...,2; 1}.

The OLP Algorithm

1. Start with hg < 0, B < ¢
At each time step ¢

2. Obtain new point z;

3. ht — HQ [ht—l — %Vhﬁ?Uf(ht_l)]
4. Update buffer B with z; using RS-x

5. Return h = Z;ht—l

Theorem: OLP with an s-sized buffer guarantees

PRPuF < \ﬁ and w.h.p., R, < C} bg”.

Proof idea: Prove SR bound using GIGA analysis
[3]. Then prove w.h.p. Li(hi—1) < L2 (hi_1) + €.

Experiments on AUC Maximization

o
©

o
0

Lr_ | |

r
V i
! Vitter's RS Pollcy— Vitter's RS Pollcy—

RS-x Policy — y RS-x Policy —

10 20 30 20 50 60 €0 50 100 150 200 250 300
Buffer size Buffer size

(a) Sonar (b) Segment

o
\I

Average AUC value

o
o
o

=
o
(o]

e

o
\I
Py h

Vitter's RS Policy —||

Vitter's RS Policy —
X Policy — RS-x Policy —

50 100 150 200 250 300 50 100 150 200 250 300
Buffer size Buffer size

(c) JCNN (d) Covertype

Fig. : Performance of OLP + RS-x and OAM,,,+ RS [1] with
varying buffer sizes
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