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The Goal

Scalable training algorithms for large scale optimization tasks with non-

decomposable performance measures

Why “hinge loss” isn't Enough

Machine learning applications in sensitive domains:
e Medicine, biometrics, bioinformatics
e Essential: fine grained control over classification characteristics

o Mild to severe label imbalance
o Asymmetric misclassification penalties

e Pointwise performance measures (like hinge loss) deficient

Non-decomposable performance measures

The good news:
e Perform a holistic evaluation of classifiers over entire data
e Offer a high degree of control over prediction profile

o Specific interest in top ranked results: prec@k
o Sensitivity to FPR - partial AUC
o Class imbalanced situations - F-measure

The not-so-good news:
e Frequently non-decomposable/non-additive
e Precludes application of a large body of work

o Optimization theory - online, stochastic methods
o Learning theory - OTB, generalization bounds
o Prior work: mostly indirect/cutting plane-based batch methods

Examples of Non-decomposable Loss Functions

Data: Xq,...,Xp € R? y=vy...yr € {—1,+1}
Surrogates: widely used structSVM-based formulations [Joachims05]
1. Prec@Fk: precision at the top £ fraction of the ranked list
gPrec@k(W) — IMax 576{—1,+1}T Zz(gz il yz) ) XZTW — Zz gzyz
> i Ui=(2k—1)T

2. pAUC(): area under the ROC curve restricted to FPR € |0, ]

T

prUC(ﬁ) (W) = 2 yi>0 22y <0 TﬁTT(Xj; w) - h((x; — Xj) W)

\

In other words, highly non-decomposable and holistic

28th Annual Conference on Neural Information Processing Systems (NIPS 2014)

Question |

Low regret algorithms and O TBC for non-decomposable loss functions.

A Novel Online Learning Framework

Challenges with the state-of-the-art:
e The very framework is unsuitable for non-decomposable functions
e Notions of instantaneous penalty, regret absent

An Extended Online Framework

A non-decomposable function lp : (z1,29,...,2;) X W — R,
Instantaneous Penalty: Li(w) := lp(21.4; W) — Up(Z14_1, W)
Regret: R(T') := ) Li(wy) — arg ming oy lp(z1.7; W)

Properties of the framework:
e For additive losses, AUC, recovers existing frameworks
e Efficient vanishing regret online algorithms, OTB bounds

Low Regret Online Learning and OTB

t
Wiy = ang ity Y Lo(w) + 7 [wl
g T=1

Theorem: If £p(-) is stable i.e. L;(-) is G-Lipschitz, then
R(T) < W] 3G

Proof |dea: Forward regret bound for non-convex losses + stability. Note that
the updates are efficient since X' _, L, (W) = ¢p(z1.4; W) which is convex

Stability Bounds: fprec,, and £pauc(s) are O (1)-stable

Proofs use a novel Structural Lemma on ranked lists
Sorted lists of inner products are Lipchitz at every position

OTB Bounds: Decompose stream into batches - Zi, ... Zy/; and let £;(w) =

Up(Zh.y; W) — Up(Ziy4_1; W) with regret bound R(T, s).

heorem: It wy, ..., wr/, is the online ensemble, w = TL/S -y Wy, then for
t

any € € (0,0.5], w* € W, w.h.p.
Rp(W) < Rp(w*) + T 1 R(T, s) + e + \/s/T
e For Precai, pAUC(3), we show R(T, \/T) < T3/* s0 s = /T suffices

e [ wo-stage proof technique based on martingale bounds, UC

Average pAUC in [0, 0.1]
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Question ||

Scalable stochastic gradient methods for non-decomposable functions.

Stochastic gradients for non-additive functions

e Obtaining unbiased gradient estimates not cheap
o Obtain cheap gradients with small bias instead

Algorithm 1 (1PMB) - Single Pass with Mini Batches

Input: Buffer B of size s, step length scale n
1. while stream not exhausted do

2. Collect s points z{,...z5 in B

3. Wei1 < 1y [We — \% - Vwlp(ZS We)]
4.end while

5. return w = TL/SZG W,

e Orders of magnitude faster than cutting plane/PSG methods
e Range of loss functions Precaz, pAUC(3), F-measure
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UC Bounds for Non-decomposable losses

Non-decomposable functions exhibiting UC
A function #(z;,...;w) is «a(s)-UC if, for zy,...,z; randomly sampled
from z1, ..., 27, we have w.h.p., supyew |(Z1.5; W) — £(z1.7; W)| < a(s)

Common proof techniques not applicable for non-decomposable functions

Novel UC Proofs: pAUC(5), Precax, F-measure are O (\%)—UC

Application: convergence bounds for 1PMB method
Theorem: Suppose the stream is randomly ordered and /p is (s, )-UC

ZP(ZLT; W) < KP(leT; W*) 2&(37 Sé/T) S/T

Proof ldea: Regret bound, Hoeffding's lemma for randperms
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