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The Goal

Scalable training algorithms for large scale optimization tasks with non-
decomposable performance measures

Why “hinge loss” isn’t Enough

Machine learning applications in sensitive domains:

•Medicine, biometrics, bioinformatics

•Essential: fine grained control over classification characteristics

◦Mild to severe label imbalance
◦Asymmetric misclassification penalties

•Pointwise performance measures (like hinge loss) deficient

Non-decomposable performance measures

The good news:

•Perform a holistic evaluation of classifiers over entire data

•Offer a high degree of control over prediction profile

◦Specific interest in top ranked results: prec@k
◦Sensitivity to FPR - partial AUC
◦Class imbalanced situations - F-measure

The not-so-good news:

•Frequently non-decomposable/non-additive

•Precludes application of a large body of work

◦Optimization theory - online, stochastic methods
◦Learning theory - OTB, generalization bounds
◦Prior work: mostly indirect/cutting plane-based batch methods

Examples of Non-decomposable Loss Functions

Data: x1, . . . ,xT ∈ Rd, y = y1 . . . yT ∈ {−1,+1}
Surrogates: widely used structSVM-based formulations [Joachims05]

1. Prec@k: precision at the top k fraction of the ranked list

`Prec@k
(w) = max ȳ∈{−1,+1}T∑

i ȳi=(2k−1)T

∑
i(ȳi − yi) · x>i w −

∑
i ȳiyi

2. pAUC(β): area under the ROC curve restricted to FPR ∈ [0, β]

`pAUC(β)(w) =
∑
yi>0

∑
yj<0 T −β,T (xj;w) · h((xi − xj)

>w)

In other words, highly non-decomposable and holistic

Question I

Low regret algorithms and OTBC for non-decomposable loss functions.

A Novel Online Learning Framework

Challenges with the state-of-the-art:

•The very framework is unsuitable for non-decomposable functions

•Notions of instantaneous penalty, regret absent

An Extended Online Framework

A non-decomposable function `P : (z1, z2, . . . , zt)×w 7→ R+

Instantaneous Penalty: Lt(w) := `P(z1:t;w)− `P(z1:t−1;w)
Regret: R(T ) :=

∑
Lt(wt)− arg minw∈W`P(z1:T ;w)

Properties of the framework:

•For additive losses, AUC, recovers existing frameworks

•Efficient vanishing regret online algorithms, OTB bounds

Low Regret Online Learning and OTB

wt+1 = arg minw∈W
t∑

τ=1
Lτ(w) +

ηt
2
‖w‖2 (FTRL)

Theorem: If `P(·) is stable i.e. Lt(·) is Gt-Lipschitz, then

R(T ) ≤ ‖W‖
√∑

t
G2
t

Proof Idea: Forward regret bound for non-convex losses + stability. Note that
the updates are efficient since

∑t
τ=1Lτ(w) = `P(z1:t;w) which is convex

Stability Bounds: `Prec@k
and `pAUC(β) are O (1)-stable

Proofs use a novel Structural Lemma on ranked lists
Sorted lists of inner products are Lipchitz at every position

OTB Bounds: Decompose stream into batches - Z1, . . .ZT/s and let Lt(w) =
`P(Z1:t;w)− `P(Z1:t−1;w) with regret bound R(T, s).
Theorem: If w1, . . . ,wT/s is the online ensemble, w̄ = 1

T/s ·
∑
t
wt, then for

any ε ∈ (0, 0.5],w∗ ∈ W , w.h.p.

RP(w̄) ≤ RP(w∗) + T−1 ·R(T, s) + e−sε
2
+
√
s/T

•For Prec@k, pAUC(β), we show R(T,
√
T ) ≤ T 3/4 so s =

√
T suffices

•Two-stage proof technique based on martingale bounds, UC

Question II

Scalable stochastic gradient methods for non-decomposable functions.

Stochastic gradients for non-additive functions

•Obtaining unbiased gradient estimates not cheap

◦Obtain cheap gradients with small bias instead

Algorithm 1 (1PMB) - Single Pass with Mini Batches

Input: Buffer B of size s, step length scale η

1. while stream not exhausted do

2. Collect s points ze1, . . . z
e
s in B

3. we+1← ΠW
[
we − η√

e
· ∇w`P(ze1:s;we)

]
4. end while

5. return w̄ = 1
T/s

∑
ewe

•Orders of magnitude faster than cutting plane/PSG methods

•Range of loss functions Prec@k, pAUC(β), F-measure
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(a) pAUC(0.1) on KDDCup08
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(b) pAUC(0.1) on IJCNN

0 2 4 6 8 10

0.1

0.2

0.3

Training time (secs)

A
ve

ra
ge

 P
re

c@
k

 

 

CP
1PMB
2PMB

(c) Prec@0.01 on PPI

UC Bounds for Non-decomposable losses

Non-decomposable functions exhibiting UC

A function `(z1, . . . ;w) is α(s)-UC if, for ẑ1, . . . , ẑs randomly sampled
from z1, . . . , zT , we have w.h.p., supw∈W |`(ẑ1:s;w)− `(z1:T ;w)| ≤ α(s)

Common proof techniques not applicable for non-decomposable functions

Novel UC Proofs: pAUC(β), Prec@k, F-measure are O
(

1√
s

)
-UC

Application: convergence bounds for 1PMB method
Theorem: Suppose the stream is randomly ordered and `P is α(s, δ)-UC

`P(z1:T ; w̄) ≤ `P(z1:T ;w∗) + 2α(s, sδ/T ) +
√
s/T

Proof Idea: Regret bound, Hoeffding’s lemma for randperms

28th Annual Conference on Neural Information Processing Systems (NIPS 2014) Full Paper : http://tinyurl.com/llqws8z
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