Online and Stochastic Gradient Methods for Non-decomposable Loss Functions

Purushottam Kar*, Harikrishna Narasimhan[†], and Prateek Jain^{*}

*Microsoft Research, INDIA [†]Indian Institute of Science, INDIA

The Goal

Scalable training algorithms for large scale optimization tasks with nondecomposable performance measures

Why "hinge loss" isn't Enough

Machine learning applications in sensitive domains:

- Medicine, biometrics, bioinformatics
- Essential: fine grained control over classification characteristics • Mild to severe label imbalance
- Asymmetric misclassification penalties
- Pointwise performance measures (like hinge loss) deficient

Non-decomposable performance measures

The good news:

- Perform a holistic evaluation of classifiers over entire data
- Offer a high degree of control over prediction profile • Specific interest in top ranked results: prec@k • Sensitivity to FPR - partial AUC
- Class imbalanced situations F-measure

The not-so-good news:

- Frequently non-decomposable/non-additive
- Precludes application of a large body of work
- Optimization theory online, stochastic methods
- Learning theory OTB, generalization bounds
- Prior work: mostly indirect/cutting plane-based *batch* methods

Examples of Non-decomposable Loss Functions

Data: $\mathbf{x}_1, \ldots, \mathbf{x}_T \in \mathbb{R}^d$, $\mathbf{y} = y_1 \ldots y_T \in \{-1, +1\}$ Surrogates: widely used *structSVM*-based formulations [Joachims05]

1. Prec@k: precision at the top k fraction of the ranked list

$$\ell_{\mathsf{Prec}_{@k}}(\mathbf{w}) = \max_{\substack{\bar{\mathbf{y}} \in \{-1,+1\}^T \\ \sum_i \bar{y}_i = (2k-1)T}} \sum_i (\bar{y}_i - y_i) \cdot \mathbf{x}_i^\top \mathbf{w} - \sum_i$$

2. $\mathsf{pAUC}(\beta)$: area under the ROC curve restricted to $\mathsf{FPR} \in [0, \beta]$

$$\ell_{\mathsf{pAUC}(\beta)}(\mathbf{w}) = \sum_{y_i > 0} \sum_{y_j < 0} \mathcal{T}_{\beta,T}^{-}(\mathbf{x}_j; \mathbf{w}) \cdot h((\mathbf{x}_i - \mathbf{x}_j)^{\top} \mathbf{w})$$

In other words, highly non-decomposable and holistic

Question I

Low regret algorithms and OTBC for non-decomposable loss functions.

A Novel Online Learning Framework

Challenges with the state-of-the-art:

- The very framework is unsuitable for non-decomposable functions
- Notions of instantaneous penalty, regret absent

An Extended Online Framework

A non-decomposable function $\ell_{\mathcal{P}} : (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_t) \times \mathbf{w} \mapsto \mathbb{R}_+$ Instantaneous Penalty: $\mathcal{L}_t(\mathbf{w}) := \ell_{\mathcal{P}}(\mathbf{z}_{1:t}; \mathbf{w}) - \ell_{\mathcal{P}}(\mathbf{z}_{1:t-1}; \mathbf{w})$ **Regret:** $\Re(T) := \sum \mathcal{L}_t(\mathbf{w}_t) - \arg \min_{\mathbf{w} \in \mathcal{W}} \ell_{\mathcal{P}}(\mathbf{z}_{1:T}; \mathbf{w})$

Properties of the framework:

- For additive losses, AUC, recovers existing frameworks
- Efficient vanishing regret online algorithms, OTB bounds

Low Regret Online Learning and OTB

Theorem: If $\ell_{\mathcal{P}}(\cdot)$ is *stable* i.e. $\mathcal{L}_t(\cdot)$ is G_t -Lipschitz, then $\Re(T) \le \|\mathcal{V}$

Proof Idea: Forward regret bound for non-convex losses + stability. Note that the updates are efficient since $\sum_{\tau=1}^{t} \mathcal{L}_{\tau}(\mathbf{w}) = \ell_{\mathcal{P}}(\mathbf{z}_{1:t}; \mathbf{w})$ which is convex

Stability Bounds: $\ell_{\mathsf{Prec}_{@k}}$ and $\ell_{\mathsf{pAUC}(\beta)}$ are $\mathcal{O}(1)$ -stable

Proofs use a novel Structural Lemma on ranked lists Sorted lists of inner products are Lipchitz at every position

OTB Bounds: Decompose stream into batches - $\mathbf{Z}_1, \ldots \mathbf{Z}_{T/s}$ and let $\mathcal{L}_t(\mathbf{w}) = \mathbf{U}_{T/s}$ $\ell_{\mathcal{P}}(\mathbf{Z}_{1:t}; \mathbf{w}) - \ell_{\mathcal{P}}(\mathbf{Z}_{1:t-1}; \mathbf{w})$ with regret bound $\mathfrak{R}(T, s)$. Theorem: If $\mathbf{w}_1, \ldots, \mathbf{w}_{T/s}$ is the online ensemble, $\bar{\mathbf{w}} = \frac{1}{T/s} \cdot \sum \mathbf{w}_t$, then for anv $\epsilon \in (0, 0.5]$ where $\epsilon \sim 100$ mm k

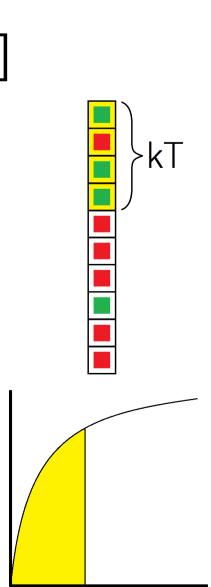
y
$$\epsilon \in (0, 0.5], \mathbf{w}^* \in \mathcal{W}$$
, w.h.p. $\mathcal{R}_\mathcal{P}(\bar{\mathbf{w}}) \leq \mathcal{R}_\mathcal{P}(\mathbf{w}^*) + T^{-1}$

• For $\operatorname{Prec}_{@k}$, $\operatorname{pAUC}(\beta)$, we show $\Re(T,\sqrt{T}) \leq T^{3/4}$ so $s = \sqrt{T}$ suffices

• Two-stage proof technique based on martingale bounds, UC

 $\overline{y}_i y_i$

 \mathbf{W})



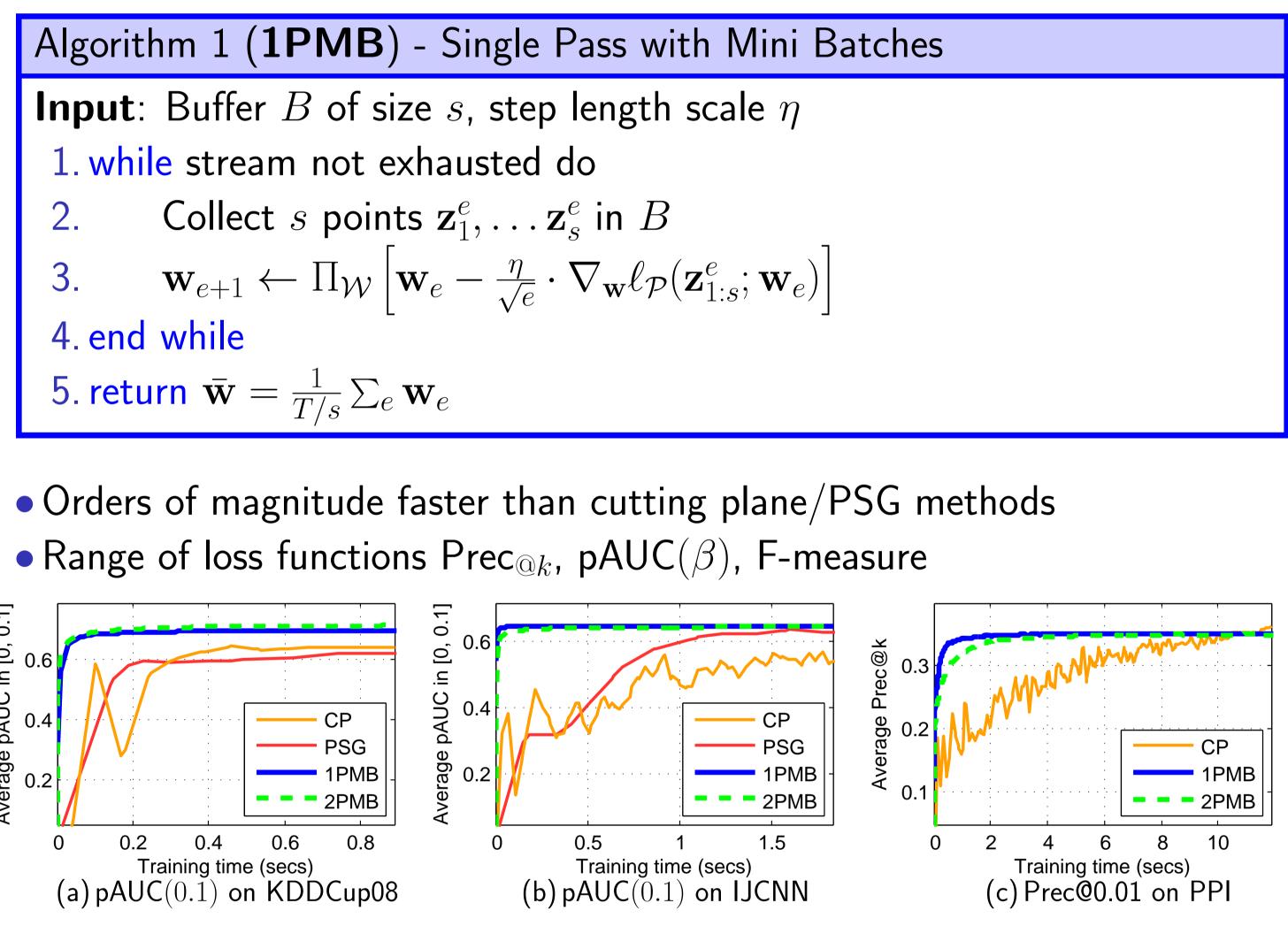
 $\mathbf{w}_{t+1} = \arg\min_{\mathbf{w}\in\mathcal{W}}\sum_{\tau=1}^{t}\mathcal{L}_{\tau}(\mathbf{w}) + \frac{\eta_t}{2}\|\mathbf{w}\|^2$

(FTRL)

$$\mathcal{N} \| \sqrt{\sum_t G_t^2}$$

 $^{1} \cdot \mathfrak{R}(T,s) + e^{-s\epsilon^{2}} + \sqrt{s/T}$

Stochastic gradients for non-additive functions



UC Bounds for Non-decomposable losses

No	D
A function $\ell(\mathbf{z}_1, .$ from $\mathbf{z}_1, \ldots, \mathbf{z}_T$, v	
Common proof tec	h
Novel UC Pr	C
Application: conver Theorem: Suppose	1

Microsoft® Research

Question II

Scalable stochastic gradient methods for non-decomposable functions.

• Obtaining unbiased gradient estimates not cheap • Obtain cheap gradients with small bias instead

on-decomposable functions exhibiting UC $\ldots; \mathbf{w})$ is lpha(s)-UC if, for $\hat{\mathbf{z}}_1, \ldots, \hat{\mathbf{z}}_s$ randomly sampled we have w.h.p., $\sup_{\mathbf{w}\in\mathcal{W}} |\ell(\hat{\mathbf{z}}_{1:s};\mathbf{w}) - \ell(\mathbf{z}_{1:T};\mathbf{w})| \le \alpha(s)$ iniques not applicable for non-decomposable functions oofs: pAUC(β), Prec_{@k}, F-measure are $\mathcal{O}\left(\frac{1}{\sqrt{s}}\right)$ -UC

gence bounds for **1PMB** method the stream is randomly ordered and $\ell_{\mathcal{P}}$ is $\alpha(s, \delta)$ -UC $\ell_{\mathcal{P}}(\mathbf{z}_{1:T}; \bar{\mathbf{w}}) \le \ell_{\mathcal{P}}(\mathbf{z}_{1:T}; \mathbf{w}^*) + 2\alpha(s, s\delta/T) + \sqrt{s/T}$ **Proof Idea**: Regret bound, Hoeffding's lemma for randperms

