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Introduction Evaluating the model Overview of theoretical guarantees

Goal : Supervised learning with indefinite kernels he proposed notion of goodness is evaluated on two grounds Task Utility Samples required f Adm_issi%ilii(tv |
Why use indefinite kernels ? Utility : “good” similarity functions should yield effective predictors or (¢,7)-good kerne
Several domains possess natural notions of similarity Classification [3] . (E]W) e (T 1) o O()U+0o(L)L (€ +€1,0 (e17%))

Bioinformatics : B.L.A.S.T. scores for protein sequences '(SCSf‘i"{Z IT ra; : . .
) TR TR . €, € €1 B2 B2 1
OCR : tangent distance similarity measures - | | Regression Mean squared error O (?) U+ 0 (?) L (6 T, 0 (W))
Image retrieval : earth mover’s distance A similarity function K is ep-useful w.r.t. a loss function 7 (-, -) if for any ¢; > O, Ordinal (6.B,8) = (Wal©)+€) ()L ()L (€7, 4)-good =
Satisfiability for Mercer’s theorem a hard-to-verify property using polynomially many labeled and unlabeled samples, one can w.h.p. Regression Absolute error (F%) * (AT?) (716 +€1,0 (j—;z) Ve A)
_ . . - _ n 7 p B6 8
Not clear why non psd-ness should limit usability of a kernel generate a hypothesis f(X; K) s.t. o NZ (f(x), y(x))ﬂ < €g + €1. N (c.B) = O ( /T)gem n 61) O (equogzm) U+ m
d g 5.4 e+ ¢€1,0
NDCG loss O (64‘?09”; m) L €378

Admissibility : PSD kernels with large margin should remain “good”

Most works address only the problem of classification Experimental results

Broadly three main approaches .
Use indefinite kernels directly [1] : results in non-convex formulations A kernel K with RKHS Hk and feature map ¢ : X — Hg is (o, 7)-good w.r.t. Datasets Kg'gmo'd kelr_nen' S }L\I/'qanhattan kfmzl_s
Find a proxy PSD kernel [2] : expensive + loss of domain knowledge loss function ¢k if for some W* € Hy, we have E VK (<W*’¢K(x)>, y(x))ﬂ < €p. Abalone L ——
Use kernel-task alignment [3] : efficient + generalization guarantees X~P ! N = 4177 2.1e-002 0.2¢-003 1.7e-002 0.0e-003
Several results for classification using the third approach [3, 4, 5] 4 EAleézdirgg 5 9e-002 1 6e-002 5 80-002 1 5e-002
o i Learning with similarity functions N - 8100 4.1e-002 1.4e-003 4.3e-002 1.26-003
ur contributions _
Fumabyn =32 1.8e-001 1.4e-002 1.8e-001 1.4e-002
Propose a notion of kernel “goodness” for general supervised learning =G
Previous notions obtained as a special case MSE for real regression : Kernel regression vs. Sparse learning
Develop landmarking-based algorithms to perform supervised learning Given : An (ep, B)-good kernel K and training points : 7 = {(x/, y,-)}f':1 Sigmoid kernel Manhattan kernel
Consider three tasks : real regression, ordinal regression, ranking Sample d unlabeled landmarks from domain : £ = {x},... ,xL} Datasets KR ORLand KR ORLand
Provide generalization bounds Let W, : X — h (K(x,x}),...,K(x,x})) e R? W/\iln_e;gg; 6.86-001 4 26-001 6.76-001 4 50-001
Apply sparse I_earning techniqueg to reduce landmark complexity Obtain W := argmin 3.7 . /s (<w, W L(Xf)> | yi) T
Fast testing times + generalization guarantees WeR:||w||,<B N — 4898 SIS0 S0l S e
Experimental evaluation of landmarking based techniques Output : f: X — (W, V(X)) ﬁ,af}é}éi 5 764000 1 664000 5 664000 1 66+000
House 10 2764000 = 1.5e+000 = 2.8e+000 | 1.4e+000
What is a good similarity function Landmarks can be subsampled from training points themselves N =22784
Provide generalization guarantees for such “double-dipping” Absolute error for ordinal regression : Kernel regression vs. Landmarking
Previously considered for classification by [3] Sparse Regression : often only a small fraction of landmarks are useful
“Margin” view : positives closer to positives than negatives by a margin Landmark pruning essential for fast predictors ﬁm """"" T TREET o m—— ) S — G e
Cannot be extended for other supervised learning problems Propose modified model that takes into account only “useful” landmarks v T 4 SN
We take a "target value” view Use sparse learning techniques [6] to learn a predictor P o
Target value at a point recoverable from neighbors of the point Utility guarantee ensures sparsity as well as generalization error bounds
Implicitly enforces a smoothness prior | NG asas RN TR ) e )
Figure : MSE for landmarking (ReglLand), sparse landmarking (RegLand-Sp) and kernel regression (KR)
A similarity function K : X x X — R is (e, B)-good for a learning task 11 Ong et al. Learning with non-positive Kernels. - p R A l _ i 3'"""ﬂﬁm“V:I:T'I%r'n*cﬂfﬁelr;omand mjz-------Tfi:?-H-:v-it-h-fi-g-nfi-ci-k%éﬁaw
y: X =J)i fo.r Some bOUHdeq weighing function w : X — [-B, B], for at least 2] Chen et al. Similarity-based Classification: Concepts and Algorithms. g o D g s %2_4, --------------------- . —
a (1 — o) fraction of the domain, we have y(x) = X,ED [w(x)y(X")K(x,x)] . 3] Balcan and Blum. On a Theory of Learning with Similarity Functions. %055 """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ? ?22 U
4] Wang et al. On Learning with Dissimilarity Functions. ‘;0042 i %_8 ____________________________________________________________________________________________________________
Need to modify a bit to incorporate surrogate loss functions 5] Kar and Jain. Similarity-based Learning via Data Driven Embeddings. ) 5_40 L yeeeoery - 1 I N D ) 1?  T———0—0—
Can be adapted to various learning tasks using appropriate loss functions 6] Shalev-Shwartz et al. Trading Accuracy for Sparsity in Optimization Problems with Sparsity o SRS — Nofg“andrsgrks - 0 2_0 DE
Reduces to earlier notion [3] for binary classification (€ e Figure : Absolute error for landmarking (ORLand) and kernel regression (KR)
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