
Supervised Learning with Similarity Functions
Purushottam Kar1 and Prateek Jain2

1Indian Institute of Technology, Kanpur, UP, INDIA
2Microsoft Research India, Bangalore, KA, INDIA

Introduction

I Goal : Supervised learning with indefinite kernels
I Why use indefinite kernels ?
. Several domains possess natural notions of similarity

I Bioinformatics : B.L.A.S.T. scores for protein sequences
I OCR : tangent distance similarity measures
I Image retrieval : earth mover’s distance

. Satisfiability for Mercer’s theorem a hard-to-verify property

. Not clear why non psd-ness should limit usability of a kernel

Existing work

I Most works address only the problem of classification
I Broadly three main approaches
. Use indefinite kernels directly [1] : results in non-convex formulations
. Find a proxy PSD kernel [2] : expensive + loss of domain knowledge
. Use kernel-task alignment [3] : efficient + generalization guarantees

I Several results for classification using the third approach [3, 4, 5]

Our contributions

I Propose a notion of kernel “goodness” for general supervised learning
. Previous notions obtained as a special case

I Develop landmarking-based algorithms to perform supervised learning
. Consider three tasks : real regression, ordinal regression, ranking

I Provide generalization bounds
I Apply sparse learning techniques to reduce landmark complexity
. Fast testing times + generalization guarantees

I Experimental evaluation of landmarking based techniques

What is a good similarity function

I Previously considered for classification by [3]
. “Margin” view : positives closer to positives than negatives by a margin
. Cannot be extended for other supervised learning problems

I We take a “target value” view
. Target value at a point recoverable from neighbors of the point
. Implicitly enforces a smoothness prior

Definition 1. Good similarity function

A similarity function K : X × X → R is (ε0,B)-good for a learning task
y : X → Y if for some bounded weighing function w : X → [−B,B], for at least
a (1− ε0) fraction of the domain, we have y(x) = E

x′∼D

q
w(x′)y(x′)K (x,x′)

y
.

I Need to modify a bit to incorporate surrogate loss functions
I Can be adapted to various learning tasks using appropriate loss functions
I Reduces to earlier notion [3] for binary classification

Evaluating the model

I The proposed notion of goodness is evaluated on two grounds
I Utility : “good” similarity functions should yield effective predictors

Definition 2. Utility criterion

A similarity function K is ε0-useful w.r.t. a loss function ` (·, ·) if for any ε1 > 0,
using polynomially many labeled and unlabeled samples, one can w.h.p.
generate a hypothesis f̂ (x; K ) s.t. E

x∼D

s
`
(

f̂ (x), y(x)
){
≤ ε0 + ε1.

I Admissibility : PSD kernels with large margin should remain “good”

Definition 3. Good PSD Kernel

A kernel K with RKHS HK and feature map ΦK : X → HK is (ε0, γ)-good w.r.t.
loss function `K if for some W∗ ∈ HK , we have E

x∼D

s
`K

(
〈W∗,ΦK (x)〉

γ , y(x)
){

< ε0.

Learning with similarity functions

Algorithm 4. (Landmarking based learning algorithm)

I Given : An (ε0,B)-good kernel K and training points : T =
{

(xt
i , yi)

}n
i=1

I Sample d unlabeled landmarks from domain : L =
{

xl
1, . . . ,x

l
d

}
I Let ΨL : x 7→ 1√

d

(
K (x,xl

1), . . . ,K (x,xl
d)
)
∈ Rd

I Obtain ŵ := arg min
w∈Rd :‖w‖2≤B

∑n
i=1 `S

(〈
w,ΨL(xt

i )
〉
, yi
)

I Output : f̂ : x 7→ 〈ŵ,ΨL(x)〉

I Landmarks can be subsampled from training points themselves
. Provide generalization guarantees for such “double-dipping”

I Sparse Regression : often only a small fraction of landmarks are useful
. Landmark pruning essential for fast predictors
. Propose modified model that takes into account only “useful” landmarks
. Use sparse learning techniques [6] to learn a predictor
. Utility guarantee ensures sparsity as well as generalization error bounds
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Overview of theoretical guarantees

Task Utility Samples required Admissibility
for (ε, γ)-good kernel

Classification [3] (ε, γ)⇒ (ε + ε1)
Misclassification rate O

(
1
γ2ε21

)
U + O

(
1
γ2ε21

)
L

(
ε + ε1,Θ

(
ε1γ

2
))

Regression (ε,B)⇒ (Bε + ε1)
Mean squared error O

(
B2

ε21

)
U + O

(
B2

ε21

)
L

(
ε + ε1,Θ

(
1
ε1γ2

))
Ordinal

Regression
(ε,B,∆)⇒ (Ψ∆(ε) + ε1)

Absolute error O
(

B2

∆2ε21

)
U + O

(
B2

∆2ε21

)
L

(ε, γ,∆)-good⇒(
γ1ε + ε1,Θ

(
γ2

1
ε1γ2

)
, γ1∆

)
Ranking (ε,B)⇒ O

(√
mε

log m + ε1

)
NDCG loss

O
(

B6m8

ε41 log2 m

)
U +

O
(

B6m4

ε41 log2 m

)
L

(
ε + ε1,O

(√
m3

ε31γ
6

))

Experimental results

Datasets Sigmoid kernel Manhattan kernel
KR Land-Sp KR Land-Sp

Abalone
N = 4177 2.1e-002 6.2e-003 1.7e-002 6.0e-003

CAHousing
N = 20640 5.9e-002 1.6e-002 5.8e-002 1.5e-002

CPUData
N = 8192 4.1e-002 1.4e-003 4.3e-002 1.2e-003

PumaDyn-32
N = 8192 1.8e-001 1.4e-002 1.8e-001 1.4e-002

Table: MSE for real regression : Kernel regression vs. Sparse learning

Datasets Sigmoid kernel Manhattan kernel
KR ORLand KR ORLand

Wine-Red
N = 1599 6.8e-001 4.2e-001 6.7e-001 4.5e-001

Wine-White
N = 4898 6.2e-001 8.9e-001 6.2e-001 4.9e-001

Bank-32
N = 8192 2.7e+000 1.6e+000 2.6e+000 1.6e+000

House-16
N = 22784 2.7e+000 1.5e+000 2.8e+000 1.4e+000

Table: Absolute error for ordinal regression : Kernel regression vs. Landmarking

Figure : MSE for landmarking (RegLand), sparse landmarking (RegLand-Sp) and kernel regression (KR)

Figure : Absolute error for landmarking (ORLand) and kernel regression (KR)
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