
SiameseXML: Siamese Networks meet Extreme Classifiers

with 100M Labels

Supplementary Material

February 8, 2022

A Proof of Lemma 1

Postulate 2 states that pl(+1, Eθθθ∗(zl)>w∗l) ≥ pl(+1, 1) − εl. Let q : [0, 1] → [−1, 1] denote the inverse of

pl(+1, ·). By assumption, q is Clip-Lipschitz over the set Rp
def
= {pl(+1, v) : v ∈ [−1,+1]}. This gives us∣∣Eθθθ∗(zl)>w∗l − 1

∣∣ =
∣∣q(pl(+1, Eθθθ∗(zl)>w∗l))− q(pl(+1, 1))

∣∣ ≤ Clip ·
∣∣pl(+1, Eθθθ∗(zl)>w∗l)− pl(+1, 1)

∣∣ .
Since Eθθθ∗(zl) and w∗l are both unit vectors,

∣∣Eθθθ∗(zl)>w∗l
∣∣ ≤ 1. As pl(+1, ·) is monotonically increasing by

assumption, ∣∣pl(+1, Eθθθ∗(zl)>w∗l)− pl(+1, 1)
∣∣ = pl(+1, 1)− pl(+1, Eθθθ∗(zl)>w∗l) ≤ εl,

by using the postulate. This in turn gives us

‖Eθθθ∗(zl)−w∗l ‖
2
2 = 2(1− Eθθθ∗(zl)>w∗l) = 2

∣∣Eθθθ∗(zl)>w∗l − 1
∣∣ ≤ 2Clip · εl

A straightforward application of the Cauchy-Schwartz inequality then tells us that for any x ∈ X , we have∣∣Eθθθ∗(x)>w∗l − Eθθθ∗(x)>Eθθθ∗(zl)
∣∣ ≤ ‖Eθθθ∗(x)‖2 · ‖w

∗
l − Eθθθ∗(zl)‖2 ≤

√
2Clip · εl,

which establishes the first result in the lemma. For the second result, we notice that the above calculation
shows that for any data point x, the use of the label embedding Eθθθ∗(zl) instead of the gold 1-vs-all classifier
w∗l perturbs the score for label l by a quantity that has magnitude at most

√
2Clip · εl. The (q,Dlip)-

Lipschitzness of the joint likelihood function then immediately establishes the second result.
For the special case of decomposable likelihoods, we notice that for any i ∈ [N]∣∣∣∣∣ 1L

L∑
l=1

ln pl
(
yil, Eθθθ(xi)>w∗l

)
− 1

L

L∑
l=1

ln pl
(
yil, Eθθθ(xi)>Eθθθ∗(zl)

)∣∣∣∣∣
≤ 1

L

L∑
l=1

∣∣ln pl (yil, Eθθθ(xi)>w∗l
)
− ln pl

(
yil, Eθθθ(xi)>Eθθθ∗(zl)

)∣∣ ≤ Dlip

√
2Clip

L

L∑
l=1

√
εl ≤ Dlip

√
2Clip · ε̄,

where the last inequality follows from Jensen’s inequality. Taking an average over all i ∈ [N] and applying
triangle inequality yet again yields∣∣∣∣∣ 1

NL

N∑
i=1

L∑
l=1

ln pl
(
yil, Eθθθ(xi)>w∗l

)
− 1

NL

N∑
i=1

L∑
l=1

ln pl
(
yil, Eθθθ(xi)>Eθθθ∗(zl)

)∣∣∣∣∣
≤ 1

NL

N∑
i=1

L∑
l=1

∣∣ln pl (yil, Eθθθ(xi)>w∗l
)
− ln pl

(
yil, Eθθθ(xi)>Eθθθ∗(zl)

)∣∣ ≤ Dlip

√
2Clip · ε̄,

which establishes the second result in the lemma.

1

B Proof of Lemma 2

We note that the objectives L1 and L2 are identical but for the parameters over which they desire optimiza-
tion, as both of them are incomplete NLL expressions derived form L. Suppose θ̂ is the embedding model
obtained at the end of Module I. Thus, initializing ηηηl = 0 for all l ∈ [L] and using monotonicity of training
guarantee us that the refinement vectors η̂ηηl learnt in Module III satisfy

L2({η̂ηηl}) ≤ L2({0})

However, note that we have

L2({η̂ηηl}) = L(θ̂θθ, {ŵl})

L2({0}) = L1(θ̂θθ),

where the second equality follows since N(Eθ̂θθ(zl)+0) = N(Eθ̂θθ(zl)) = Eθ̂θθ(zl) since E already outputs normalized
embeddings and normalization is an idempotent operation. This tells us that

L(θ̂θθ, {ŵl}) ≤ L1(θ̂θθ)

Now, θ̂θθ is a δopt-approximate solution to L1. Moreover, by construction, we have

L1(θθθ∗) = L(θθθ∗, {Eθθθ∗(zl)})

This tells us that
L1(θ̂θθ) ≤ L(θθθ∗, {Eθθθ∗(zl)}) + δopt

However, Lemma 1 tells us that

L(θθθ∗, {Eθθθ∗(zl)}) ≤ L(θθθ∗, {w∗l }) +Dlip ·
√

2Clip · ε,

where ε is the sub-optimality (either εeff or ε̄) in Lemma 1. Putting the above chain of results together
establishes

L(θ̂θθ, {ŵl}) ≤ L(θθθ∗, {w∗l }) +Dlip ·
√

2Clip · ε+ δopt.

We note that appealing to the monotonicity of training once more shows that the above results are unaf-
fected even if the components of the embedding architecture, for example the residual layer and the token
embeddings, are jointly fine-tuned with the refinement vectors in Module IV.

C Inverse and Lipschitzness Properties of pl

Recall that SiameseXML uses

pl(+1, v) =
c · exp (d · v)

exp(d)

pl(−1, v) = 1− pl(+1, v)

Clearly pl(+1, ·) is monotonically increasing with the function q(p) = 1 + 1
d ln p

c as its inverse. We also have

the derivative q′(p) = 1
dp . Now it is easy to see that Rp ⊆

[
c

exp(2d) , c
]

which tells us that |q′(p)| ≤ exp(2d)
cd for

all p ∈ Rp. Since the function q is continuously differentiable on Rp, it is exp(2d)
cd -Lipschitz on Rp.

We move on to the log-likelihood functions

ln pl(+1, v) = ln c+ d(v − 1)

ln pl(−1, v) = ln

(
1− c · exp (d · v)

exp(d)

)

2

Clearly ln pl(+1, ·) is d-Lipschitz on the interval [−1, 1]. It is similarly simply to see that we have∣∣∣∣d ln pl(−1, v)

dv

∣∣∣∣ =
cd exp(d(v − 1))

1− c exp(d(v − 1))

The above is an increasing function of v and achieves its highest value at v = 1 which is dc
1−c . This establishes

that ln pl(−1, ·) is dc
1−c -Lipschitz on the interval [−1, 1].

D Time Complexity Calculations

For the purpose of the discussion below, we introduce some additional notation.
Notation: As Section 4 explains, SiameseXML learns D-dimensional embeddings for all V tokens (et, t ∈

[V]) in the vocabulary. These are used to embed all L labels ẑ1
l , l ∈ [L], as well as all N training documents

x̂i, i ∈ [N]. ‖·‖0 denotes the sparsity “norm” that gives the number of non-zero elements in a vector. Let V̂x be

the average number of unique tokens present in a document i.e. V̂x = 1
N

∑N
i=1 ‖xi‖0 and V̂y = 1

L

∑L
l=1 ‖zl‖0

similarly be the average number of tokens in a label text. As Table 5 in Appendix F indicates, short text
documents exhibit token sparsity with V̂x, V̂y ≤ 10. We also let L̂ = 1

N

∑N
i=1 ‖yi‖0 be the average number

of labels per document and N̂ = NL̂
L be the average number of documents per label. Table 5 presents these

statistics for all datasets.
Embedding Complexity: Given a piece of text in bag-of-words representation x ∈ RV (corresponding

to either a document or a label) containing, say V̂ = ‖x‖0 tokens, the embedding block Eθθθ requires V̂ D
operations to aggregate token embedding vectors and calculate Ex and D2 operations to apply the residual
block R and O (D) operations to perform operations such as normalization and applying ReLU, thus totalling

O
(
V̂ D +D2

)
operations. Thus, encoding a label takes O

(
V̂yD +D2

)
operations on average (respectively

O
(
V̂xD +D2

)
for a document).

Prediction: Given a test data point x ∈ RV with say, V̂x unique tokens, obtaining the intermediate

embedding fE(x) takes O
(
V̂xD

)
time since it only involves aggregating token embeddings followed by ReLU

and normalization operations which take O (D) time each. Obtaining the final embedding Eθθθ(x) on the other

hand, takes O
(
V̂xD +D2

)
time as described above. Since search is over L items, ANNS structures such

as HNSW [6] offer O (logL) time. Thus, identifying the shortlist S of labels and applying the 1-vs-all and
centroid models corresponding to each label l ∈ S in the shortlist takes O (D logL) time since |S| = O (logL)
by design. Since V̂x ≤ D, this brings the overall prediction time complexity to O

(
D2 +D logL

)
.

Training Module I: Creation of the offline negative mining ANNS structure, that is periodically re-

freshed after every few epochs, requires feature embeddings to be recomputed which takes O
(
N(V̂xD +D2)

)
time whereas computing the ANNS search graph itself takesO (ND logN) time [6]. Thus, O

(
N(V̂xD +D2)

)
operations are required each time this graph needs to be recomputed since logN ≤ D. We note that the time
taken to (re)create the document embeddings using the updated parameters is the dominating complexity.

We additionally discuss the amount of time it takes to process each mini-batch of B data points. It takes

O
(
B((V̂x + V̂y)D +D2)

)
time to obtain the embeddings of all B labels and their corresponding positive

documents. Obtaining the hardest κ − 1 “online” negative documents for each label takes O (BD) time,
taking a total of O

(
B2D

)
time for the entire batch. Obtaining the remaining hard negative coming from

the offline ANNS structure takes O (D logN) per label and O (BD logN) time for the entire batch. Since
N ≤ LO(1), this is O (BD logL). Training with respect to the B(κ+ 1) pairs takes O (κBD) time. Thus, it
takes O

(
BD2 +B2D

)
time to process each mini-batch (typically κ, V̂y, V̂x ≤ min {B,D} and logL ≤ D).

Training Module II: Once Module I is completed, computing the intermediate embeddings of all labels

fÊ(zl) takes O
(
LV̂yD

)
time which can be simplified to O (ND logL) since L ≤ O (N) , V̂y ≤ O (logL).

3

Computing the label centroids vl takes O
(
LDN̂

)
time. This is simplified to O

(
NDL̂

)
, where we recall

that N̂ and L̂ denote the average number of documents per label and labels per document respectively and
thus LN̂ = NL̂. Since L̂ ≤ O (logL), this simplifies to O (ND logL) as well. Constructing the two search
graphs themselves takes O (LD logL) time which simplifies to O (ND logL) for L = O (N). Shortlisting the
labels from the two graphs as well as the the random ones takes O (D logL) time per document for a total
of O (ND logL) time. Thus, the entire module is executed in O (ND logL) time.

Training Module III: We discuss the time complexity of processing a single mini-batch of B docu-
ments, each document i accompanied with L̂ positive labels Pi on average, and O (logL) negative labels

N̂i. Computing the document embeddings takes O
(
B(V̂xD +D2)

)
time whereas doing so for the labels

takes O
(
B logL(V̂yD +D2)

)
, since |Pi| , |N̂i| ≤ O (logL). We note that the O

(
V̂xD

)
,O
(
V̂yD

)
time

spent doing token embedding aggregations for documents and labels can be avoided in Module III by pre-
computing them since Module III freezes the token embeddings Ê. However, doing so incurs an additional
O ((N + L)D) memory overhead. Computing gradients with respect to these B logL document-label pairs
takes O (BD logL) time. Thus, processing the entire mini-batch takes O

(
BD2 logL

)
time since V̂y, V̂x ≤ D.

E Proof of Theorem 3 and Additional Discussion

Appendix E.1 begins by revisiting relevant notation and definitions. Appendix E.2 presents a qualitative
discussion on Theorem 3 in the context of related works. Appendix E.3 then outlines a proof for Theorem
3. The further subsections E.4 and E.5 provide the key arguments establishing Parts I and II respectively
of Theorem 3. These arguments themselves require supporting results presented in Appendices G and H.

E.1 Notation and Definitions

Given a label vector y ∈ {−1,+1}L, let Py := {l : yl = +1} and Ny := {l : yl = −1} denote the sets of
positive and negative labels respectively. Given a score vector s = [s1, . . . , sL] ∈ [−1, 1]L, let πs ∈ Sym([L])
be the permutation that ranks labels in decreasing order of their scores according to s i.e. sπs(1) ≥ sπs(2) ≥
We will also let π+

s ∈ Sym(Py) denote the permutation that ranks the positive labels in decreasing order of
their scores according to s i.e. π+

s (t) ∈ Py for all t ∈ |Py| and π+
s (1) ≥ π+

s (2) ≥
Given a matrix A ∈ Rm×n, ‖A‖σ denotes its spectral norm i.e.

‖A‖σ := sup
x∈Rn

‖Ax‖2
‖x‖2

Moreover, for any p, q ∈ [1,∞], we define the mixed norm ‖A‖p,q as follows:

‖A‖p,q :=
∥∥∥[‖A1,:‖p , ‖A2,:‖p , . . . , ‖Am,:‖p

]∥∥∥
q

We clarify that the above first takes the p-th norm over all rows, then the q-th norm over the columns. Note
that this is slightly different from popular convention that sometimes takes norms over columns first and
then over rows. However, this slight change of convention will greatly simplify our notation and avoid clutter
due to transpose symbols everywhere.

Definition 1 (prec@k Loss Function). We define the prec@k loss function as follows

℘k(s,y) := 1− 1

k

k∑
t=1

I {πs(t) ∈ Py}

4

Definition 2 (γ-ramp Function). Given a margin parameter γ > 0, define the γ-ramp function for any
v ∈ R as follows

rγ(v) =


0 if v < 0
v
γ if v ∈ [0, γ]

1 if v > γ

Definition 3 (prec@k Surrogate Loss Function). For any k ∈ N, we define the prec@k surrogate loss function
as follows

`precγ,k (s,y) := 1− 1

k

min{k,|Py|}∑
t=1

rγ

(
sπ+

s (t) − max
l′∈Ny

sl′

)
Definition 4 (Contrastive Loss Function). For any d ≥ 1, c < 1, we define the following contrastive loss
function

`contc,d (s,y) =
∑
l∈Py

ln
1

c
+ d · (1− sl)−

∑
l′∈Ny

ln (1− c · exp(d · (sl′ − 1)))

We note that the contrastive loss function defined above is identical to the negative log-likelihood function
with respect to the likelihood model pl used by SiameseXML.

E.2 Discussion on the Bounds offered by Theorem 3

1. The bound is offers generalization guarantees for deep multi-label learning with label features. Previous
works mostly address multi-label learning using networks that have one output node per label and do
not take label features into account.

2. The bound for module I (Part I of Theorem 3) is entirely independent of the number of labels. Although
this is made possible by the fact that the parameters learnt in Module I (i.e. θθθ) have size independent
of L, such a result is missing from previous analyses which incur a dependence on the number of labels
either explicitly e.g. [11] or implicitly e.g. [1]. To be sure, Part I of the bound avoids even an implicit
dependence on the number of labels. Part II of the bound that considers the model with extreme
1-vs-all classifiers incurs a weak O (logL) direct dependence on the number of labels.

3. [1] states that it is a “tantalizing” open question to explore bounds that are better adapted to the
neural networks encountered in practice. We show that it is possible, e.g. by adapting to the datatype
at various layers of the network (sparse, high dimensional at one layer but dense low-dimensional
unit norm vectors in another layer). In particular, the bound exploits sparsity of the input vectors,
something not done by previous generalization bounds for deep architectures such as [1, 9]. However
this requires adaptations to the proof technique mentioned below.

(a) Sidestepping the usual Talagrand-Ledoux contraction step and instead directly invoking a variant
of Dudley’s integral argument to bound the Rademacher complexity. The standard approach of
using contraction explicitly is unwieldy for Siamese architectures such as those used by Siame-
seXML since in these architectures, the neural architecture itself does not output label-wise scores
(for example as the output of a fully-connected final layer). Rather, label-wise scores are obtained
via dot-products of label embeddings obtained using the neural architecture itself.

(b) Distinct from previous bounds such as [1] which rely on pushing empirical covers across layers of
the network, the bound we present instead relies on uniform covers. This turns out to be critical
in avoiding an implicit dependence on the number of labels.

(c) A novel uniform Maurey-type sparsification lemma (see Lemma 16) that uses powerful Bernstein-
style arguments, as opposed to the standard empirical Maurey-type lemmata that use much less
powerful Chevyshev-style arguments and may be of independent interest.

5

E.3 Proof for Theorem 3

We prove the two parts separately below and then show how the NLL expression L can be used in place of
ˆ̀
N in the generalization bounds.

Proof of Part I: Recall from above and the discussion in Section 5 in the main paper that `(θθθ), ˆ̀
N (θθθ)

denote, respectively, the population and empirical loss of a model θθθ with respect to the surrogate prec@k
loss function defined using the ramp function. Note that Module I considers no 1-vs-all classifiers and thus,
the number of parameters in θθθ is independent of L. Also recall that ℘k(θθθ) denotes the population prec@k

risk for a model θθθ. Theorem 4 below establishes that for the model θ̂θθ
0

learnt by Module I, we have, with
probability at least 1− δ,

`(θ̂θθ
0
) ≤ ˆ̀

N (θ̂θθ
0
) +

1

γ
· P ln(N)√

N
+

√
ln 1

δ

N
,

However, the surrogacy result Claim 17 establishes that the prec@k surrogate unconditionally upper bounds
the prec@k loss i.e. for any γ > 0, we have `prec

γ,k (s,y) ≥ ℘k(s,y). This establishes that

℘k(θ̂θθ
0
) ≤ `(θ̂θθ

0
),

establishing Part I of Theorem 3.
Proof of Part II: This follows in a manner similar to Part I but instead uses Theorem 5 below that

establishes that for the model ξ̂ξξ :=
{
θ̂θθ, Ĥ

}
learnt by Module III, we have, with probability at least 1− δ,

`(ξ̂ξξ) ≤ ˆ̀
N (ξ̂ξξ) +

1

γ
· Q ln(N)√

N
+

√
ln 1

δ

N

Using Claim 17 as before establishes Part II of Theorem 3.
Incorporating NLL Objective into the Bounds: Recall that `cont

c,d denotes the loss function equiva-
lent to the negative-log likelihood w.r.t pl used by SiameseXML as its optimization objective in Modules I
and III. Claim 18 tells us that for any c ∈ (0, 1), d ≥ 1, we have 1

ln(4c) · `
cont
c,d (s,y) ≥ `prec

γ,k (s,y). In particular,

if c ∈ (0.7, 1), d ≥ 1, we have ln(4c) > 1 and thus `cont
c,d (s,y) ≥ `prec

γ,k (s,y). This shows that the likelihood

expression L can be substituted (along with an appropriate scaling constant 1
ln(4c)) for ˆ̀

N in the bounds in

Theorem 3.

E.4 A Generalization Bound for Module I

The network architecture is given below with parameters θθθ = {E,R} where E ∈ RD×V ,R ∈ R(D+1)×(D+1)

Eθθθ(x) = Nν(f(x; E) + g(f(x; E); R)) ∈ RD+2

f(x; E) = Nν(ReLU(Ex)) ∈ RD+1

g(v; R) = ReLU(Rv) ∈ RD+1

Nν(v) =
1√

‖v‖22 + ν2

· [v, ν]

The Normalization Operator Nν : Projection onto the surface of the unit sphere SD−1 is a non-
Lipschitz operation, with an irremovable discontinuity at the origin. To address this, SiameseXML uses a
Lipschitz-surrogate Nν : RD → SD as defined above. Claim 11 establishes that over vectors with Euclidean

norm at least r, the function is at least
(

2√
r2+ν2

)
Lipschitz. Thus, even in the worst case, it is at least

2
ν -Lipschitz. Note that the normalization operation increments the dimensionality of the input vector by
unity i.e. if v ∈ RD, then Nν(v) ∈ RD+1 but is a true normalization operator i.e. ‖Nν(v)‖2 = 1 for all

6

v ∈ RD. However, alternate formulations are also possible, for instance the formulation found in popular
packages such as PyTorch which instead uses

Nρ(v) =
1

max {‖v‖2 , ρ}
· v.

Although the above notion is also Lipschitz, it is not a true normalization operator since it does not output
unit norm vectors if ‖v‖2 < ρ. Nevertheless, we stress that the proofs of Theorems 4 and 5, and consequently,
the proof of Theorem 3, do not rely on the choice of Nν as the Lipschitz variant of the normalization operator,
and any other Lipschitz variant, for example Nρ, could have been used just as well. All that the proofs require
is that the variant being used be Lipschitz.

Below we present a generalization bound for the above architecture used by SiameseXML in Module I.
For any RE1 , R

E
∞, R

R
1 , R

R
∞, R

R
σ > 0, we define the model class ΘΘΘRE1 ,R

E
∞,R

R
1 ,R

R
∞,R

R
σ

as follows{
(E,R) ∈ RD×V × R(D+1)×(D+1) : ‖E‖1,1 ≤ R

E
1 , ‖E‖∞,1 ≤ R

E
∞, ‖R‖1,1 ≤ R

R
1 , ‖R‖∞,1 ≤ R

R
∞, ‖R‖σ ≤ R

R
σ

}
In the sequel, we will abbreviate ΘΘΘRE1 ,R

E
∞,R

R
1 ,R

R
∞,R

R
σ

as simply ΘΘΘ to avoid notational clutter. Let X be the

set of V -dimensional s-sparse unit-norm vectors i.e. X =
{
x ∈ RV , ‖x‖2 = 1, ‖x‖∞ ≤ s

}
. Given training N

data points of the form (xi,yi) ∈ X ×{−1,+1}L , i = 1, . . . , N sampled from some distribution D, as well as
label features zl ∈ X , l = 1, . . . , L, we first define the score function. For any x ∈ Rd and any model θθθ ∈ ΘΘΘ,
we have

sθθθ(x) = [sθθθ1, s
θθθ
2, . . . , s

θθθ
L]> ∈ RL,

where sθθθl = Eθθθ(x)>Eθθθ(zl) for all l ∈ [L]. We then define the empirical risk for any model θθθ as follows

ˆ̀
N (θθθ) =

1

N

N∑
i=1

`prec
γ,k (sθθθ(xi),yi).

Similarly, the population (test) risk is defined for any model θθθ as follows

`(θθθ) = E
(x,y)∼D

[
`prec
γ,k (sθθθ(x),y)

]
.

Theorem 4 (Module-I Generalization Bound). Suppose the learning procedure in module I learns a model

θ̂θθ ∈ΘΘΘ. Then with probability at least 1− δ, we have

`(θθθ) ≤ ˆ̀
N (θθθ) +

1

γ
· P ln(N)√

N
+

√
ln 1

δ

N
,

where P := C · 1
ν

(√
D ln(D)

√
RR∞R

R
1 + 1

ν ·
√
s ln(DV)RRσ

√
RE∞R

E
1

)
for some universal constant C.

Notice that the generalization bound is entirely independent of the number of labels, depends directly
on V only logarithmically, and instead depends directly on s, the sparsity of the input vectors. Also, to be
sure, the proof below establishes this result for a fixed model class, i.e. ΘΘΘRE1 ,R

E
∞,R

R
1 ,R

R
∞,R

R
σ

with fixed bounds

on various norms such as RR1 , R
R
σ etc. However, this can be easily extended to admit empirical bounds on

these norms (i.e. the norms of the model parameters obtained after training) using a standard stratification
step as used by [1]. Before proving this theorem, we need to introduce the concept of model covers.

Definition 5 (Uniform ε-covers for Model Classes). For any ε > 0 and a model class ΘΘΘ, we say that a model
class ΩΩΩε is an ε-cover if for any θθθ ∈ ΘΘΘ, there exists an ωωω ∈ ΩΩΩε, such that supx∈X ‖Eθθθ(x)− Eωωω(x)‖2 ≤ ε.
Moreover, for any ε > 0, we let N∞(ΘΘΘ, ε) denote the size of the smallest such ε-cover.

7

Proof of Theorem 4. Since the prec@k surrogate loss function is takes values in the bounded interval [0, 1], a
standard application of the McDiarmid’s inequality followed by a symmetrization argument (see for example
[7, Theorem 3.1]) tells us that with probability at least 1− δ, we have, for every θθθ ∈ΘΘΘ

`(θθθ) ≤ ˆ̀
N (θθθ) + 2RN (ΘΘΘ) +

√
ln 1

δ

N
,

where the Rademacher complexity term is defined as

RN (ΘΘΘ) := E
(xi,yi)∼D
τi∼{−1,+1}

[
sup
θθθ∈ΘΘΘ

1

N

N∑
i=1

τi · `prec
γ,k (sθθθ(xi),yi)

]

For standard analyses (of even deep networks), the next step is a Talagrand-Ledoux-style contraction argu-
ment. This is because those analyses, for example [1, 9], consider architectures where the final layer outputs
are the label-wise scores. However, in our case, the label-wise scores used to calculate the loss function in
our case are not direct outputs of the neural architecture, rather they are obtained via dot-products of label
embeddings Eθθθ(zl) that are obtained using the architecture itself.

This makes the standard approach unweildy. We overcome this difficulty by directly upper bounding
the Rademacher complexity term using a chaining bound, implicitly folding in a Talagrand-Ledoux-style
contraction argument in the process. The steps involved in the chaining argument are often routine but pre-
sented here for sake of completeness. The novelty in the proof lies largely in establishing the uniform covering
number bounds (see Lemma 8 and Claim 15) that are used in the chaining argument. It is in establishing
these covering numbers that the uniform Maurey sparsification lemma (see Lemma 16) is required.

We note that the fact that the cover defined above acts uniformly over all inputs in the set X is crucial
in avoiding the drawbacks of the empirical covering bounds used in previous works that lead to a direct
dependence on the number of labels in the bound. Lemma 8 below will establish model covers for ΩΩΩε of
bounded size. However, for now we use proceed assuming the existence of appropriate model covers to bound
the Rademacher complexity term.

We note that since our architecture outputs unit norm vectors i.e. ‖Eθθθ(x)‖2 = 1 for all θθθ ∈ ΘΘΘ,x ∈ X , we
can obtain trivial ε-covers for all ε ≥ 2. For example, we may simply take ΩΩΩε = {(0,0)} for all ε ≥ 2. Note
that due to the regularization step, our normalization operator Nν(·) does not suffer divide-by-zero errors
or instability even in these degenerate settings.

We now pick scales ε = 2, 1, 1
2 , . . . , i.e. εj = 2−(j−1), j = 0, . . . ,K for some K ∈ N to be decided later,

and let ΩΩΩεj denote an εj-cover of size N∞(ΘΘΘ, εj). Then, for any θθθ ∈ ΘΘΘ, select a covering element from each
one of these covers i.e. select ωωωj ∈ ΩΩΩεj such that ωωωj is an εj-covering element for θθθ for j = 0, . . . ,K. Note
that ΩΩΩ0 = {(0,0)} and thus ωωω0 = (0,0) itself as ε0 = 2 allowing a trivial cover. Also, to avoid notational
clutter, we abbreviate `i(θθθ) := `prec

γ,k (sθθθ(xi),yi). Then we have

`i(θθθ) = `i(θθθ)− `i(ωωωK) +
K∑
j=1

(`i(ωωωj)− `i(ωωωj−1)) + `i(ωωω0)

Since the choice of ωωω0 as a 2-covering element is independent of the model θθθ to be covered, we have

E
τi

[
sup
θθθ∈ΘΘΘ

1

N

N∑
i=1

τi · `i(ωωω0)

]
= E
τi

[
1

N

N∑
i=1

τi · `i(ωωω0)

]
= 0

This gives us

E
τi

[
sup
θθθ∈ΘΘΘ

1

N

N∑
i=1

τi · `i(θθθ)

]
≤ E
τi

[
sup
θθθ∈ΘΘΘ

1

N

N∑
i=1

τi(`i(θθθ)− `i(ωωωK))

]
︸ ︷︷ ︸

(A)

+

K∑
j=1

E
τi

[
sup
θθθ∈ΘΘΘ

1

N

N∑
i=1

τi(`i(ωωωj)− `i(ωωωj−1))

]
︸ ︷︷ ︸

(Bj)

8

To bound the term (A) we notice that Lemma 6 tells us that |`i(θθθ)− `i(ωωωK)| ≤ 4εK
γ for all choices of

(xi,yi). This allows a straightforward application of the Cauchy-Schwartz inequality to give us

(A) ≤ 1

N
· ‖[τ1, . . . , τN]‖2 ·

4εK
γ

√
N =

4εK
γ

Bounding the terms (Bj) requires us to notice that

`i(ωωωj)− `i(ωωωj−1) ≤ `i(ωωωj)− `i(θθθ) + `i(θθθ)− `i(ωωωj−1) ≤ 4

γ
(εj + εj−1) =

4

γ
(2−(j−1) + 2−(j−2)) =

12εj
γ

Also, we notice that the even if a union is taken over all θθθ ∈ΘΘΘ, the number of possible pairs (ωωωj ,ωωωj−1) is at
most N∞(ΘΘΘ, εj)N∞(ΘΘΘ, εj−1) ≤ (N∞(ΘΘΘ, εj))

2. An application of Massart’s Finite Class Lemma now tells us
that

E
τi

[
sup
θθθ∈ΘΘΘ

1

N

N∑
i=1

τi(`i(ωωωj)− `i(ωωωj−1))

]
≤ 24εj

γ

√
ln(N∞(ΘΘΘ, εj))

N
≤ 48(εj − εj−1)

γ

√
ln(N∞(ΘΘΘ, εj))

N

Taking a sum over j = 1, . . . ,K and upper bounding the sum by an integral give us

RN (ΘΘΘ) ≤ 4

γ

(
εK +

∫ 2

εK+1

√
ln(N∞(ΘΘΘ, ε))

N
dε

)

Now, Lemma 8 offers us model covers of all scales with sizes at most

ln(N∞(ΘΘΘ, ε)) ≤ O
(

1

ν2

(
D ln(D)RR∞R

R
1 +

1

ν2
· s ln2(DV)RE∞R

E
1 (RRσ)2

)
· 1

ε2

)
=:

B

ε2

where we abbreviate B := O
(

1
ν2

(
D ln(D)RR∞R

R
1 + 1

ν2 · s ln2(DV)RE∞R
E
1 (RRσ)2

))
. Thus,∫ 2

εK+1

√
ln(N∞(ΘΘΘ, ε))

N
dε ≤

√
B

N
ln

2

εK+1

Choosing K > lnN
2 i.e. εK+1 <

1√
N

grants us

RN (ΘΘΘ) ≤ 4

γ

√ 1

N
+

√
B ln2(2N)

N

 = O

√B ln2(2N)

γ2N


This finishes the claimed generalization bound.

E.5 A Generalization Bound for Module III

The network architecture for documents remains identical in this module. However, the architecture for
labels now includes a free vector parameter (the “extreme” 1-vs-all classifier ηηηl, l ∈ [L]) and is given below.
It is notable that the parameters θθθ = {E,R} are shared with documents whereas the free parameters ηηηl are
learnt one-per label. Let us abbreviate H = [ηηη1, . . . , ηηηL]> ∈ RL×(D+2) and let ξξξ := {θθθ,H} denote the model
augmented with these free parameters.

Fξξξ(zl) = Nν(Eθθθ(zl) + ηηηl) ∈ RD+3

We define a corresponding model class as follows

ΞΞΞRE1 ,RE∞,RR1 ,RR∞,RRσ ,RC1 ,RC∞ =
{

(θθθ,H) : θθθ ∈ΘΘΘRE1 ,R
E
∞,R

R
1 ,R

R
∞,R

R
σ
,H ∈ RL×(D+2), ‖H‖1,1 ≤ R

C
1 , ‖H‖1,∞ ≤ R

C
∞

}
.

9

In the sequel, we will abbreviate ΞΞΞRE1 ,RE∞,RR1 ,RR∞,RRσ ,RC1 ,RC∞ as simply ΞΞΞ, as well as continue to refer to
abbreviate ΘΘΘRE1 ,R

E
∞,R

R
1 ,R

R
∞,R

R
σ

as simply ΘΘΘ, to avoid notational clutter. Scores are now calculated as follows:

for any x ∈ Rd and any model ξξξ ∈ ΞΞΞ, we have

sξξξ(x) = [sξ
ξξ
1, s

ξξξ
2, . . . , s

ξξξ
L]> ∈ RL,

where sξ
ξξ
l = N0(Eθθθ(x))>Fξξξ(zl) for all l ∈ [L]. Note that N0(Eθθθ(x)) simply appends a zero to the vector Eθθθ(x)

to make it a D + 3 dimensional vector compatible for dot products with Fξξξ(zl) ∈ RD+3. We do not require
regularization for this normalization step since Eθθθ(x) is already a unit vector.

Theorem 5 (Module-III Generalization Bound). Suppose the learning procedure in module III learns a

model ξ̂ξξ ∈ ΞΞΞ. Then with probability at least 1− δ, we have

`(ξξξ) ≤ ˆ̀
N (ξξξ) +

1

γ
· Q ln(N)√

N
+

√
ln 1

δ

N
,

where Q := C · 1
ν

(
ln(DL)

√
RC∞R

C
1 + 1

ν

(√
D ln(D)

√
RR∞R

R
1 + 1

ν ·
√
s ln(DV)RRσ

√
RE∞R

E
1

))
for some uni-

versal constant C.

Before proceeding with the proof, we need to appropriately extend the notion of a model cover for these
augmented models which we do below. As before, this result can be readily extended to admit empirical
bounds on various norms using a standard stratification step [1].

Definition 6 (Uniform ε-covers for Augmented Model Classes). For any ε > 0 and model class ΞΞΞ, we say
that a model class ΨΨΨε is an ε-cover if for any ξξξ = (θθθ,H) ∈ ΞΞΞ, there exists ψψψ = (ωωω,G) ∈ ΨΨΨε, such that
supx∈X ‖Eθθθ(x)− Eωωω(x)‖2 ≤ ε as well as ‖H−G‖2,∞ ≤ ε. Moreover, for any ε > 0, we let N∞(ΞΞΞ, ε) denote
the size of the smallest such ε-cover.

Note that if we let H = [ηηη1, . . . , ηηηL]> ∈ RL×(D+2) and G = [ζζζ1, . . . , ζζζL]> ∈ RL×(D+2), then the condition
‖H−G‖2,∞ ≤ ε above translates to supl∈[L] ‖ηηηl − ζζζl‖2 ≤ ε.

Proof of Theorem 5. We start by noticing that Lemma 7 tells us that the loss function is Lipschitz with
respect to the augmented models as well, but with a Lipschitz constant 10

γν that now includes a factor

involving ν due to the additional normalization step carried out in Fξξξ(·).
Thus, to produce a generalization bound in the presence of the augmented free parameters, all we

need to do is establish an ε-cover for the model class ΞΞΞ. To do so we notice that ΞΞΞ = ΘΘΘ × ΛΛΛ where

ΛΛΛ := ΛΛΛRC1 ,RC∞ =
{

H ∈ RL×(D+2) : ‖H‖1,1 ≤ RC1 , ‖H‖1,∞ ≤ RC∞
}

. Thus, to construct a cover for ΞΞΞ, we take

the following steps

1. Invoke Lemma 8 to obtain an ε-cover ΩΩΩε for ΘΘΘ

2. Construct ΠΠΠε such that for every H ∈ ΛΛΛ, there exists a G ∈ ΠΠΠε such that ‖H−G‖2,∞ ≤ ε

3. Construct the overall cover as ΨΨΨε := ΩΩΩε ×ΠΠΠε

The size of such a cover would be ln(|ΨΨΨε|) ≤ ln(|ΩΩΩε|) + ln(|ΠΠΠε|) which also gives us

ln(N∞(ΞΞΞ, ε)) ≤ ln(N∞(ΘΘΘ, ε)) + ln(|ΠΠΠε|).

Now, Claim 15 offers us a cover ΠΠΠε of size at most

ln(|ΠΠΠε|) ≤ 64 ln(3eL) ln(2(D + 2)L)RC∞R
C
1 ·

1

ε2

10

Then, following the same steps as in the proof of Theorem 4 and using Lemma 7 tells us that

RN (ΞΞΞ) ≤ 10

γν

(
εK +

∫ 2

εK+1

√
ln(N∞(ΞΞΞ, ε))

N
dε

)

≤ 10

γν

(
εK +

∫ 2

εK+1

√
ln(N∞(ΘΘΘ, ε)) + ln(|ΠΠΠε|)

N

)
dε

≤ 10

γν

(
εK +

√
A

N
ln

2

εK+1

)

where A = O
(

1
ν2

(
D ln(D)RR∞R

R
1 + 1

ν2 · s ln2(DV)RE∞R
E
1 (RRσ)2

)
+ ln2(DL)RC∞R

C
1

)
. As before, choosing

K > lnN
2 i.e. εK+1 <

1√
N

finishes the proof.

F Experiments

Table 5 presents the statistics for all datasets used in the experiments.

F.1 Evaluation metrics

Precision and Normalized Discounted Cumulative Gain (nDCG) are widely used evaluation metrics in ex-
treme multi-label learning. Results for various methods are reported with respect to vanilla precision (P@k)
and nDCG (N@k), as well as propensity scored precision (PSP@k) and nDCG (PSN@k) with k = 1, 3 and 5.
The propensity scoring model and values taken from the Extreme Classification Repository [2] were used to
evaluate the methods. For proprietary datasets, the method outlined in [5] was followed to obtain propensity
scores for labels. For a predicted score vector ŷ ∈ RL and ground truth label vector y ∈ {0, 1}L, the metrics
are defined below. In the following, pl is propensity score of the label l as described in [5].

P@k =
1

k

∑
l∈rankk(ŷ)

yl PSP@k =
1

k

∑
l∈rankk(ŷ)

yl
pl

D@k =
1

k

∑
l∈rankk(ŷ)

yl
log(l + 1)

PSD@k =
1

k

∑
l∈rankk(ŷ)

yl
pl log(l + 1)

N@k =
D@k∑min(k,||y||0)

l=1
1

log(l+1)

PSN@k =
PSD@k∑k
l=1

1
log l+1

,

F.2 Hyper-parameters

SiameseXML uses a few hyper-parameters described below.

1. Scaling parameters c ∈ (0, 1), d ≥ 1 in the probability model pl (see Section 4, “Architecture Details”).

2. The dimensionality D of the embeddings.

Module I used c = 0.9, d = 1.5 whereas Module III used c = 0.75, d = 3.0. D = 300 was used for the publicly
available benchmarks datasets and D = 128 was used for the (larger) proprietary datasets. A shortlist of
size |S| = 500 was used and the weighting constant α (see Section 4 “Log-time Prediction”) was picked from
the set {0.75, 0.9, 0.95} across the datasets. Finally, the hyper-parameters for the optimizer include learning
rate and batch size which were set to default values across all datasets. In particular, Module-I used a batch
size of 4096 and learning rate of 0.005 whereas Module II used a batch size of 256 and learning rate 0.0005.

11

Table 5: Dataset Statistics. A ‡ sign denotes information that was redacted for proprietary datasets.

Dataset
Num train

docs N
Num labels

L
Num tokens

V
Num test
docs N ′

Avg labels
per doc

Avg docs
per label

Avg tokens
per doc

Avg tokens
per label

Benchmark public datasets

LF-AmazonTitles-131K 294,805 131,073 40,000 134,835 2.29 5.15 7.46 7.15
LF-WikiSeeAlsoTitles-320K 693,082 312,330 40,000 177,515 2.11 4.68 3.97 3.92

Proprietary datasets

Q2BP-4M 20,973,324 5,246,101 ‡ 4,000,000 ‡ ‡ ‡ ‡
Q2BP-40M 64,308,169 40,000,000 ‡ 16,075,850 ‡ ‡ ‡ ‡
Q2BP-100M 187,355,925 100,000,000 ‡ 80,289,870 ‡ ‡ ‡ ‡

Table 6: An extension of Table 1 from the main paper displaying nDCG and propensity scored nDCG, as
well as model sizes for all methods. SiameseXML could be significantly more accurate and scalable than
leading deep extreme classifiers including Astec, Decaf, and XTransformer on repository datasets. Results
are only presented for datasets to which an algorithm could scale with the timeout described in Section 6.

Method N@1 N@3 N@5 PSN@1 PSN@3 PSN@5
Model

Size (GB)
Training
time (hr)

LF-AmazonTitles-131K

SiameseXML 39.43 40.21 42.16 33.83 36.83 39.03 1.16 0.66
SiameseXML-3 40.26 41.14 43.21 34.51 37.62 39.93 3.48 1.97
Astec 37.12 38.17 40.16 29.22 32.73 35.03 3.31 1.83
Decaf 38.40 39.43 41.46 30.85 34.69 37.13 0.83 2.16
MACH 33.49 34.36 36.16 24.97 28.41 30.54 2.41 3.30
SLICE+FastText 30.43 31.07 32.76 23.08 26.11 28.13 0.40 0.08
AttentionXML 32.25 32.83 34.42 23.97 26.88 28.75 2.67 20.73
Parabel 32.60 32.96 34.47 23.27 26.36 28.21 0.35 0.03
Bonsai 34.11 34.81 36.57 24.75 28.32 30.47 0.24 0.10
DiSMEC 35.14 36.17 38.06 25.86 30.09 32.47 0.11 3.10

LF-WikiSeeAlsoTitles-320K

SiameseXML 27.63 27.03 27.87 22.68 24.20 25.51 2.69 1.05
SiameseXML-3 28.51 28.01 28.91 23.29 24.92 26.28 8.07 3.15
Astec 22.72 22.16 22.87 13.69 15.56 16.75 7.47 4.17
Decaf 25.14 24.99 25.95 16.73 19.18 20.75 1.80 11.16
MACH 18.06 17.57 18.17 9.68 11.19 12.14 2.57 8.23
SLICE+FastText 18.55 18.29 19.07 11.24 13.03 14.23 0.96 0.20
AttentionXML 17.56 16.58 17.07 9.45 10.45 11.24 6.17 56.12
Parabel 17.68 16.96 17.44 9.24 10.49 11.32 0.61 0.07
Bonsai 19.31 18.74 19.32 10.69 12.29 13.29 0.38 0.37
DiSMEC 19.12 18.93 19.71 10.56 12.70 14.02 0.20 15.56

12

Table 7: A subjective comparison of the top 5 predictions made by various algorithms on selected examples
from the LF-WikiSeeAlsoTitles-320K dataset. SiameseXML’s predictions are more accurate as compared to
leading methods including DECAF and AttentionXML. Mispredictions are typeset in light gray.

Method Top 5 Predictions

Document Sinhala script

SiameseXML Dutch loanwords in Sinhala, Portuguese loanwords in Sinhala, Tamil loanwords in Sinhala,
English loanwords in Sinhala, History of Sinhala software

DECAF Portuguese loanwords in Sinhala, Tamil loanwords in Sinhala, Dutch loanwords in Sinhala
Gupta script, Pre-Islamic scripts in Afghanistan

Astec Portuguese loanwords in Sinhala, Mongolian script, Filipino orthography, Mongolian writing
systems, Thai honorifics

AttentionXML Mongolian writing systems, Sindhi language, Romanization of Khmer, Greater India
Indosphere

Document List of Go players

SiameseXML List of Go organizations, Go players, International Go Federation, Go professional,
List of professional Go tournaments

DECAF Go players, List of Go organizations, Music of the Republic of Macedonia, Players,
List of all-female bands

Astec List of NHL players, List of Israeli chess players, List of chess players, Hardball squash
Gibson Guitar Corporation product list

AttentionXML List of NHL players, List of professional Go & tournaments, List of foreign NBA players,
List of chess grandmasters, List of Israeli chess players

13

G Supporting Results

Lemma 6. Let ΩΩΩε be an ε-cover for the model class ΘΘΘ as defined in Definition 5. For any θθθ ∈ ΘΘΘ, suppose
ωωω ∈ ΩΩΩε is the ε-covering element, i.e. supx∈X ‖Eθθθ(x)− Eωωω(x)‖2 ≤ ε. Then for any (x,y), we have∣∣∣`precγ,k (sθθθ(x),y)− `precγ,k (sωωω(x),y)

∣∣∣ ≤ 4ε

γ
.

Proof. Since the γ-ramp function is 1
γ -Lipschitz, we have

∣∣∣`prec
γ,k (sθθθ(x),y)− `prec

γ,k (sωωω(x),y)
∣∣∣ ≤ 1

γ

(
max
l∈Py

∣∣∣sθθθl − sωωωl ∣∣∣+ max
l′∈Ny

∣∣∣sθθθl′ − sωωωl′ ∣∣∣) ≤ 2

γ
·max
l∈[L]

∣∣∣sθθθl − sωωωl ∣∣∣
=

2

γ
·max
l∈[L]

∣∣Eθθθ(x)>Eθθθ(zl)− Eωωω(x)>Eωωω(zl)
∣∣

≤ 2

γ
·max
l∈[L]

{∣∣Eθθθ(x)>(Eθθθ(zl)− Eωωω(zl))
∣∣+
∣∣(Eθθθ(x)− Eωωω(x))>Eωωω(zl)

∣∣}
≤ 4ε

γ
,

where we used the fact that our architecture outputs normalized vectors i.e. ‖Eθθθ(x)‖2 = 1 = ‖Eθθθ(zl)‖2 for
all l ∈ [L], the fact that zl ∈ X for all l ∈ [L], as well as the fact that ωωω is an ε-covering element for θθθ. This
concludes the proof.

Lemma 7. Let ΨΨΨε be an ε-cover for the model class ΞΞΞ as defined in Definition 6. For any ξξξ = (θθθ,H) ∈ ΞΞΞ,
suppose ψψψ = (ξξξ,G) ∈ ΨΨΨε is the ε-covering element, i.e. supx∈X ‖Eθθθ(x)− Eωωω(x)‖2 ≤ ε and ‖H−G‖2,∞ ≤ ε.
Then for any (x,y), we have ∣∣∣`precγ,k (sξξξ(x),y)− `precγ,k (sψψψ(x),y)

∣∣∣ ≤ 10ε

γν
.

Proof. Similar to the proof of Lemma 6, if we let H = [ηηη1, . . . , ηηηL] and G = [ζζζ1, . . . , ζζζL], we have∣∣∣`prec
γ,k (sξξξ(x),y)− `prec

γ,k (sψψψ(x),y)
∣∣∣ ≤ 2

γ
·max
l∈[L]

∣∣∣sξξξl − sψψψl ∣∣∣ =
2

γ
·max
l∈[L]

∣∣N0(Eθθθ(x))>Fξξξ(zl)−N0(Eωωω(x))>Fψψψ(zl)
∣∣

≤ 2

γ
·max
l∈[L]

{∣∣N0(Eθθθ(x))>(Fξξξ(zl)−Fψψψ(zl))
∣∣+
∣∣(N0(Eθθθ(x))−N0(Eωωω(x)))>Fψψψ(zl)

∣∣}
≤ 2

γ

(
‖Fξξξ(zl)−Fψψψ(zl)‖2 + ‖N0(Eθθθ(x))−N0(Eωωω(x))‖2

)
=

2

γ
(‖Nν(Eθθθ(zl) + ηηηl)−Nν(Eωωω(zl) + ζζζl)‖2 + ‖Eθθθ(x)− Eωωω(x)‖2)

≤ 2

γ

(
2

ν
(‖Eθθθ(zl)− Eωωω(zl)‖2 + ‖ηηηl − ζζζl‖2) + ‖Eθθθ(x)− Eωωω(x)‖2

)
≤ 2

γ

(
4ε

ν
+ ε

)
≤ 10ε

γν
,

where in the third step, we used the fact that our architecture outputs normalized vectors i.e. ‖N0(Eθθθ(x))‖2 =
1 = ‖Fψψψ(zl)‖2 for all l ∈ [L], in the next step we used the fact that N0(Eθθθ(x)) = [Eθθθ(x), 0], in the next step
we used Corollary 12 and in the final step, we used the fact that zl ∈ X for all l ∈ [L], the fact that
‖H−G‖2,∞ ≤ ε, and then simplified the bound for ν ≤ 1 w.l.o.g. which will always be the case whenever
this bound is applied. This concludes the proof.

14

Lemma 8 (Model Covering). For any RE1 , R
E
∞, R

R
1 , R

R
∞, R

R
σ , ε > 0, the model class ΘΘΘRE1 ,R

E
∞,R

R
1 ,R

R
∞,R

R
σ

admits
an ε-cover ΩΩΩε of size at most

ln(|ΩΩΩε|) ≤ c ·
(

1

ν2

(
D ln(D)RR∞R

R
1 +

1

ν2
· s ln2(DV)RE∞R

E
1 (RRσ)2

)
· 1

ε2

)
,

where c > 0 is a universal constant.

Proof. Let εE , εR > 0 be constants that shall be fixed later. We first invoke Claim 13 to obtain an εE-

cover CE over the set of matrices
{

E ∈ RD×V : ‖E‖1,1 ≤ RE1 , ‖E‖∞,1 ≤ RE∞
}

. We then invoke Claim 14

to obtain an εR-cover CR over the set of matrices
{

R ∈ R(D+1)×(D+1) : ‖R‖1,1 ≤ RR1 , ‖R‖∞,1 ≤ RR∞
}
⊇{

R ∈ R(D+1)×(D+1) : ‖R‖1,1 ≤ RR1 , ‖R‖∞,1 ≤ RR∞, ‖R‖σ ≤ RRσ
}

. Note that we are assured that

ln(|CE |) ≤ 64s ln(3e2V) ln(2DV)RE∞R
E
1 ·

1

ε2E

ln(|CR|) ≤ 128(D + 1) ln(2(D + 1)2)RR∞R
R
1 ·

1

ε2R

Claim 9 shows that the model θ̃θθ := (Ẽ, R̃) is a
(

2
ν

(
2(RRσ+1)

ν · εE + εR

))
-cover for θθθ. Setting εE = ν2ε

8(RRσ+1)

and εR = νε
4 gives us

2

ν

(
2(RRσ + 1)

ν
· εE + εR

)
= ε.

Constructing the overall cover as

ΩΩΩε := CE × CR =
{

(Ẽ, R̃) : Ẽ ∈ CE , R̃ ∈ CR
}

gives us ln(|ΩΩΩε|) ≤ ln(|CE |) + ln(|CR|) which finishes the proof after simplifications.

Claim 9. For an arbitrary model θθθ = (E,R) ∈ ΘΘΘRE1 ,R
E
∞,R

R
1 ,R

R
∞,R

R
σ

, let Ẽ ∈ CE (respectively R̃ ∈ CR) be an

εE-covering element for E (respectively εR-covering element for R). Then we have

sup
x∈X

∥∥Eθθθ(x)− Eθ̃θθ(x)
∥∥

2
≤ 2

ν

(
2(RRσ + 1)

ν
· εE + εR

)
.

Proof. Choose an arbitrary data point x ∈ X and note that∥∥∥f(x; E)− f(x; Ẽ)
∥∥∥

2
=
∥∥∥Nν(ReLU(Ex))−Nν(ReLU(Ẽx))

∥∥∥
2

≤ 2

ν
·
∥∥∥ReLU(Ex)− ReLU(Ẽx)

∥∥∥
2

≤ 2

ν
·
∥∥∥Ex− Ẽx

∥∥∥
2
≤ 2

ν
· εE ,

where the second step follows from Claim 11, the third step follows from Claim 10, and the last step follows
from Claim 13 and using the fact that by construction, Ẽ is an εE-covering element for E and that x ∈ X .
Similarly, we have∥∥∥g(f(x; E); R)− g(f(x; Ẽ); R̃)

∥∥∥
2

=
∥∥∥ReLU(R · f(x; E))− ReLU(R̃ · f(x; Ẽ))

∥∥∥
2

≤
∥∥∥R · f(x; E)− R̃ · f(x; Ẽ)

∥∥∥
2

≤
∥∥∥R · f(x; E)−R · f(x; Ẽ)

∥∥∥
2

+
∥∥∥R · f(x; Ẽ)− R̃ · f(x; Ẽ)

∥∥∥
2

≤ ‖R‖σ ·
∥∥∥f(x; E)− f(x; Ẽ)

∥∥∥
2

+ εR

≤ 2RRσ
ν
· εE + εR,

15

where the second step follows from Claim 10, the fourth step follows from Claim 14 and using the fact that

R̃ is an εR-covering element for R and that
∥∥∥f(x; Ẽ)

∥∥∥
2

= 1 by the definition of the function f . The last

step follows since we proved
∥∥∥f(x; E)− f(x; Ẽ)

∥∥∥
2
≤ 2εE

ν earlier. Finally, we note that

∥∥Eθθθ(x)− Eθ̃θθ(x)
∥∥

2
=
∥∥∥Nν(f(x; E) + g(f(x; E); R))−Nν(f(x; Ẽ) + g(f(x; Ẽ); R̃))

∥∥∥
2

≤ 2

ν
·
∥∥∥f(x; E) + g(f(x; E); R)− f(x; Ẽ)− g(f(x; Ẽ); R̃)

∥∥∥
2

≤ 2

ν

(∥∥∥f(x; E)− f(x; Ẽ)
∥∥∥

2
+
∥∥∥g(f(x; E); R)− g(f(x; Ẽ); R̃)

∥∥∥
2

)
≤ 2

ν

(
2(RRσ + 1)

ν
· εE + εR

)
where in the second step, we use Claim 11 and in the last step we use the above calculations. Since the point
x ∈ X we chose was completely arbitrary, the result holds uniformly over the entire set X . This concludes
the proof.

Claim 10. For any ε > 0, d ∈ N, and any x, c ∈ Rd, we always have ‖ReLU(x)− ReLU(c)‖2 ≤ ‖x− c‖2.

Proof. The proof follows from the fact that max {x, 0} is 1-Lipschitz function which ensures that for all
a, b ∈ R, we have |ReLU(a)− ReLU(b)| ≤ |a− b|. This gives us

‖ReLU(x)− ReLU(c)‖22 =

d∑
j=1

(ReLU(xj)− ReLU(cj))
2 ≤

d∑
j=1

(xj − cj)2 = ‖x− c‖22

Claim 11. For any ε > 0, d ∈ N, and any x, c ∈ Rd, we always have ‖Nν(x)−Nν(c)‖2 ≤
2
ν · ‖x− c‖2.

Proof. We have

‖Nν(x)−Nν(c)‖2 =

∥∥∥∥∥∥ [x, ν]− [c, ν]√
‖x‖22 + ν2

− [c, ν]

 1√
‖c‖22 + ν2

− 1√
‖x‖22 + ν2

∥∥∥∥∥∥
2

≤
‖[x, ν]− [c, ν]‖2√
‖x‖22 + ν2

+ ‖[c, ν]‖2 ·

∣∣∣∣∣∣ 1√
‖c‖22 + ν2

− 1√
‖x‖22 + ν2

∣∣∣∣∣∣
=

‖x− c‖2 +

∣∣∣∣√‖x‖22 + ν2 −
√
‖c‖22 + ν2

∣∣∣∣√
‖x‖22 + ν2

≤
‖x− c‖2 +

∣∣∣∣√‖x‖22 + ν2 −
√
‖c‖22 + ν2

∣∣∣∣
ν

,

where the last step uses the fact that ‖x‖22 ≥ 0. Now, the function
√
t2 + ν2 is 1-Lipschitz for all ν > 0

which gives us ∣∣∣∣√‖x‖22 + ν2 −
√
‖c‖22 + ν2

∣∣∣∣ ≤ |‖x‖2 − ‖c‖2| ,
whereas the reverse triangle inequality gives us |‖x‖2 − ‖c‖2| ≤ ‖x− c‖2 which finishes the proof.

Corollary 12. For any ε > 0, d ∈ N, and any x,y, c,d ∈ Rd, we always have ‖Nν(x + y)−Nν(c + d)‖2 ≤
2
ν (‖x− c‖2 + ‖y − d‖2).

16

Proof. We have, by applied the triangle inequality,

‖Nν(x + y)−Nν(c + d)‖2 ≤ ‖Nν(x + y)−Nν(x + d)‖2 + ‖Nν(x + d)−Nν(c + d)‖2

≤ 2

ν
(‖y − d‖2 + ‖x− c‖2) ,

where in the the last step we applied Claim 11 twice.

Claim 13. For s ∈ N, r ≥ 1, let X =
{
x ∈ RV : ‖x‖0 ≤ s, ‖x‖2 = 1

}
⊂ RV denote the set of s-sparse

unit-norm vectors, and let M :=
{

M ∈ RD×V : ‖M‖1,1 ≤ R1, ‖M‖∞,1 ≤ R∞
}

be a set of matrices. Then

there exists an ε-cover CM ⊂ RD×V of M w.r.t X of size at most

ln(|CM |) ≤ 64s ln(3e2V) ln(2DV)R∞R1 ·
1

ε2

Proof. We will establish this result by applying Lemma 16. To do so we need to establish a cover over X
(note that we have r = supx∈X ‖x‖∞ ≤ 1 since ‖·‖∞ ≤ ‖·‖2. Standard results, for example [4] show that
for any fixed support T ⊂ [V], |T | = s, there exists a 1

2 -cover with at most 6s elements. Taking a union over

all possible supports, of which there are
(
V
s

)
≤
(
eV
s

)s
in number, tells us that there exists an ε-cover CX of

X with at most
(
eV
s

)s
6s elements. We also notice that the set X is indeed “closed” in the sense required

by Lemma 16 since for any x ∈ X , we can always find a covering element c with an identical support. This
means that x − c is s-sparse as well. Since X contains all s-sparse unit-norm vectors, we are assured that

x−c
‖x−c‖2

∈ X . Moreover, we have

Q =

D∑
i=1

V∑
j=1

|mij |x2
j ≤

D∑
i=1

‖Mi,:‖∞ ·
V∑
j=1

x2
j =

D∑
i=1

‖Mi,:‖∞ · ‖x‖
2
2 = ‖M‖∞,1 · ‖x‖

2
2 ≤ R∞

Applying Lemma 16 and simplifying the expression using s ≥ 1 then finishes the proof.

Claim 14. Suppose we let X ⊂ RD+1 denote the set of unit norm vectors i.e. X =
{
x ∈ RD+1 : ‖x‖2 = 1

}
and let M :=

{
M ∈ R(D+1)×(D+1) : ‖M‖1,1 ≤ R1, ‖M‖∞,1 ≤ R∞

}
be a set of matrices. Then there exists

an ε-cover CM ⊂ R(D+1)×(D+1) of M w.r.t X of size at most

ln(|CM |) ≤ 128(D + 1) ln(2(D + 1)2)R∞R1 ·
1

ε2

Proof. We will establish this result by applying Lemma 16. We first notice that we have r = 1 in this setting
since ‖·‖∞ ≤ ‖·‖2 and we have ‖x‖2 ≤ 1. Standard results on covers of the unit sphere using spherical caps,
for instance [3, 10], show that a 1

2 cover CX exists for X with at most (D + 1) · 4D+1 elements (for D ≥ 3).
The set X is also “closed” in the sense required by Lemma 16 since X is the set of unit vectors itself hence
any L2-normalized vector must lie in X . We also have

Q =

D+1∑
i=1

D+1∑
j=1

|mij |x2
j ≤

D+1∑
i=1

‖Mi,:‖∞ · ‖x‖
2
2 = ‖M‖∞,1 ,

where the last step follows since ‖x‖2 = 1. Applying Lemma 16 and simplifying the expression for D > 3
then finishes the proof.

Claim 15. For some L ∈ N, letM :=
{

M ∈ RL×(D+2) : ‖M‖1,1 ≤ R1, ‖M‖1,∞ ≤ R∞
}

be a set of matrices.

Then there exists a set of matrices CM ⊂ RL×(D+2) of size at most

ln(|CM |) ≤ 64 ln(3eL) ln(2(D + 2)L)R∞R1 ·
1

ε2

such that for any M ∈M, there exists a C ∈ CM such that ‖M−C‖2,∞ ≤ ε.

17

Proof. We will establish this result by applying Lemma 16. Let X = {e1, . . . , eL} ⊂ RL denote the set of the
canonical L-dimensional vectors i.e. el = (0, 0, . . . , 0, 1, 0, . . . , 0) with a 1 at the lth position and 0 everywhere
else. We first notice that we have r = supx∈X ‖x‖∞ = 1 since X contains only canonical vectors. Establishing
a cover over X is straightforward since X is finite and admits itself as a trivial 0-cover, giving us a 0-cover of
size |X | = L. We now apply Lemma 16 with the set of transposed matrices i.e. toM> :=

{
M> : M ∈M

}
.

It can be verified that the lemma continues to hold here even without the “closedness” condition since we
are able to provide a 0-cover. For any x = el ∈ X and any M> ∈M>, we have

Q =

D+2∑
i=1

L∑
j=1

|mji|x2
j =

D+2∑
i=1

|mli| = ‖Ml,:‖1 ≤ ‖M‖1,∞

Applying Lemma 16 assures us of a cover C>M ⊂ R(D+2)×L containing only

ln(|CM |) ≤ 64 ln(3eL) ln(2(D + 2)L)R∞R1 ·
1

ε2

such that for every M> ∈ M>, there exists a C> ∈ C>M such that supv∈X
∥∥(M> −C>)v

∥∥
2
≤ ε. However,

since X = {e1, . . . , eL} by construction, this guarantee translates to ‖M−C‖2,∞ ≤ ε as required.

Lemma 16 (Uniform Maurey-type Sparsification). For any constants p, q ∈ N and R > 0, let M ⊆{
M ∈ Rp×q : ‖M‖1,1 ≤ R

}
be a set of L1,1-norm bounded matrices. Let X ⊂ Rq be a set of vectors that

admits a 1
2 -cover CX ⊂ X i.e. for every x ∈ X , there exists some c ∈ CX such that ‖x− c‖2 ≤

1
2 .

To avoid an unnecessary log factor, we will also assume that our set X is “closed” in a way such the
L2-normalized vector x−c

‖x−c‖2
∈ X for all x ∈ X and their corresponding covering element c ∈ C. This

assumption will hold in the application settings of this lemma. Also denote r := supx∈X ‖x‖∞ and Q :=
supx∈X ,M∈M

∑p
i=1

∑q
j=1 |mij |x2

j . Then M admits an ε-cover CM w.r.t X of size at most

ln(|CM |) ≤ 16 ln(3e |CX |) ln(2pq)QR(r + 1)2 · 1

ε2

i.e., for any M ∈M, there exists a C ∈ CM such that supx∈X ‖Mx−Cx‖2 ≤ ε.

Proof. We will first prove the result for matrices with ‖M‖1,1 = R, then show that essentially the same
result holds even for matrices with ‖M‖1,1 ≤ R. Fix a matrix M ∈ M with ‖M‖1,1 = R and consider the
following set of basis matrices

V =
{
h · eie>j , i ∈ [p], j ∈ [q], h ∈ ±1

}
Note that |V| = 2pq and ‖V‖1,1 ≤ 1 for all V ∈ V. Let us set up a distribution over V as (with mij denoting
the i, j-th entry of the matrix M)

P
[
V = sign(mij) · eie>j

]
=
|mij |
R

P
[
V = − sign(mij) · eie>j

]
= 0

We now draw T samples Vt = sign(mij) ·eite>jt ∈ Rp×q, t = 1, . . . , T from this distribution. Consider a fixed

vector x ∈ X and notice that for all t ∈ [T], we have E [Vtx] =
∑
i,j
|mij |
R · sign(mij) · xj · ei = 1

R ·Mx. Let

us use the shorthand ut := Vtx− 1
R ·Mx ∈ Rp and immediately conclude that E [ut] = 0. We also have

E
[
‖ut‖22

]
≤ E

[
‖Vtx‖22

]
= E

[
x2
jt

]
=

p∑
i=1

q∑
j=1

|mij |
R

x2
j =

Q

R
,

as well as that

‖ut‖2 ≤ ‖Vtx‖2 +
1

R
· ‖Mx‖2 ≤ 2r

18

almost surely since ‖Mx‖2 ≤ ‖M‖1,1 · ‖x‖∞ and ‖x‖∞ ≤ r. This gives us, for B =
√

QT
R , H = 2r, the

following result for m = 2, 3, . . .

T∑
t=1

E [‖ut‖m2] ≤
T∑
t=1

E
[
‖ut‖22

]
(2r)m−2 ≤ B2Hm−2 ≤ m!

2
·B2Hm−2

Then Bernstein-style bounds on Hilbert spaces, such as [8, Corollary 1], tell us that

P

[∥∥∥∥∥ 1

T

T∑
t=1

ut

∥∥∥∥∥
2

≥ η

]
≤ 2 · exp

(
− T 2η2

2B2 + 2HηT

)
= 2 · exp

(
− Tη2R

2Q+ 4rRη

)

An alternate way of writing this result is to construct a matrix M̂T := R
T

∑T
t=1 Vt and see that

P
[∥∥∥M̂Tx−Mx

∥∥∥
2
≥ Rη

]
≤ 2 · exp

(
− Tη2R

2Q+ 4rRη

)
(1)

Denote ∆∆∆T := M̂T −M ∈ Rp×q to simplify the notation. We wish to bound supx∈X ‖∆∆∆Tx‖2. Let y be a
vector that achieves this limit i.e. ‖∆∆∆Ty‖2 = supx∈X ‖∆∆∆Tx‖2 and let c ∈ CX be its covering element. Note
that this assures us that ‖y − c‖2 ≤

1
2 since C is a 1

2 -cover for X , and also that y−c
‖y−c‖2

∈ X by the closure

assumption. Then we have, by applying the triangle inequality,

‖∆∆∆T c‖2 ≥ ‖∆∆∆Ty‖2 − ‖∆∆∆T (y − c)‖2

= sup
x∈X

‖∆∆∆Tx‖2 − ‖y − c‖2 ·
∥∥∥∥∆∆∆T ·

y − c

‖y − c‖2

∥∥∥∥
≥ sup

x∈X
‖∆∆∆Tx‖2 −

1

2
· sup
x∈X

‖∆∆∆Tx‖2 .

This tells us that supx∈X ‖∆∆∆Tx‖2 ≤ 2 · supc∈CX ‖∆∆∆T c‖2. Applying the result from equation (1) with a
union bound over all cover elements c ∈ CX grants us the following result

P [∃c ∈ CX : ‖∆∆∆T c‖2 ≥ Rη] ≤ 2 |CX | · exp

(
− Tη2R

2Q+ 4rRη

)
which in turn tells us that

P
[

sup
x∈X

∥∥∥M̂Tx−Mx
∥∥∥

2
≥ 2Rη

]
≤ 2 |CX | · exp

(
− Tη2R

2Q+ 4rRη

)
Now we apply the probabilistic method to argue that so long as the right hand side is less than unity, there

must always exist a matrix M̂T = R
T

∑T
t=1 Vt that satisfies supx∈X

∥∥∥Mx− M̂Tx
∥∥∥

2
≤ 2Rη. Note that∥∥∥M̂T

∥∥∥
1,1
≤ R which implies that M̂T ∈M. Letting the right hand side equal 1

e < 1 and setting η = ε
2R(r+1)

shows us that having T ≥ ln(2e |CX |)
(

8QR(r+1)2

ε2 + 8Rr(r+1)
ε

)
guarantees that

P
[

sup
x∈X

∥∥∥M̂Tx−Mx
∥∥∥

2
≥ ε

r + 1

]
≤ 1

e

To avoid notational clutter, we will use a stricter bound T ≥ ln(2e |CX |)
(

16(r+1)2QR
ε2

)
. We now note that

the preceding argument shows that if T is large enough as established above, then for any M ∈M such that

19

‖M‖1,1 = R, a covering element M̂T can always be constructed of the form R
T

∑T
t=1 Vt where each Vt ∈ V.

This leads us to define the following cover

CRM :=

{
R

T

T∑
t=1

Vt : Vt ∈ V

}

and note that CRM is indeed an ε
r+1 -cover for all matrices whose norm satisfies ‖M‖1,1 = R. We also note

that by construction, we have
∣∣CRM ∣∣ ≤ |V|T = (2pq)

cR
ε2 where c = 16 ln(2e |CX |)Q(r + 1)2.

To cover matrices of smaller norms, we now establish such covers for matrices of various norms. In

particular consider the following set set of positive real numbers R =
{

ε
r+1 ,

2ε
r+1 ,

3ε
r+1 , . . . , R

}
. For each

value g ∈ R, using the same argument as above, we can construct an ε
r+1 -cover CgM for all matrices with

norm ‖M‖1,1 = g. The size of this cover will be at most |CgM | ≤ (2pq)
cg

ε2 , again by the above argument.

Our final ε-cover for M is defined as the union of all these |R| = R(r+1)
ε covers i.e.

CM :=

R(r+1)
ε⋃
t=1

C
tε
r+1

M .

We first show that CM is indeed an ε-cover for M. Given a matrix M ∈M, we first find the number g ∈ R
closest to ‖M‖1,1. Clearly, by the construction of R, we are assured that

∣∣∣g − ‖M‖1,1∣∣∣ ≤ ε
r+1 . Given this,

we first rescale the matrix to get M̃ := g
‖M‖1,1

·M and obtain the covering element, say C ∈ CgM , for this

rescaled matrix. Note that by construction of CgM , we are assured that supx∈X

∥∥∥M̃x−Cx
∥∥∥

2
≤ ε

r+1 . This

allows us to show, for any x ∈ X ,

‖Mx−Cx‖2 ≤
∥∥∥Mx− M̃x

∥∥∥
2

+
∥∥∥M̃x−Cx

∥∥∥
2
≤

∣∣∣∣∣1− g

‖M‖1,1

∣∣∣∣∣ · ‖Mx‖2 +
ε

r + 1

≤

∣∣∣∣∣1− g

‖M‖1,1

∣∣∣∣∣ · ‖M‖1,1 · ‖x‖∞ +
ε

r + 1

≤ rε

r + 1
+ ε = ε,

where in the last step, we used the fact that
∣∣∣g − ‖M‖1,1∣∣∣ ≤ ε

r+1 . This establishes that CM is indeed an

ε-cover for all matrices in M. We now bound the number of elements in CM . We note that

|CM | ≤

R(r+1)
ε∑
t=1

(2pq)
c
ε2

(tε
r+1) ≤ 2 · (2pq)

cR
ε2 ,

where the last step simplifies the bound by using 2pq ≥ 2 as p, q ∈ N. Thus, ln(|CM |) ≤ ln 2 + cR
ε2 ln(2pq) ≤

16 ln(3e |CX |) ln(2pq)QR(r+1)2 · 1
ε2 which completes the proof. As a concluding note, we observe that such an

argument covering matrices of various norms is required in the proof of [1, Lemma 3.2] as well. Fortunately,
although that paper omits it, the above argument seems to be applicable there as well.

H Surrogacy Results

Claim 17. For any γ > 0, we have `precγ,k (s,y) ≥ ℘k(s,y).

20

Proof. Note that rγ(v) ≤ I {v > 0} for all values of γ > 0. Thus, we have

1

k

min{k,|Py|}∑
t=1

rγ

(
sπ+

s (t) − max
l′∈Ny

sl′

)
≤ 1

k

min{k,|Py|}∑
t=1

I
{
sπ+

s (t) > max
l′∈Ny

sl′

}
.

Now, by definition, we have I
{
sπ+

s (t) > maxl′∈Ny sl′
}
≤ I {πs(t) ∈ Py} for all t ≤ |Py| which gives us

1

k

min{k,|Py|}∑
t=1

rγ

(
sπ+

s (t) − max
l′∈Ny

sl′

)
≤ 1

k

min{k,|Py|}∑
t=1

I {πs(t) ∈ Py} ≤
1

k

k∑
t=1

I {πs(t) ∈ Py} ,

where the last step follows since the indicator function takes only non-negative values. Subtracting both
sides from unity gives us the claimed result.

Claim 18. For any c ∈ (0, 1), d ≥ 1, we have 1
ln(4c) ·`

cont
c,d (s,y) ≥ `precγ,k (s,y). In particular, if c ∈ (0.7, 1), d ≥

1, we have ln(4c) > 1 and thus `contc,d (s,y) ≥ `precγ,k (s,y).

Proof. For this proof, we need to introduce an intermediate surrogate loss function that we define below for
any λ+, λ− ∈ R (not necessarily positive),

`hinge
λ+,λ−

(s,y) =
∑
l∈Py

max {λ+ − sl, 0}+
∑
l′∈Ny

max {sl′ − λ−, 0}

Using the statement of Claim 21 with γ = ln(4c)
d and dividing throughout by dγ tells us that we have

1

dγ
· `cont
c,d (s,y) ≥ 1

γ
· `hinge

1,1−γ(s,y)

Using Claim 20 then finishes the proof.

Corollary 19. Since Claim 17 holds for all values of γ > 0, we have 1
ln(4c) · `

cont
c,d (s,y) ≥ ℘k(s,y) for all

values of c ∈ (0, 1), d ≥ 1 and, in particular, `contc,d (s,y) ≥ ℘k(s,y) for values of c ∈ (0.7, 1), d ≥ 1.

For the rest of the discussion, we will assume that k ≤ |Py|. This to avoid a situation where there are
less positive labels than positions at which precision is being measured which put an artificial lower bound
on the prec@k loss function value.

Claim 20. Whenever λ+ > λ− and , we have 1
λ+−λ− · `

hinge
λ+,λ−

(s,y) ≥ `prec(λ+−λ−),k(s,y).

Proof. Let h denote a negative label that achieves the maximum hinge loss among all negative labels i.e.

max
l′∈Ny

{max {sl′ − λ−, 0}} =: max {sh − λ−, 0} .

Now consider a single positive label l ∈ Py and the following cases

1. Case 1: sl − sh > λ+ − λ−. In this case, r(λ+−λ−) (sl − sh) = 1 and we use the fact that the hinge loss
is a non-negative function to get

max {λ+ − sl, 0}+ max {sh − λ−, 0} ≥ 0 = (λ+ − λ−)
(
1− r(λ+−λ−) (sl − sh)

)
2. Case 2: sl − sh ∈ (0, λ+ − λ−). In this case we use the fact that max {x, 0} ≥ x to get

max {λ+ − sl, 0}+ max {sh − λ−, 0} ≥ (λ+ − λ−)− (sl − sh)

= (λ+ − λ−)

(
1− sl − sh

λ+ − λ−

)
= (λ+ − λ−)

(
1− r(λ+−λ−) (sl − sh)

)
21

3. Case 3: sl − sh ≤ 0. In this case r(λ+−λ−) (sl − sh) = 0 and we similarly use max {x, 0} ≥ x to get

max {λ+ − sl, 0}+ max {sh − λ−, 0} ≥ (λ+ − λ−)− (sl − sh)

≥ (λ+ − λ−)

= (λ+ − λ−)
(
1− r(λ+−λ−) (sl − sh)

)
Notice we make two observations

1. Since the hinge loss takes only non-negatively values, we have∑
l′∈Ny

max {sl′ − λ−, 0} ≥ max
l′∈Ny

{max {sl′ − λ−, 0}} = max {sh − λ−, 0} ,

2. Since max {v − λ−, 0} is an increasing function, we have sh = maxl′∈Ny sl′ .

Taking the cases analyzed above along with the above two observations gives us

1

λ+ − λ−

max {λ+ − sl, 0}+
∑
l′∈Ny

max {sl′ − λ−, 0}

 ≥ 1− r(λ+−λ−)

(
sl − max

l′∈Ny

sl′

)
.

Rearranging, summing over the top positives, and dividing by k gives us

1

k

min{k,|Py|}∑
t=1

r(λ+−λ−)

(
sπ+

s (t) − max
l′∈Ny

sl′

)

≥ min {k, |Py|}
k

− 1

λ+ − λ−

1

k

min{k,|Py|}∑
t=1

max
{
λ+ − sπ+

s (t), 0
}

+
min {k, |Py|}

k
·
∑
l′∈Ny

max {sl′ − λ−, 0}


Subtracting both sides from unity gives us, for k ≤ |Py|,

`prec
(λ+−λ−),k(s,y)

≤ 1− min {k, |Py|}
k

+
1

λ+ − λ−

1

k

min{k,|Py|}∑
t=1

max
{
λ+ − sπ+

s (t), 0
}

+
min {k, |Py|}

k
·
∑
l′∈Ny

max {sl′ − λ−, 0}


≤ 1

λ+ − λ−

1

k

min{k,|Py|}∑
t=1

max
{
λ+ − sπ+

s (t), 0
}

+
∑
l′∈Ny

max {sl′ − λ−, 0}


≤ 1

λ+ − λ−

∑
l∈Py

max {λ+ − sl, 0}+
∑
l′∈Ny

max {sl′ − λ−, 0}

 =
1

λ+ − λ−
· `hinge
λ+,λ−

(s,y),

which finishes the proof.

Claim 21. For all c ∈ (0, 1), d ≥ 1, we have `contc,d (s,y) ≥ d · `hinge1,1−γ(s,y), where γ = ln(4c)
d .

Proof. We can safely ignore the ln 1
c terms in expression for `cont

c,d (s,y) since they are always non-negative as
c ∈ (0, 1). Since since d ≥ 1 and scores are contained in the interval [−1, 1], using λ+ = 1 gives us,∑

l∈Py

d · (1− sl) ≥
∑
l∈Py

d ·max {λ+ − sl, 0}

22

Now consider the negative portion of the contrastive loss i.e. f(x) = − ln (1− c · exp(d · (x− 1))). This
function is defined in the interval V := (−∞, 1 + 1

d ln 1
c) and is a strictly convex function on that interval.

Note that 1 + 1
d ln 1

c > 1 for any c ∈ (0, 1), d ≥ 1 and thus V ⊃ [−1, 1] i.e. f(·) is well-defined for all scores in
the interval [−1, 1]. However, the convexity of f(·) tells us that for any x0 ∈ V, we must have for all x ∈ V

f(x) ≥ f(x0) + f ′(x0) · (x− x0)

However, for any c ∈ (0, 1), d ≥ 1, since f(·) takes only non-negative values i.e. f(x) > 0 for all x ∈ V, we
additionally have, for all x ∈ V,

f(x) ≥ max {f(x0) + f ′(x0) · (x− x0), 0}

We choose x0 to be the point where f ′(x0) = d (this point turns out to be unique since f(·) is strictly

convex). Thus we choose x0 = 1 − ln(2c)
d where we have f(x0) = ln(2). Note that for any c ∈ (0, 1), d ≥ 1,

we always have x0 ∈ V i.e. f(·) is well-defined on x0. This gives us

f(x) ≥ max

{
ln(2) + d

(
x−

(
1− ln(2c)

d

))
, 0

}
= d ·max

{
x−

(
1− ln(4c)

d

)
, 0

}
Using a value of λ− = 1− γ for the hinge loss where γ = ln(4c)

d finishes the proof.

References

[1] Peter L Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In NIPS, 2017.

[2] K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The extreme classification
repository: Multi-label datasets & code, 2016.

[3] Károly Böröczky and Gergely Wintsche. Covering the Sphere by Equal Spherical Balls. In Algorithms
and Combinatorics, volume 25, pages 235–251. Springer Berlin Heidelberg, 2003.

[4] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the American
Mathematical Society, 39(01):1–50, October 2001.

[5] H. Jain, Y. Prabhu, and M. Varma. Extreme multi-label loss functions for recommendation, tagging,
ranking and other missing label applications. In KDD, August 2016.

[6] A. Y. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. CoRR, 2016.

[7] Mehryar Mohri and Afshin Rostamizadeh Ameet Talwalkar. Foundations of Machine Learning. MIT
Press Ltd, 2018.

[8] I. F. Pinelis and A. I. Sakhanenko. Remarks on Inequalities for Large Deviation Probabilities. Theory
of Probability & Its Applications, 30(1):143–148, March 1986.

[9] Colin Wei and Tengyu Ma. Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz
Augmentation. In NeurIPS, 2019.

[10] A. D. Wyner. Random Packings and Coverings of the Unit n-Sphere. Bell System Technical Journal,
46(9):2111–2118, November 1967.

[11] Tong Zhang. Statistical Analysis of Some Multi-Category Large Margin Classification Methods. Journal
of Machine Learning Research, 5:1225–1251, October 2004.

23

	Proof of Lemma 1
	Proof of Lemma 2
	Inverse and Lipschitzness Properties of pl
	Time Complexity Calculations
	Proof of Theorem 3 and Additional Discussion
	Notation and Definitions
	Discussion on the Bounds offered by Theorem 3
	Proof for Theorem 3
	A Generalization Bound for Module I
	A Generalization Bound for Module III

	Experiments
	Evaluation metrics
	Hyper-parameters

	Supporting Results
	Surrogacy Results

