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Abstract
Extreme classification seeks to assign each data
point, the most relevant labels from a universe of
a million or more labels. This task is faced with
the dual challenge of high precision and scalabil-
ity, with millisecond level prediction times being
a benchmark. We propose DEFRAG, an adaptive
feature agglomeration technique to accelerate ex-
treme classification algorithms. Despite past works
on feature clustering and selection, DEFRAG dis-
tinguishes itself in being able to scale to millions of
features, and is especially beneficial when feature
sets are sparse, which is typical of recommendation
and multi-label datasets. The method comes with
provable performance guarantees and performs ef-
ficient task-driven agglomeration to reduce feature
dimensionalities by an order of magnitude or more.
Experiments show that DEFRAG can not only re-
duce training and prediction times of several lead-
ing extreme classification algorithms by as much as
40%, but also be used for feature reconstruction to
address the problem of missing features, as well as
offer superior coverage on rare labels.

1 Introduction
The task of taking assigning data points, one or more labels
from a vast universe of millions of labels is often referred to
as the extreme classification problem. Although reminiscent
of the classical multi-label learning problem, the emphasis on
addressing extremely large label spaces distinguishes extreme
classification. Recent advances in extreme classification have
allowed problems such as ranking, recommendation and re-
trieval to be viewed and formulated as multi-label problems,
indeed with millions of labels.

This focus on extremely large label sets has given us state-
of-the-art methods for product recommendation [Jain et al.,
2016], search advertising [Prabhu et al., 2018], and video
recommendation [Weston et al., 2013], as well as led to ad-
vances in our understanding of scalable optimization [Prabhu
et al., 2018], and distributed and parallel processing [Yen et
al., 2017; Babbar and Schölkopf, 2017]. Recent advances
have utilized a variety of techniques – label embeddings, ran-
dom forests, binary relevance, which we review in §3.

Nevertheless, extreme classification algorithms continue to
face several challenges that we enumerate below.

1) Precision: data points often have only 5-6 or fewer la-
bels relevant to them (e.g. very few products, of the possibly
millions on sale on an online marketplace, would interest any
given customer). It is challenging to accurately identify these
5-6 relevant labels among the millions of irrelevant ones.

2) Prediction: given their use in (live) recommendation
systems, extremely rapid predictions are expected, typically
within milliseconds. This often restricts the algorithmic tech-
niques that can be used, to computationally frugal ones.

3) Processing: extreme classification datasets contain not
only millions of labels, but also millions of data points, each
represented as a million-dimensional vector itself. It is chal-
lenging to offer scalable training on such large datasets.

4) Parity: huge label sets often exhibit power-law behav-
ior with most labels being rare i.e. relevant to very few data
points. This makes it tempting for algorithms to focus only
on popular labels, neglecting the vast majority of rare ones.
However, this is detrimental for recommendation outcomes.

In this work, we develop the DEFRAG method and vari-
ants to address these specific challenges for a large family of
algorithms. Our contributions are summarized below.

Our Contributions.
1) We propose the DEFRAG algorithm that accelerates ex-

treme classification algorithms by performing efficient fea-
ture agglomeration on datasets with millions of features and
data points. DEFRAG performs agglomeration by construct-
ing a balanced hierarchy which novel, and offers faster and
better agglomerates than traditional clustering methods.

2) We show that DEFRAG provably preserves the perfor-
mance of a large family of extreme classification algorithms.
This is corroborated experimentally where using DEFRAG
significantly reduces training and prediction times of algo-
rithms but with no significant reduction in precision levels.

3) We exploit DEFRAG’s agglomerates in a novel man-
ner to develop the REFRAG algorithm to address the parity
problem by performing efficient label re-ranking. This vastly
improves the coverage of existing algorithms by accurately
predicting extremely rare labels.

4) We develop the FIAT algorithm to perform scalable
feature imputation which preserves prediction accuracy even
when a large fraction of data features are removed.



5) We perform extensive experimentation on large-scale
datasets to establish that DEFRAG not only offers significant
reductions in training and prediction times, but that it does so
with little or no reduction in precision.

2 Problem Formulation and Notation
The training data will be provided as n labeled data points
(xi,yi), i = 1, . . . , nwhere xi ∈ Rd is the feature vector and
yi ∈ {0, 1}L is the label vector. There may be several (upto
L) labels associated with each data point. Extreme classi-
fication datasets exhibit extreme sparsity in feature and label
vectors. Let d̂ denote the average number of non-zero features
per data point and L̂ denote the average number of active la-
bels per data point. §6 shows that d̂� d and L̂� L. We will
denote the feature matrix using X =

[
x1, . . . ,xn

]
∈ Rd×n

and the label matrix using Y =
[
y1, . . . ,yn

]
∈ {0, 1}L×n.

Notation. Let F = {F1, . . . , FK} denote any K-partition
of the feature set [d] i.e. Fi ∩Fj = ∅ if i 6= j and

⋃K
k=1 Fk =

[d]. Let dk := |Fk| denote the size of the kth cluster. For
any vector z ∈ Rd, let zj denote its jth coordinate. For any
set Fk ∈ F , let zFk := [zj ]

>
j∈Fk ∈ Rdk denote the (shorter)

vector containing only coordinates from the set Fk.
Feature Agglomeration. Feature agglomeration involves
creating clusters of features and then summing up features
within a cluster. If F is a partition of the features [d], then
corresponding to every cluster Fk ∈ F , we create a a single
“super”-feature. Thus, given a vector z ∈ Rd, we can create
an agglomerated vector z̃[F ] ∈ RK (abbreviated to just z̃ for
sake of notational simplicity) with just K features using the
clustering F . The kth dimension of z̃ will be z̃k =

∑
j∈Fk zi

for k = 1, . . . ,K. The DEFRAG algorithm will automati-
cally learn relevant feature clusters F .

3 Related Works
We discuss relevant works in extreme classification and scal-
able clustering and feature agglomeration techniques here.
Binary Relevance. Also known as one-vs-all methods,
these techniques, for example DiSMEC [Babbar and
Schölkopf, 2017], PPDSparse [Yen et al., 2017], and
ProXML [Babbar and Schölkopf, 2019], learn L binary clas-
sifiers: for each label l ∈ [L], a binary classifier is learnt
to distinguish data points that contain label l from those that
do not. Binary relevance methods offer some of the high-
est precision values among extreme classification algorithms
[Prabhu et al., 2018]. However, despite advances in parallel
training and active set methods, they still incur training and
prediction times that are prohibitive for most applications.
Label/Feature Embedding. These techniques project fea-
ture and/or label vectors onto a low dimensional space i.e.
xi 7→ x̂i,yi 7→ ŷi where x̂i, ŷi ∈ Rp, p � min {d, L} us-
ing random or learnt projections. Prediction and training is
performed in the low dimensional space Rp for speed. These
methods SLEEC [Bhatia et al., 2015], AnnexML [Tagami,
2017] and LEML [Yu et al., 2014] offer strong theoretical
guarantees, but are usually forced to choose a moderate value
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Figure 1: An illustration of the feature agglomeration process.

of p to maintain scalability. This often results in low precision
values and causes these methods to struggle on rare labels.

Data Partitioning. These techniques learn a decision tree
over the data points which are hierarchically clustered into
several leaves, with the hope that the similar data points, i.e.
those with similar label vectors, end up in the same leaf. A
simple classifier (usually constant) performs label prediction
at a leaf. These methods PfastreXML [Jain et al., 2016],
FastXML [Prabhu and Varma, 2014] and CRAFTML [Sib-
lini et al., 2018] offer fast prediction times due to prediction
being logarithmic in number of leaves in a balanced tree.

Label Partitioning. These methods instead learn to orga-
nize labels into (overlapping) clusters, using hierarchical par-
titioning techniques. Prediction is done by taking a data point
to one or more of the leaves of the tree and using a simple
method such as 1-vs-all among labels present at that leaf.
These methods PLT [Jasinska et al., 2016], Parabel [Prabhu
et al., 2018], LPSR [Weston et al., 2013] offer fast prediction
times due to the tree structure, as well as high precision by
using a 1-vs-all classifier at the leaves, as Parabel does.

Large Scale (Feature) Clustering. Clustering, as well as
feature clustering and agglomeration, are well-studied topics.
Past works include techniques for scalable balanced k-means
using alternating minimization techniques SCBC [Banerjee
and Ghosh, 2006] and BCLS [Liu et al., 2017], scalable spec-
tral clustering using landmarking LSC [Chen and Cai, 2011],
and scalable information-theoretic clustering ITDC [Dhillon
et al., 2003]. We do compare DEFRAG against all these al-
gorithms. These algorithms were chosen since they were able
to scale to at least the smallest datasets in our experiments.

4 Adaptive Extreme Feature Agglomeration
We now describe the DEFRAG method, discuss its key

advantages and then develop the REFRAG method for rare
label prediction and the FIAT method for feature imputation.
Recall from §2 that given a K-partition F of the features [d],
feature agglomeration takes each clusterFk ∈ F and agglom-
erates all features j ∈ Fk by summing up their feature values.

DEFRAG: aDaptive Extreme FeatuRe AGglomeration.
Given a dataset with d-dimensional features, DEFRAG first
clusters these features into balanced clusters, with each clus-
ter containing, say no more than d0 features. Suppose this
process results in K clusters. DEFRAG then uses feature ag-
glomeration (see §2 and Figure 1) to obtain K-dimensional



Algorithm 1 DEFRAG: Make-Tree

Input: Feature set S ⊆ [d], representative vectors zi ∈ Rp for each
feature i ∈ S, maximum leaf size d0

Output: A tree with each leaf having upto d0 features
1: if |S| ≤ d0 then
2: n← Make-Leaf(S) //No need to split this node
3: else
4: n← Make-Internal-Node()
5: {S+, S−} ← Balanced-Split(S,

{
zi, i ∈ S

}
)

// Balanced spherical k-means or nDCG split
6: n+ ← Make-Tree(S+,

{
zi, i ∈ S+

}
, d0)

7: n− ← Make-Tree(S+,
{
zi, i ∈ S−

}
, d0)

8: n.Left-Child← n+

9: n.Right-Child← n−
10: end if
11: return Root node of this tree n

features for all data points in the dataset which are then used
for training and testing.

DEFRAG first creates a representative vector for each fea-
ture j ∈ [d] and then performs hierarchical clustering on
them (see Algorithm 1) to obtain feature clusters. At each
internal node of the hierarchy, features at that node are split
into two children nodes of equal sizes by solving either a
balanced spherical 2-means problem or else by minimizing
a ranking loss like nDCG [Prabhu and Varma, 2014] which
we call DEFRAG-N (see Appendix A for details). This pro-
cess is continued till we are left with less than d0 features at a
node, in which case the node is made a leaf. We now discuss
two methods to construct these representative vectors.

DEFRAG-X This variant clusters together co-occurrent
features e.g. j, j′ ∈ [d] where data points with a non-zero (or
high) value for feature j also have a non-zero (or high) value
for feature j′. DEFRAG-X represents each feature j ∈ [d] as
an n-dimensional vector pj = [x1

j , . . . ,x
n
j ]> ∈ Rn, essen-

tially as the list of values that feature takes in all data points.

DEFRAG-XY This variant clusters together co-predictive
features e.g. j, j′ ∈ [d] where data points where feature j is
non-zero have similar labels as data points where feature j′
is non-zero. To do so, DEFRAG-XY represents each feature
j ∈ [d] as an L-dimensional vector qj =

∑n
i=1 xi

jy
i ∈ RL,

essentially as a weighted aggregate of the label vectors of data
points where the feature j is non-zero.

Suited for sparse, high-dim. data. DEFRAG is supe-
rior to classical dimensionality reduction techniques like
PCA/random projection for high-dimensional, sparse data.

1) Applying feature agglomeration to a vector simply in-
volves summing up the coordinates of that vector and is much
cheaper than performing PCA or a random projection.

2) PCA/random projection densify vectors and so meth-
ods such as LEML and SLEEC are compelled to use a small
embedding dimension (≈ 500) for sake of scalability which
leads to information loss. Feature agglomeration, however,
does not densify vectors: if a vector x ∈ Rd has only s non-
zero coordinates, then for any feature K-clustering F , the
vector x̃[F ] ∈ RK cannot have more than s non-zero coordi-
nates. This allows DEFRAG to operate with relatively large

values of K (e.g. K = d/8 is default in our experiments as
we set d0 = 8) without worrying about memory or time is-
sues. Thus, DEFRAG can offer mildly agglomerated vectors
which preserve much of the information of the original vec-
tor, yet offer speedups due to the reduced dimensionality.

3) Feature agglomeration has an implicit weight-tying ef-
fect since once we learn a model over the agglomerated fea-
tures, all features belonging to a given cluster Fk ∈ F ef-
fectively receive the same model weight. This reduces the
capacity of the model and can improve generalization error.

Provably bounded distortion, Performance preservation.
We show in §5 that if we obtain a feature clustering F
with small clustering error, then feature agglomeration using
F provably preserves the performance of all linear models.
Specifically, for every model w ∈ Rd over the original vec-
tors, there must exist a model w̃ ∈ RK over the agglom-
erated vectors such that for any vector x ∈ Rd, we have
w>x ≈ w̃>x̃[F ]. This ensures that similar 1-vs-all models
can be learnt over x̃[F ], as well as similar trees and label par-
titions can be built. We note that all algorithms discussed in
§3 ultimately use just linear models as components (e.g. bi-
nary relevance methods learn L linear classifiers, embedding
methods learn linear projections, data and label partitioning
methods learn linear models to split internal nodes).

Task adaptivity. DEFRAG-XY takes into account labels
in its feature representation which makes it task-adaptive as
compared to dimensionality reduction or clustering methods
like k-means, PCA which do not take consider labels. Indeed,
we will see that on many datasets, DEFRAG-XY outperforms
DEFRAG-X which also does not take labels into account.

Novelty, Speed and Scalability. Hierarchical feature ag-
glomeration is novel in the context of extreme classification
although hierarchical data partitioning (Parabel) and hierar-
chical label partitioning (PfastreXML) have been success-
fully attempted before. The representative vectors created
by DEFRAG are themselves sparse and hierarchical feature
agglomeration offers speedy feature clustering. DEFRAG’s
overhead on the training process is thus, very small.

Time Complexity. Let nnz(X) = n · d̂ be the number
of non-zero elements in the feature matrix X . Computing
the feature representations pj , j ∈ [d] takes O (nnz(X))
time. The total time taken to perform balanced spherical 2-
means clustering for all nodes at a certain level in the tree
is O (nnz(X)) as well. Since DEFRAG performs balanced
splits, there can be at most O (log d) levels in the tree, thus
giving us a total time complexity of O (nnz(X) log d).

FIAT: Feature Imputation via AgglomeraTion. Co-
occurence based feature imputation has been popularly used
to overcome the problem of missing features. However, this
becomes prohibitive for extreme classification settings since
the standard co-occurrence matrix C = XX> is too dense
to store and operate. We exploit the feature clusters offered
by DEFRAG to create a scalable co-occurrence based feature
imputation algorithm FIAT. For any feature cluster Fk ∈ F
let XFk ∈ Rd×n denote the matrix with only those rows that
belong to the cluster Fk. Given this, we compute a pseudo
co-occurrence matrix CF =

∑K
k=1XFkX

>
Fk
∈ Rd.



Note that CF has a block-diagonal structure and has only
upto d2

K non-zero entries where K is the number of clusters.
Thus, it is much cheaper to store and operate. Given a fea-
ture vector x ∈ Rd that we suspect has missing features, we
perform feature imputation on it by simply calculating CFx.
REFRAG: REranking via FeatuRe AGglomeration. The
presence of a vast majority of rare labels that occur in very
few data points can cause algorithms to neglect rare labels in
favor of popular ones [Wei and Li, 2018]. To address this, we
propose an efficient reranking solution based on the pseudo
co-occurrence matrixCF described earlier. First compute the
matrix product CFXY > ∈ Rd×L. The lth column of this
matrix l ∈ [L] can be interpreted as giving us a prototype
data point ξl ∈ Rd for the label l.

These prototypes can be used to get the affinity score of a

test data point xt to a label l ∈ [L] as e−
γ
2 ·‖xt−ξl‖22 . Once

a base classification algorithm such as Parabel or DiSMEC
has given scores for the test point xt with respect to various
labels, instead of predicting the labels with the highest scores
right-away, we combine the classifier scores with these affin-
ity scores and then make the predictions. We note that a sim-
ilar approach was proposed by [Jain et al., 2016] who did
achieve enhanced performance on rare labels.

However, whereas their method requires an optimization
problem to be solved to obtain the prototypes, we have a
closed form expression for prototypes in our model given the
efficiently computable pseudo co-occurrence matrix CF .

Due to lack of space, further algorithmic details as well as
proofs of theorems in §5 are presented in the full version of
the paper available at the URL given below.

5 Performance Guarantees
In this section we establish that DEFRAG provably preserves
the performance of extreme classification algorithms. For any
vector v ∈ Rp we will utilize the orthogonal decomposition
v = v‖ + v⊥ where v‖ is the component of v along the all-
ones vector 1p = (1, . . . , 1) ∈ Rp and v⊥ is the component
orthogonal to it i.e. 1>p v⊥ = 0. At the core of our results is
the following lemma. Given a real valued matrix Z ∈ Rd×p

for some p > 0 and a K-partition F of the feature set [d], we
will let Zk ∈ Rdk×p denote the matrix formed out of the rows
of the matrix that correspond to the partition Fk.
Lemma 1. Given any matrix Z ∈ Rd×p and any K-
partition F = {F1, . . . , FK} of [d], suppose there exist vec-
tors µ1, . . . ,µK ∈ Rp such thatZk = 1dk(µk)>+∆k where
1dk := (1, . . . , 1)> ∈ Rdk , then for every w ∈ Rd and every
k ∈ [K], there must exist a real value cw,k ∈ R such that

(wFk − cw,k · 1dk)>ZkZ
>
k (wFk − cw,k · 1dk) ≤

∥∥∆>k w⊥Fk
∥∥2
2
.

Lemma 1 will be used to show below that, if a group of
features is “well-clustered”, then it is possible to tie together
weights corresponding to those features in every linear model.
Theorem 2. Upon executing DEFRAG-X with a feature ma-
trix X = [x1, . . . ,xn] and label matrix Y = [y1, . . . ,yn],
suppose we obtain a feature K-partition F = [F1, . . . , FK ]
with errk denoting the Euclidean clustering error within the

kth cluster, then for any loss function `(·) that is L-Lipschitz
and for every linear model w ∈ Rd, there must exist a model
w̃ ∈ RK such that for all subsets of data points S ⊆ [n],√∑

i∈S
(`(w>xi; yi)− `(w̃>x̃i; yi))

2 ≤ L·
K∑

k=1

∥∥w⊥Fk∥∥2·errk.

To simplify this result, let w0 = maxk∈[K]

∥∥w⊥Fk∥∥22 ≤
maxk∈[K] ‖wFk‖

2
2 (since cluster sizes dk are typically small,

w0 is small too) and use the fact that errk ≥ 0 to get√∑
i∈S

(`(w>xi; yi)− `(w̃>x̃i; yi))
2 ≤ L · w0 ·

K∑
k=1

errk.

A few points are notable about the above results.
Uniform Model Preservation. Theorem 2 guarantees that
if the clustering error is small (and DEFRAG does minimize
clustering error), then for every possible linear model w ∈
Rd over the original features xi, we can learn a model w̃ ∈
Rd over the agglomerated features x̃i such that both models
behave similarly with respect to any Lipschitz loss function.
It is notable that Theorem 2 holds simultaneously for all linear
models w, thus making it algorithm agnostic.
Classifier Preservation. Most leading algorithms (Parabel,
DiSMEC, PfastreXML, PPDSparse, SLEEC) construct clas-
sifiers by learning several linear models using hinge loss or
exponential loss which are Lipschitz. By preserving the per-
formance of all such individual linear models, DEFRAG pre-
serves the overall performance of these algorithms too. Note
that Theorem 2 holds uniformly over all subsets S ⊆ [n] of
data points, which is useful since these algorithms often learn
several linear models on various subsets of the data.
Graceful Adaptivity. Suppose for a model w, the weights
within a cluster Fk are similar i.e. wFk ≈ w · 1dk , w ∈ R.
Then this implies w⊥Fk ≈ 0 and the contribution of this cluster
to the total error will be very small. This indicates that if some
of the original weights are anyway tied together, DEFRAG
automatically offers extremely accurate reconstructions.

In Appendix B.1, we show that DEFRAG-XY preserves
the performance of label clustering methods such as Parabel.

6 Experimental Results
We studied the effects of using DEFRAG variants with sev-
eral extreme classification algorithms, as well as compared
DEFRAG with other clustering algorithms. Our implemen-
tation of DEFRAG is available at the URL given below.
Code Link: https://github.com/purushottamkar/defrag/

Datasets and Implementations. All datasets, train-test
splits, and implementations of extreme classification algo-
rithms were sourced from the Extreme Classification Repos-
itory [Bhatia et al., 2019] (see Table 4 in the appendix). Im-
plementations of clustering algorithms were sourced from the
authors whenever possible. For SCBC, LSC and ITDC, pub-
lic implementations were not available and scalable imple-
mentations were created in the Python language.

https://github.com/purushottamkar/defrag/


Method LMI Bal. Ent. Time P1(%) P3(%) P5(%)
(min)

EURLex-4K
ITDC 0.47 Inf 0.87 0.7 73.85 59.63 49.19
SCBC 0.39 321 0.75 0.55 71.96 59.50 49.41
LSC 0.60 130 0.93 5.7 71.44 58.68 48.71
BCLS 0.50 Inf 0.91 2.5 74.14 60.96 50.53
DEFRAG-X 0.37 1.11 0.99 0.03 78.97 65.68 54.46

Wiki10-31K
ITDC 0.52 Inf 0.88 23 82.03 69.72 60.07
DEFRAG-G 0.46 1.08 0.99 0.48∗ 82.72 69.62 60.23
DEFRAG-X 0.36 1.08 0.99 0.45 84.99 73.47 63.91

Table 1: A comparison of DEFRAG with other clustering algo-
rithms on clustering quality (see Appendix C for definitions of clus-
tering metrics), as measured by loss of mutual information (LMI),
balance factor, normalized entropy, clustering time, and classifica-
tion performance when the Parabel algorithm was executed upon
agglomerated features given by the clustering algorithms. BCLS,
LSC and SCBC could not scale to Wiki10. A balance factor of Inf
indicates the presence of an empty cluster. DEFRAG not only out-
performs other clustering algorithms in terms of clustering quality
and classification accuracy, but offers clustering times that can be an
order of magnitude smaller. DEFRAG-G denotes the DEFRAG-X
algorithm executed on word features learnt by the GloVe algorithm
[Pennington et al., 2014]. DEFRAG could not be outperformed by
carefully crafted word vector representations like GloVe either.
∗The clustering time for DEFRAG-G does not include time taken to
extract (dense) GloVe word features from raw text.

Hyperparameters. If available, hyperparameter settings
recommended by authors were used for all methods. If un-
available, a fine grid search was performed over a reasonable
range to offer adequately tuned hyperparameters to the meth-
ods. DEFRAG had its only hyperparameter, the max size of
a feature cluster d0 (see Algorithm 1), fixed to 8.

Comparison with other clustering methods. Table 1
compares DEFRAG with other clustering algorithms on clus-
tering quality, execution time and classification performance
(see Appendix C for definitions of clustering metrics). Fea-
tures were agglomerated according to feature clusters given
by all algorithms and Parabel was executed on them. DE-
FRAG handily outperforms all other methods.

Dataset-wise and Method-wise performance Table 3
presents the outcome of using DEFRAG with several lead-
ing algorithms on 8 datasets. On Wiki10 and Delicious,
DEFRAG-XY+Parabel offers the best overall performance
across all methods. More generally, the table shows 21 in-
stances, across the 8 datasets, of how DEFRAG performs
with various algorithms. In 3 of these instances, DEFRAG
outperforms the base method (EURLex-PPDSparse, Wiki10-
Parabel and Delicious-Parabel), in 7 others, DEFRAG lags
by less than 2.5%, in 8 others, it lags by less than 5%. Only
in 3 cases is the lag > 5%. DEFRAG variants do seem to
work best with the Parabel method.

Trade-offs offered by DEFRAG. It is easy to see that if
we create a small number of clusters K, by setting d0 to be
a large value, then the agglomerated vectors will be lower
dimensional and as such, offer faster training/prediction and
smaller model sizes. However this may cause a dip in predic-
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Figure 2: Trade-offs offered by DEFRAG variants. The maximum
size of clusters in DEFRAG variants d0 was changed among the val-
ues 32, 16, 8 (default), and 4. The plots show how this affects pre-
diction accuracy, training/test time and model sizes. The black line
shows Parabel’s default performance with the black triangle marking
its model size, test time etc. Aggressive clustering (e.g. d0 = 32)
gives faster training/prediction times and smaller model sizes but
also some drop in accuracy. DEFRAG-X3 and DEFRAG-XY3 re-
fer to an ensemble of 3 independent realizations of DEFRAG (see
Appendix A.3). Appendix C.2 presents several more trade-off plots.

Method P1 P3 P5 N1 N3 N5

Wiki-10K

PfastReXML‖ 19.02 18.34 18.43 19.02 18.49 18.52
REFRAG 20.56 19.51 19.26 20.56 19.74 19.54

Delicious-200K

PfastReXML‖ 3.15 3.87 4.43 3.15 3.68 4.06
REFRAG 7.34 8.05 8.66 7.34 7.86 8.27

Table 2: REFRAG with propensity scored metrics. N1,3,5 refer to
propensity weighted nDGG@k. ‖Values from [Bhatia et al., 2019].

tion accuracy. Figure 2 shows that DEFRAG variants offer
attractive trade-offs in this respect.
Rare-label prediction with REFRAG. Table 2 shows that
REFRAG offers much better propensity-weighted metrics
[Jain et al., 2016] (which down-weigh popular and empha-
size rare labels) than PfastreXML which also attempts label
reranking. Figure 3 shows that REFRAG achieves much bet-
ter coverage (3.85) than Parabel (1.23) on Delicious and in
general, predicts rare labels far more accurately. Figure 3
also shows that FIAT offers resilience to feature erasures.
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Figure 3: REFRAG offers far superior coverage of rare labels than Parabel on Wiki10 and Delicious datasets. Please see Figure 4 and caption
thereof in Appendix C.2 for definitions of coverage and other details. In the last two plots, a fraction of features was randomly erased from
the feature vectors of all test data points. The FIAT algorithm is more robust to such erasures than the default Parabel algorithm. The gap
between FIAT and Parabel widens as erasures become more common. Please see Figure 5 in Appendix C.2 for more details and plots.

Total Train Test Model
Method P1(%) P3(%) P5(%) Time Time Time Size

(hr) (hr) (ms) (GB)

EURLex-4K
PfastReXML 70.41 59.22 50.56 0.07 0.07 1.26 0.26
DEFRAG-X 68.50 56.57 47.78 0.05 0.05 1.55 0.19

SLEEC 72.96 56.03 45.49 0.06 0.06 1.62 0.70
DEFRAG-X 67.89 51.55 42.04 0.03 0.03 1.05 0.31

Dismec 82.85 70.37 58.69 0.04 0.04 1.1 0.08
DEFRAG-X 79.12 66.39 54.97 0.02 0.02 0.5 0.02

PPDSparse 72.90 57.1 45.8 0.010 0.010 0.03 0.01
DEFRAG-X 71.40 57.9 47.4 0.006 0.006 0.05 0.01

Parabel 82.28 68.81 57.58 0.010 0.010 0.73 0.03
DEFRAG-X 78.97 65.68 54.46 0.009 0.008 0.59 0.01

DEFRAG-XY 79.23 65.77 54.65 0.009 0.008 0.59 0.01

ProXML‡ 83.40 70.90 59.10 - - - -

Wiki10-31K
PfastReXML 75.67 64.55 57.35 0.27 0.27 11.94 1.12
DEFRAG-X 69.79 58.54 52.52 0.14 0.13 11.74 0.80

SLEEC 84.28 72.05 61.80 0.38 0.38 6.00 3.9
DEFRAG-X 83.87 70.35 59.76 0.17 0.17 3.50 2.0

Dismec 84.12 74.71 65.94 1.48 1.48 42 7.1
DEFRAG-X 82.30 72.14 63.78 0.66 0.65 15 1.5

PPDSparse 74.68 60.03 49.12 0.59 0.59 2.2 0.04
DEFRAG-X 63.55 50.42 41.20 0.50 0.50 3.7 0.03

Parabel 84.19 72.46 63.37 0.13 0.13 2.04 0.18
DEFRAG-X 84.99 73.47 63.91 0.10 0.09 1.46 0.14

DEFRAG-XY 85.08 73.76 64.06 0.11 0.09 1.47 0.14

Amazon-670K
PfastReXML 36.90 34.22 32.10 5.70 5.70 6.10 10.98
DEFRAG-X 32.67 30.27 28.40 2.70 2.69 7.21 9.40

SLEEC 32.48 28.87 26.31 2.22 2.22 1.43 8.0
DEFRAG-X 31.40 28.04 25.69 1.63 1.63 1.62 4.2

Parabel 44.92 39.77 35.98 0.24 0.24 0.81 1.94
DEFRAG-X 42.71 37.71 33.93 0.23 0.21 0.76 1.68

DEFRAG-XY 42.62 37.72 33.94 0.23 0.21 0.77 1.66

DiSMEC § 44.70 39.70 36.10 - - - -
ProXML‡ 43.50 38.70 35.30 - - - -

Total Train Test Model
Method P1(%) P3(%) P5(%) Time Time Time Size

(hr) (hr) (ms) (GB)

AmazonCat-13K
PfastReXML 85.56 75.19 62.84 11.66 11.66 0.54 19.02
DEFRAG-X 84.71 73.48 61.19 7.01 7.00 0.53 16.17

Dismec† 93.80 79.07 64.05 6.68 6.68 1.45 6.0
DEFRAG-X 89.39 74.90 60.67 4.19 4.18 0.89 1.1

Parabel 93.06 79.15 64.51 0.43 0.43 0.62 0.61
DEFRAG-X 91.70 77.25 62.79 0.44 0.40 0.57 0.39

DEFRAG-XY 92.36 78.20 63.55 0.43 0.40 0.58 0.38

Delicious-200K
Parabel 46.86 40.08 36.70 5.33 5.33 2.22 6.36

DEFRAG-X 47.23 40.53 37.19 3.23 3.16 1.05 4.83
DEFRAG-XY 47.61 40.90 37.66 3.34 3.12 1.06 4.76

PfastReXML‖ 41.72 37.83 35.58 - - - -
DiSMEC § 45.50 38.70 35.50 - - - -

WikiLSHTC-325K
PfastReXML 58.47 37.70 27.57 11.23 11.23 2.66 14.20
DEFRAG-X 50.86 32.08 23.40 6.03 6.03 2.14 12.82

Parabel 65.04 43.24 32.05 0.58 0.58 0.91 3.09
DEFRAG-X 59.49 39.25 29.20 0.56 0.50 0.79 2.50

DEFRAG-XY 61.38 40.42 29.99 0.54 0.50 0.78 2.44

PPDSparse‖ 64.08 41.26 30.12 - - - -
DiSMEC § 64.40 42.50 31.50 - - - -
ProXML‡ 63.60 41.50 30.80 - - - -

Wikipedia-500K∗

Parabel 68.70 49.57 38.64 5.13 5.13 3.11 5.68
DEFRAG-X 65.15 44.96 34.85 3.27 3.14 1.62 5.25

DEFRAG-XY 64.73 44.79 34.76 3.31 3.20 1.62 5.22

DiSMEC § 70.20 50.60 39.70 - - - -
ProXML‡ 69.00 49.10 38.80 - - - -

Amazon-3M∗

Parabel 47.42 44.66 42.55 3.14 3.14 0.73 31.43
DEFRAG-X 45.68 42.85 40.76 2.93 2.83 0.66 25.34

DEFRAG-XY 45.11 42.36 40.30 2.87 2.80 0.63 25.22

PfastReXML‖ 43.83 41.81 40.09 - - - -

Table 3: DEFRAG’s performance when used with various extreme classification algorithms. “Total time” for DEFRAG includes cluster-
ing=train time. On EURLex, Wiki10 and Delicious, DEFRAG actually achieves better classification accuracy than the base classifier itself
(bold items). DEFRAG allows expensive 1-vs-all methods like DiSMEC and PPDSparse to be executed in a scalable manner with training
time reductions of upto 40% on AmazonCat and model size reductions of upto 20% on WikiLSHTC. Precision values on certain datasets are
being reported for sake of easy comparison. These were not obtained in our experiments and are being sourced from original publications:
§[Babbar and Schölkopf, 2017], ‡[Babbar and Schölkopf, 2019], ‖[Bhatia et al., 2019].
∗ For all but Wiki-500K and Amazon-3M, DEFRAG was executed in an ensemble of 3 independent realizations (see Appendix A.3).
† Except for DiSMEC on AmazonCat (which required 12 cores to execute scalably), all times are reported on a single core.
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Algorithm 2 Balanced Spherical k-means

Input: Feature set S ⊆ [d], representative vectors for each feature
zi ∈ Rp, i ∈ S

Output: A balanced split of the feature set S
1: Initialize centroids c+, c− to two randomly selected representa-

tive vectors
2: while not converged do
3: Calculate scores si = (c+ − c−)>zi for each i ∈ S
4: S1 ← the d|S| /2e features with highest scores
5: S2 ← the b|S| /2c features with lowest scores
6: Recompute centroids c± = 1

|S±|
∑

i∈S± zi

7: end while
8: return {S+, S−}

Algorithm 3 Balanced nDCG Split

Input: Feature set S ⊆ [d], representative vectors for each feature
zi ∈ Rp

+, i ∈ S
Output: A balanced split of the feature set S
1: Select two vectors z+, z− randomly from representative vectors
2: Initialize centroids as r± ← rank(z±)
3: while not converged do
4: Calculate si = nDCG(r+, zi)− nDCG(r−, zi) for i ∈ S
5: S1 ← the d|S| /2e features with highest scores
6: S2 ← the b|S| /2c features with lowest scores

7: Recompute centroids r± = rank
(∑

i∈S± I(zi) · zi
)

8: end while
9: return {S+, S−}

A Algorithmic Details from §4
In this section we present details of implementations of algorithms that were omitted from the main text due to lack of space.
We start off with implementation details of the DEFRAG-X and DEFRAG-XY methods.

A.1 DEFRAG Implementation Details
As mentioned in the main text, DEFRAG chooses to represent each feature j ∈ [d] as a vector, either as an n-dimensional
vector pj = [x1

j , . . . ,x
n
j ]> ∈ Rn of the values that feature takes on in the n data points (used by DEFRAG-X), or as an

L-dimensional vector qj =
∑n

i=1 xi
jy

i ∈ RL, essentially as a weighted aggregate of the label vectors of data points where the
feature j is non-zero.

Irrespective of the representation used, DEFRAG next performs hierarchical clustering on the representative vectors as
described in Algorithm 1. Starting with the root node which contains all features, nodes are split evenly till the number of
features falls below a set threshold at which point the node is made a leaf. For our experiments in Figure 2, we varied this
threshold among the values 4, 8, 16, 32, thus obtaining respectively d/4, d/8, d/16, d/32 clusters, but for all other experiments
in Figure 3 and Tables 1 and 3, we fixed this threshold to 8, thus obtaining d/8 clusters.

The clustering was done using one of two methods - balanced spherical k-means, or balanced nDCG splitting. The details of
these implementations are given below. Given the extreme sparsity of both the data and label vectors, the feature representations
we obtain via DEFRAG-X and DEFRAG-XY, i.e. pj ,qj are themselves very sparse and so case Euclidean notions of proximity
such as dot products and norms may not be appropriate for clustering. Thus, we also develop a version which we call DEFRAG-
N which minimizes an nDCG ranking loss at each node [Prabhu and Varma, 2014]. We found that balancing did not affect
the performance of DEFRAG-N too much. This may be due to the fact that the minimizing the nDCG loss naturally produces
rather balanced clusters, something that has been independently observed by [Jain et al., 2016; Prabhu and Varma, 2014].

Balanced Spherical k-means. Algorithm 2 presents the node splitting routine using the balanced k-means algorithm. The
algorithm essentially follows the traditional Lloyd’s algortihm except at the cluster assignment stage when, instead of just
assigning each point to the nearest cluster, the algorithm performs a fair split.

This algorithm can be derived as a special case (for k = 2) of the refinement step in the constrained clustering routine
proposed in [Banerjee and Ghosh, 2006]. It is notable that [Prabhu et al., 2018] derive essentially the same algorithm for
splitting labels into balanced cluster, but they derive their approach starting from a different graph flow-based approach to
constrained clustering.

nDCG Splitting. Given that the vector representations of the features we use are sparse vectors, we employed a ranking-based
splitting technique as well. The technique was adapted from the the work of [Prabhu and Varma, 2014] and is described here
(their work applies the technique to cluster binary vectors whereas we apply it to cluster feature representative vectors which
need not be binary). Note that the technique requires that the vector representations contain only non-negative values. This is
indeed true in all our experiments since the features in our datasets are created out of bag-of-words representations which are
indeed non-negative.

For any vector v ∈ Rp
+ with positive coordinates i.e. vi ≥ 0, i ∈ [p], we let rank(v) ∈ Sp denote the permutation ranking

the p coordinates of v in decreasing order i.e. if r := rank(v) then vri ≥ vrj if i > j. For any positive vector v ∈ Rp
+ and any

permutation r ∈ Sp is any permutation (not necessarily the one that ranks the coordinates of v), then we define the Discounted
Cumulative Gain (DCG) score of the permuatation r with respect to the vector v as

DCG(r,v) :=

p∑
j=1

vrj

log(1 + j)



We also define the maximum such score any ranking can achieve as the following

I(v) :=

(
max
r∈Sp

DCG(r,v)

)−1
= (DCG(rank(v),v))

−1

Given the above the normalized DCG score of any permutation r ∈ Sp with respect to the vector v as

nDCG(r,v) := I(v) · DCG(r,v)

Now, given a set of vectors v1, . . . ,vm ∈ Rp, a single “centroid” ranking that fits all of them the best can be found as
maxr∈Sp

∑m
i=1 nDCG(r,v) where

m∑
i=1

nDCG(r,vi) =

m∑
i=1

I(vi)

p∑
j=1

vi
rj

log(1 + j)
=

p∑
j=1

1

log(1 + j)

m∑
i=1

I(vi) · vi
rj

This implies that the best ranking is given by arg maxr∈Sp
∑m

i=1 nDCG(r,v) = rank
(∑m

i=1 I(vi) · vi
rj

)
. Algorithm 3

presents the DEFRAG-N clustering technique that uses the above rule to recompute cluster centroids.

A.2 Accelerated Clustering
Given the large size of the datasets used in our experiments, it was important to ensure that the feature clustering time of
DEFRAG did not exceed the savings in training time it offered for various methods, so as to ensure that the total training
time of DEFRAG (clustering + agglomeration + training) still remained smaller than that of the various extreme classification
algorithms.

To do so we notice that, given the heavy tailed phenomenon exhibited by most large-scale datasets, clustering time can be
reduced significantly by subsampling data points and labels. More specifically, we notice that in the execution of DEFRAG-X,
performance is not affected even if we represent each feature using only its values in ñ most voluminous data points where
the “volume” of a data point i ∈ [n] is calculated as

∥∥xi
∥∥
1
. Similarly, we noticed that the execution of DEFRAG-XY is

not affected, i.e. clusters are not affected, even if we take into account only the L̃ most popular labels. Such an effect (of
performance not being affected by taking only “head” objects) has been observed before [Wei and Li, 2018] as well.

Although the above steps do not greatly affect the clustering performance, they do drastically reduce the clustering time
of the DEFRAG variants. Thus, all our DEFRAG-X experiments are executed taking only the ñ = 0.25n most voluminous
documents. Thus, each feature is represented only as an ñ-dimensional vector. Similarly, all our DEFRAG-XY experiments are
executed taking only the ñ = 0.25n most voluminous documents and the L̃ = 0.05L most popular labels. Thus, each feature
is represented only as an L̃-dimensional vector.

A.3 Ensemble Training
Several extreme classification methods, such as Parabel, SLEEC, PfastreXML construct ensemble classifiers by executing the
algorithm independently a few times to obtain different classifiers and then using consensus voting techniques to aggregate the
predictions of these different classifiers. Unless otherwise mentioned, we always executed DEFRAG variants afresh for each
member of the ensemble as well.

For example, the Parabel algorithm trains and ensemle of 3 tree-based classifiers, each of which is independently capable of
making classifications. We ran DEFRAG independently 3 times as well, once for each execution of Parabel. Since DEFRAG
uses random initializations in its clustering routines, we found that the cluster partitions were not identical across the three
executions. We did find this step to boost accuracy, presumably since it allowed different sets of features to be clustered
together in different executions.

A.4 Cluster Averaging
We note that although DEFRAG simply sums up the feature values within a feature cluster, an alternative technique could be to
average the feature values within the cluster. Although not a significant step in general, averaging does affect the performance
of classifiers like DiSMEC or PPDSparse which practice model trimming i.e. setting model coordinates which have a value
below a certain threshold, to zero in order to save model space. For such classifiers, simple agglomeration may produce features
with inflated feature values which result in small model values which in turn get trimmed to zero. Cluster averaging may help
in these settings.

For instance, on the EURLex dataset with DiSMEC, DEFRAG with cluster averaging can yield more than 1.3% boost in P1
accuracies. However, we note that this effect is not uniform and that on some datasets, averaging can actually hurt performance.
For instance, on the Wiki10 dataset with DiSMEC, DEFRAG with cluster averaging actually causes minor dips of upto 0.4%
in P1.



A.5 REFRAG Implementation Details
As mentioned in the main text, for a given test point xi ∈ Rd, the pseudo co-occurrence model CF was used to obtain a score

al = e−
γ
2 ·‖xt−ξl‖22 indicating the affinity of the test point xt to the label l. The base algorithm, say Parabel or PPDSparse, was

used to obtain a separate score, say bl indicating what did that algorithm think regarding the suitability of label l for the data
point xt. These two scores were combined in the following manner.

cl = α log bl + (1− α) log al,

and the labels with the highest score, as assigned by cl were assigned to the data point xt. As Figure 3 indicates, this does not
appreciably reduce the precision on popular labels as they keep getting predict as before. However, this does greatly increase
the algorithm’s ability to predict rare labels. We set α = 0.8 for all experiments.

B Proofs from §5
We now provide complete proofs for the results mentioned in the main paper starting with the base lemma and the analysis for
DEFRAG-X followed by the analysis for DEFRAG-XY.
Lemma 1. Given any matrix Z ∈ Rd×p and any K-partition F = {F1, . . . , FK} of [d], suppose there exist vectors
µ1, . . . ,µK ∈ Rp such that Zk = 1dk(µk)> + ∆k where 1dk := (1, . . . , 1)> ∈ Rdk , then for every w ∈ Rd and every
k ∈ [K], there must exist a real value cw,k ∈ R such that

(wFk − cw,k · 1dk)>ZkZ
>
k (wFk − cw,k · 1dk) ≤

∥∥∆>k w⊥Fk
∥∥2
2
.

Proof. Consider a fixed k and for sake of notational simplicity, let us abbreviate u := wFk , V := Zk, c := cw,k and 1 := 1dk .
We will show that if V = 1(µk)> + ∆k as promised, then there must exist a c ∈ R such that (u− c · 1)>V V >(u− c · 1) ≤∥∥∆>k u⊥

∥∥2
2
. To establish this result, first notice that the objective function f(c) = (u− c · 1)>V V >(u− c · 1) is minimized at

a value of cmin = u>V V >1
1>V V >1

. At this value, we have

f(cmin) = (u>V V >u)− (u>V V >1)2

(1>V V >1)
=

(u>V V >u) · (1>V V >1)− (u>V V >1)2

(1>V V >1)

Concentrating just on the numerator, upon using the orthogonal decomposition u = u‖ + u⊥ where 1>u⊥ = 0 and letting
u‖ := p · 1 for some p ∈ R, we get

u>V V >u = p2 · 1>V V >1 + 2p · 1>V V >u⊥ + (u⊥)>V V >u⊥

u>V V >1 = p · 1>V V >1 + 1>V V >u⊥,

which, upon inserting in the numerator expression, give us

p2 · (1>V V >1)2 + 2p · (1>V V >u⊥)(1>V V >1) + ((u⊥)>V V >u⊥)(1>V V >1)

− p2 · (1>V V >1)2 − 2p · (1>V V >u⊥)(1>V V >1)− (1>V V >u⊥)2

= ((u⊥)>V V >u⊥)(1>V V >1)− (1>V V >u⊥)2.

Thus, we have

f(cmin) =
((u⊥)>V V >u⊥)(1>V V >1)− (1>V V >u⊥)2

(1>V V >1)
= (u⊥)>V V >u⊥ − (1>V V >u⊥)2

(1>V V >1)

Note that the second term in the above expression is always non-negative, albeit not one that is easy to lower-bound. Thus, we
simply bound the function value as

f(cmin) ≤ (u⊥)>V V >u⊥ =
∥∥V >u⊥

∥∥2
2

Now, the preconditions of the lemma guarantee us that V = 1(µk)> + ∆k and thus, we have

V >u⊥ = µk1>u⊥ + ∆>k u⊥ = ∆>k u⊥,

where in the last step we have used the fact that 1>u⊥ = 0 by construction. This finishes the proof.

Theorem 2. Upon executing DEFRAG-X with a feature matrixX = [x1, . . . ,xn] and label matrix Y = [y1, . . . ,yn], suppose
we obtain a feature K-partition F = [F1, . . . , FK ] with errk denoting the Euclidean clustering error within the kth cluster,
then for any loss function `(·) that is L-Lipschitz, for every linear model w ∈ Rd, there must exist a model w̃ ∈ RK such that
for all subsets of data points S ⊆ [n],√∑

i∈S
(`(w>xi; yi)− `(w̃>x̃i; yi))

2 ≤ L ·
K∑

k=1

∥∥w⊥Fk∥∥2 · errk.



Proof. We will describe how to obtain the identity of w̃ in a short while. For now, notice that since all terms in the summation
on the left hand side are non-negative, we have for any S ⊆ [n]∑

i∈S

(
`(w>xi; yi)− `(w̃>x̃i; yi)

)2 ≤ n∑
i=1

(
`(w>xi; yi)− `(w̃>x̃i; yi)

)2
Using the Lipschitz property of the loss function and using the partition structure gives us

n∑
i=1

(
`(w>xi; yi)− `(w̃>x̃i; yi)

)2 ≤ L2 ·
n∑

i=1

(
w>xi − w̃>x̃i

)2
= L2 ·

n∑
i=1

(
K∑

k=1

(wFk − w̃k1dk)>xi
Fk

)2

Expanding the right hand side (and ignoring the L2 term for now) gives us

n∑
i=1

 K∑
k=1

(
(wFk − w̃k1dk)>xi

Fk

)2
+
∑
k 6=l

(
(wFk − w̃k1dk)>xi

Fk

) (
(wFl − w̃l1dl)

>xi
Fl

)
=

K∑
k=1

n∑
i=1

(
(wFk − w̃k1dk)>xi

Fk

)2
+
∑
k 6=l

n∑
i=1

(
(wFk − w̃k1dk)>xi

Fk

) (
(wFl − w̃l1dl)

>xi
Fl

)
=

K∑
k=1

(wFk − w̃k1dk)>

[
n∑

i=1

xi
Fk

(xi
Fk

)>

]
(wFk − w̃k1dk) +

∑
k 6=l

(wFk − w̃k1dk)>

[
n∑

i=1

xi
Fk

(xi
Fl

)>

]
(wFl − w̃l1dl)

Now, DEFRAG-X represents each feature j ∈ [d] as an n dimensional vector, pj = [x1
j , . . . ,x

n
j ]> ∈ Rn and then performs

clustering on these vectors to obtain a K-partition of the feature set [d], say F = {F1, . . . , Fk}. Say the centroids of these K
clusters are µ1, . . . ,µK ∈ Rn. Consider one of these clusters, say the kth cluster Fk with, say dk features in that cluster. If we
denote Pk = [pj ]>j∈Fk ∈ Rdk×n, then the following observations are immediate

1. For any v ∈ Rdk , we have v>Pk = v>
∑n

i=1 xi
Fk

2. The Euclidean clustering error within the kth cluster is given by

err2k :=
∑
j∈Fk

∥∥pj − µk
∥∥2
2

=
∥∥P − 1dk(µk)>

∥∥2
F

3. If we denote Pk = 1dk(µk)> + ∆k, then we must have ‖∆k‖F =
∥∥Pk − 1dk(µk)>

∥∥
F

= errk
4. Lemma 1, when applied with p = n show us that with the above notation, we have, for some real value cw,k∥∥P>k (wFk − cw,k · 1dk)

∥∥ ≤ ∥∥∆>k w⊥Fk
∥∥
2
≤
∥∥∆>k

∥∥
2

∥∥w⊥Fk∥∥2 = ‖∆k‖2
∥∥w⊥Fk∥∥2 ≤ ‖∆k‖F

∥∥w⊥Fk∥∥2 = errk ·
∥∥w⊥Fk∥∥2 ,

where ‖∆k‖2 denotes the spectral norm (i.e. the largest singular value) of the matrix ∆k and ‖∆k‖F denotes the Frobenius
norm of the same matrix.
Note that although the inequality ‖∆k‖2 ≤ ‖∆k‖F may seem loose at first sight, notice that since rank(∆k) ≤ dk, we
also have ‖∆k‖F ≤

√
dk · ‖∆k‖2 and since dk is typically a small number, this shows that this inequality is not too loose.

The above observations allow us to construct w̃. All we need to do is, for every cluster k ∈ [K], consult Theorem 2 to
obtain a constant cw,k that offers the guarantees of the theorem. We then simply concatenate these constants to construct
w̃ = [cw,k]k∈[K] ∈ RK . Using the first point in the list of observations, we can now also rewrite the last expression in our
ongoing calculations as

K∑
k=1

(wFk − w̃k1dk)>PkP
>
k (wFk − w̃k1dk) +

∑
k 6=l

(wFk − w̃k1dk)>PkP
>
l (wFl − w̃l1dl)

Applying the Cauchy-Schwartz inequality and the rest of the observations allows us to upper-bound the above expression as
K∑

k=1

∥∥P>k (wFk − w̃k1dk)
∥∥2
2

+
∑
k 6=l

∥∥P>k (wFk − w̃k1dk)
∥∥
2

∥∥P>l (wFl − w̃l1dl)
∥∥
2

≤
K∑

k=1

err2k ·
∥∥w⊥Fk∥∥22 +

∑
k 6=l

errk ·
∥∥w⊥Fk∥∥2 · errl ·

∥∥w⊥Fl∥∥2 =

(
K∑

k=1

errk ·
∥∥w⊥Fk∥∥2

)2

This finishes the proof upon putting back the L2 factor we had omitted earlier and taking square roots on both sides.



B.1 Performance Guarantees for DEFRAG-XY
We now prove a similar result for DEFRAG-XY, specifically that DEFRAG-XY accurately preserves the performance of
label clustering methods such as Parabel. Since Parabel performs “spherical k-means” which relies on scores of the form
(c+ − c−)>zl to decide cluster assignments, the result below assures that these scores remain preserved on the agglomerated
data as well. We stress that the above result can be readily adapted to usual k-means which relies on scores of the form∥∥c+ − zl

∥∥2
2
−
∥∥c− − zl

∥∥2
2
.

Theorem 3. Upon executing DEFRAG-XY with feature matrixX and label matrix Y , suppose we obtain a featureK-partition
F with Euclidean clustering errors {errk}k∈[K]. Suppose zl =

∑
i yi

lx
i and z̃l =

∑
i yi

l x̃
i are the original and agglomerated

label features for l ∈ [L]. Then for every 2-means clustering of the original label features, with cluster centroids c+ and c−,
there must exist centroids c̃+ and c̃− that offer similar clustering error over the agglomerated features. Specifically, we have,
for all subsets of labels T ⊆ [L],√∑

l∈[T ]

((c+ − c−)>zl − (c̃+ − c̃−)>z̃l)
2 ≤

K∑
k=1

errk ·
∥∥c+Fk − c−Fk

∥∥
2
.

Proof. We will establish the identity of the modified centroids c̃+, c̃− in a short while. For now, notice that as before, by
positivity of all terms in the summation, we have for any T ⊆ [L]

∑
l∈[T ]

(
(c+ − c−)>zl − (c̃+ − c̃−)>z̃l

)2 ≤ L∑
l=1

(
(c+ − c−)>zl − (c̃+ − c̃−)>z̃l

)2
For sake of notational simplicity, let us denote δ = c+ − c− and δ̃ = c̃+ − c̃−. This gives us

L∑
l=1

(
δ>zl − δ̃

>
z̃l
)2

=

L∑
l=1

(
K∑

k=1

(δFk − δ̃k1dk)>zlFk

)2

Expanding the right hand side and expanding similarly as before gives us

K∑
k=1

(δFk − δ̃k1dk)>

[
L∑

l=1

zlFk(zlFk)>

]
(δFk − δ̃k1dk) +

∑
k 6=j

(δFk − δ̃k1dk)>

[
L∑

l=1

zlFk(zlFj )
>

]
(δFj − δ̃j1dj )

Now, DEFRAG-XY represents each feature j ∈ [d] as an L dimensional vector, qj =
∑n

i=1 xi
jy

i ∈ RL and then performs
clustering on these vectors to obtain a K-partition of the feature set [d], say F = {F1, . . . , Fk}. Say the centroids of these K
clusters are ν1, . . . ,νK ∈ Rn. Consider one of these clusters, say the kth cluster Fk with, say dk features in that cluster. If we
denote Qk = [qj ]>j∈Fk ∈ Rdk×L, then the following observations are immediate

1. For any v ∈ Rdk , we have v>Qk = v>
∑L

l=1 zlFk

2. The Euclidean clustering error within the kth cluster is given by

err2k :=
∑
j∈Fk

∥∥qj − νk
∥∥2
2

=
∥∥Q− 1dk(νk)>

∥∥2
F

3. If we denote Qk = 1dk(νk)> + ∆k, then we must have ‖∆k‖F =
∥∥Qk − 1dk(νk)>

∥∥
F

= errk
4. Lemma 1, when applied with p = L show us that with the above notation, we have for some real value dδ,k∥∥Q>k (δFk − dδ,k · 1dk)

∥∥ ≤ ∥∥∥∆>k δ
⊥
Fk

∥∥∥
2
≤
∥∥∆>k

∥∥
2

∥∥∥δ⊥Fk∥∥∥2 = ‖∆k‖2
∥∥∥δ⊥Fk∥∥∥2 ≤ ‖∆k‖F

∥∥∥δ⊥Fk∥∥∥2 = errk ·
∥∥∥δ⊥Fk∥∥∥2 ,

where ‖∆k‖2 denotes the spectral norm (i.e. the largest singular value) of the matrix ∆k and ‖∆k‖F denotes the Frobenius
norm of the same matrix.
Again, note that the inequality ‖∆k‖2 ≤ ‖∆k‖F is not extremely loose since, rank(∆k) ≤ dk gives us ‖∆k‖F ≤√
dk · ‖∆k‖2 and since dk is typically a small number, this shows that this inequality is not too loose.

The above observations allow us to construct δ̃. All we need to do is, for every cluster k ∈ [K], consult Theorem 2 to
obtain a constant dδ,k that offers the guarantees of the theorem. We then simply concatenate these constants to construct



Data set Train Features Labels Test
n d L d̂ L̂

EURLex-4K 15539 5000 3993 3809 236.8 5.31
AmazonCat-13K 1186239 203882 13330 306782 71.2 5.04
Wiki10-31K 14146 101938 30938 6616 673.4 18.64
Delicious-200K 196606 782585 205443 100095 301.2 75.54
WikiLSHTC-325K 1778351 1617899 325056 587084 42.1 3.19
Wikipedia-500K 1813391 2381304 501070 783743 385.3 4.77
Amazon-670K 490449 135909 670091 153025 75.7 5.45
Amazon-3M 1717899 337067 2812281 742507 49.7 36.17

Table 4: Dataset Statistics

δ̃ = [dδ,k]k∈[K] ∈ RK . Once we have δ̃, we may construct c̃+ and c̃− as any two vectors such that c̃+ − c̃− = δ̃. Moreover,
using the first point in the list of observations, we can now also rewrite the last expression in our ongoing calculations as

K∑
k=1

(δFk − δ̃k1dk)>QkQ
>
k (δFk − δ̃k1dk) +

∑
k 6=j

(δFk − δ̃k1dk)>QkQ
>
j (δFj − δ̃j1dj )

Applying the Cauchy-Schwartz inequality and the rest of the observations allows us to upper-bound the above expression as

K∑
k=1

∥∥∥Q>k (δFk − δ̃k1dk)
∥∥∥2
2

+
∑
k 6=j

∥∥∥Q>k (δFk − δ̃k1dk)
∥∥∥
2

∥∥∥Q>j (δFj − δ̃j1dj )
∥∥∥
2

≤
K∑

k=1

err2k ·
∥∥∥δ⊥Fk∥∥∥22 +

∑
k 6=j

errk ·
∥∥∥δ⊥Fk∥∥∥2 · errj ·

∥∥∥δ⊥Fj∥∥∥
2

=

(
K∑

k=1

errk ·
∥∥∥δ⊥Fk∥∥∥2

)2

This finishes the proof upon taking square roots on both sides.

C Experimental Details from §6
We provide additional details about experimental settings, as well as additional experimental results in this appendix.

C.1 Clustering Metrics
We used several clustering metrics to evaluate the various clustering algorithms compared in Table 1. Those metrics are defined
formally below. Note that in that experiment, to be fair, all algorithms were asked to output the same number of clusters d/8
where d is the original dimensionality of the data features.

The notion of mutual information loss (LMI) is defined in [Dhillon et al., 2003] for multi-class classification problems
and adapted here for our setting of multilabel classification problems. LMI measures the loss in predictive capability due to
clustering of features. The LMI score is a positive real value between 0 and 1. Thus, a smaller value of the LMI metric is better.
It is notable that in Table 1, DEFRAG achieved the lowest LMI score of 0.37 followed by SCBC which achieved an LMI score
of 0.39. All other algorithms acheived an LMI score of around 0.50 or more.

Definition 1 (Mutual Information Loss (LMI)). Given a K-clustering F of [d] features, let X = [x1, . . . ,xn] ∈ Rd×n denote
the original feature matrix, X̃ = [x̃1, . . . , x̃n] ∈ RK×n denote the matrix of agglomerated features and Y = [y1, . . . ,yn] ∈
{0, 1}L×n denote the label matrix. Then the normalized loss in mutual information is defined as

LMI(F) =
I(Y ;X)− I(Y ; X̃)

I(Y ;X)
,

where I(Y ;X) is the mutual information between the labels and the original features and I(Y ; X̃) is the mutual information
between the agglomerated features. These terms are defined below for the multi-label learning setting.

Definition 2 (Mutual Information (MI)). Given a feature matrix Z = [z1, . . . , zn] ∈ Rp×n with each data point having p
features and Y = [y1, . . . ,yn] ∈ {0, 1}L×n denote the label matrix. Then the mutual information between the labels and the
features is defined as

I(Y ;Z) = trace(Π>(ln(Π)− ln(πp)1>L − 1p ln(πL)>))
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Figure 4: REFRAG can offer far superior performance on rare labels as indicated on the Delicious (left) and Wiki10 (right) datasets. The
x-axis records the percentile range of labels. For example, the first bar considers labels in the top 0-1 percentile, the second bar considers
labels in the 1-2 percentile. Subsequent bars consider labels in the 2-3, 3-5, 5-7, 7-10, 10-20, 20-30, 30-50, 50-70 and 70-100 percentiles
respectively. The y-axis records the macro precision of labels within a percentile range. This is calculated by taking an average of label-wise
precision scores. Note that this method gives equal weightage to each label, irrespective of its popularity.
At the top of each figure, P indicates the overall precision@1 of the methods, R indicates the overall recall@1 of the methods and C indicates
the overall coverage@1 of the methods. Coverage@1 is calculated as the fraction of labels that are correctly predicted as the top-ranked label
in at least one test document. Note that DEFRAG more than triples the coverage of the Parabel method on the Wiki10 dataset.
Note that on both datasets, REFRAG continues to offer meaningful predictions even as we consider very rare labels. The default Parabel
algorithm stops offering predictions after the 7-10 percentile on Delicious and the 20-30 percentile on Wiki10. However, REFRAG continues
to offer predictions uptil the 20-30 percentile on Delicious and 70-100 percentile on Wiki10.

where Π = ZY >

1>p ZY >1L
∈ ∆(p×L)−1 is the joint feature-label probability matrix, ln(Π) ∈ Rp×L denotes the matrix obtained

by taking entry wise logarithm of the Π matrix, πp = Y 1n
‖Y 1n‖1

∈ ∆p−1 is the feature probability vector, πL = Z1n
‖Z1n‖1

∈ ∆L−1

is the label probability vector, ln(πp) and ln(πL) are obtained by taking element-wise logarithm on the vectors πp and πL

respectively, and 1k = (1, . . . , 1)> ∈ Rk for any k > 0. The above definition assumes that the feature matrix Z contains no
negative values. However, this is true for bag-of-words representations used in extreme classification problems.

The notion of balance factor is a rather unforgiving metric measuring how balanced are the clusters output by a clustering
technique. It is frequently seen that imbalanced feature clusters can lead to reduction in classification performance. The balance
factor is positive real number greater than or equal to one. A smaller balance factor indicates a more balanced clustering with
a balance factor of 1 denoting perfectly balanced clusters. It is notable that in Table 1, DEFRAG achieved the lowest balance
factor of 1.11 and 1.08.
Definition 3 (Balance Factor). Given a K-clustering F = [F1, . . . , FK ] of [d] features where we define dk := |Fk|, its balance
factor is defined as

Balance(F) =
maxk dk
mink dk

If we have mink dk = 0, then the balance factor is defined to be infinity.

The normalized entropy is a more gentle metric of balance. It takes a value between 0 and 1 and a larger value indicates a
more balanced clustering and a smaller value indicates the presence of a few very concentrated clusters. It is notable that in
Table 1, DEFRAG achieved the highest entropy values of 0.99.
Definition 4 (Normalized Entropy). Given a K-clustering F = [F1, . . . , FK ] of [d] features where we define dk := |Fk|, its
normalized entropy is defined as

NormEnt(F) = − 1

ln d

K∑
k=1

dk
d

ln
dk
d
,

where we define 0 ln 0 = 0 for sake of avoiding singular points.

C.2 Additional Experimental Results
In this section we report additional results of the reductions DEFRAG variants offer on training and prediction time and model
size along with the effect on prediction accuracy. We also report here results on using the nDCG-based splitting method
DEFRAG-N, as well as additional results on the performance of the FIAT algorithm on settings with missing features.
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Figure 5: The figure shows the performance of FIAT on two different datasets Wiki10 (first row) and Delicious-200K (second row) with
respect to precision at 1, 3 and 5. A certain fraction (as indicated in the x-axis) of features that were present in each of the test data points was
randomly removed. Thus, if a test data point had d̂ of the d features with non-zero values in its feature representation, then at 50% noise level,
d̂/2 of these features were removed and their value set to zero. FIAT is able to offer better resilience to removal of features from data points,
especially when noise levels go higher. At low noise levels, FIAT is competitive with Parabel but as noise levels grow, the performance gap
between the two methods expands.
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Figure 6: Effect of DEFRAG variants on reducing classifier training time. DEFRAG variants (DEFRAG-X, DEFRAG-XY, ensemble,
no-ensemble) were executed with varying number of clusters by setting the minimum leaf size parameter (see Algorithm 1). The different
markers in the figures correspond to d/32, d/16, d/8, d/4 balanced clusters. The black line shows Parabel’s default performance with the
black triangle marking its classifier training time. Aggressive clustering leads to much faster training times and smaller model sizes but also
cause a drop in performance. DEFRAG-X3 and DEFRAG-XY3 refer to an ensemble of 3 independent realizations of DEFRAG. DEFRAG
variants are able to bring about significant reductions in the training time of classifiers, for instance Delicious (more than 35% reduction),
Wikipedia-500K (more than 33% reduction), Wiki10 (more than 20% reduction).
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Figure 7: Effect of DEFRAG variants on reducing feature dimensionality. In all cases, DEFRAG variants are able to offer drastic reductions
in feature dimensionalities of the datasets without significant reduction in prediction accuracies, as measured by precision@1, for example
WikiLSHTC (4x reduction), AmazonCat (4x reduction with the same prediction accuracy), Delicious200K (16x reduction with even higher
prediction accuracy), Amazon-3M (8x reduction).
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Figure 8: Effect of DEFRAG variants on reducing total training time. The total training time includes the classifier training time, as well as
DEFRAG’s clustering time. Note that the total times are very close to the classifier training time since the hierarchical clustering techniques
adopted by DEFRAG operate very efficiently and put very little overhead on the total training time.
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Figure 9: Effect of DEFRAG variants on reducing prediction time. Note that the prediction time includes the feature agglomeration time as
well as the actual prediction time. The performance of the classifier is indicated using the precision@5 metric. The feature agglomeration
step being so inexpensive, allows DEFRAG to offer drastic reductions in prediction times on most datasets, for example Delicious (70%
reduction), Wiki10 (40% reduction), Wikipedia-500K (more than 40% reduction)
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Figure 10: Effect of DEFRAG variants on reducing model sizes. The performance of the classifier is indicated using the precision@3 metric.
Since the model sizes of most algorithms depend on the dimensionality of the data, by performing feature agglomeration, DEFRAG variants
offer model size reductions as well.
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Figure 11: A comparison between k-means based clustering, as followed by DEFRAG-X and nDCG based clustering, as followed by
DEFRAG-N. Note that nDCG-based clustering is more expensive (see Algorithm 3). However, in several cases, e.g. Amazon-670K, Ama-
zonCat, EURLex, nDCG clustering can offer slightly superior performance in terms of classification accuracy.
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