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Abstract

We explore the connection between Hilbertian metrics and positive definite kernels on the real
line. In particular, we look at a well-known characterization of translation invariant Hilbertian
metrics on the real line by von Neumann and Schoenberg (1941). Using this result we are able
to give an alternate proof of Bochner’s theorem for translation invariant positive definite kernels
on the real line (Rudin, 1962).

1 Introduction

We start off with a few definitions and set the notation. In the following discussion, H shall
denote the real Hilbert space, small case letters x, y, . . . shall denote real numbers, boldface small
letters x,y, . . . shall denote objects in arbitrary domains. A metric D defined on some domain
Ω will be said to be Hilbertian if there exists a map ξ : Ω → H such that for all x,y ∈ Ω,
D(x,y) = ‖ξ(x)− ξ(y)‖H. A symmetric real valued kernel K : Ω × Ω → R will be said to be
positive definite if for any n ∈ N, any x1, . . . ,xn ∈ Ω, if we consider the matrix GK = [K(xi,xj)],
then for any c ∈ Rn, we have c>GKc ≥ 0. A symmetric real valued kernel N : Ω× Ω→ R will be
said to be negative definite if whenever c>1 = 0, we have c>GNc ≤ 0 (here 1 ∈ Rn is the vector of
all ones). It is easy to verify that all squared Hilbertian metrics are negative definite.

There exists a close connection between negative definite kernels and positive definite kernels
as given below :

Theorem 1 ((Berg et al., 1984), Chapter 3, Lemma 2.1). For any given kernel N over Ω, and
some fixed 0 ∈ Ω, define a new kernel K as K(x,y) = 1

2 (N(x,0) +N(y,0)−N(x,y)−N(0,0)).
Alternatively if we have N(0,0) ≥ 0 and define K(x,y) = 1

2 (N(x,0) +N(y,0)−N(x,y)). Then
N is negative definite iff K is positive definite.

Using the above expression for K(x,y), it is simple to arrive at the following relation

−1

2
(N(x,x) +N(y,y)− 2N(x,y)) = K(x,x) +K(y,y)− 2K(x,y)

In case N is a squared Hilbertian metric satisfying identity of the indiscernibles (i.e. N(x,x) = 0
for all x ∈ Ω), we can obtain the following relation N(x,y) = K(x,x) +K(y,y)− 2K(x,y). This
allows us to arrive at the following simple but useful corollary:
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Corollary 2. Given a distance function D over Ω satisfying identity of the indiscernibles and
some fixed 0 ∈ Ω, define a kernel K as K(x,y) = 1

2

(
D2(x,0) +D2(y,0)−D2(x,y)

)
. Then D is

Hilbertian iff K is positive definite.

Proof. To see that positive definiteness of K is necessary, simply invoke Theorem 1 along with
the fact that since D is a metric, D2(x,x) ≥ 0 for all x ∈ Ω and that all squared Hilbertian
metrics are negative definite. To see that is sufficient, simply invoke Mercer’s theorem ((Mer-
cer, 1909) or equivalently the discussion in (Berg et al., 1984), Chapter 3, Section 3) to con-
firm the existence of a mapping ϕ : Ω → H such that K(x,y) = 〈ϕ(x), ϕ(y)〉H. Thus we have

‖ϕ(x)− ϕ(y)‖2H = K(x,x)+K(y,y)−2K(x,y). Next, using the definition of K, we conclude that
K(x,x) + K(y,y) − 2K(x,y) = D2(x,y) − 1

2

(
D2(x,x) +D2(y,y)

)
= D2(x,y) since D satisfies

identity of the indiscernibles. This gives us ‖ϕ(x)− ϕ(y)‖2H = D2(x,y) thus proving that D is in
fact a Hilbertian metric.

The preceding corollary and its proof give us the well known correspondence between the set
of positive definite kernels and Hilbertian metrics (Schölkopf, 2000). Given any positive definite
kernel K it is possible to construct a Hilbertian metric DK and vice versa (using the polarization
identity). Moreover, the preceding result holds for any arbitrary domain Ω. However if translation
invariance is considered on some locally compact Abelian (LCA) group, this symmetry breaks as
is demonstrated by the following discussion.

Lemma 3. Consider a domain Ω ⊆ G where G is some LCA group. Then every translation
invariant positive definite kernel K on G yields a translation invariant Hilbertian metric D.

Proof. By translation invariance of K we have for all x,y, t ∈ G, K(x + t,y + t) = K(x,y).
Thus, for the corresponding Hilbertian metric D2(x,y) = K(x,x) + K(y,y) − 2K(x,y), we have
D2(x + t,y + t) = 2K(0,0) +K(x + t,y + t) = 2K(0,0) +K(x,y) = D2(x,y).

However the converse does not hold true: take for example the familiar inner product on some
finite dimensional Euclidean space Rd as the positive definite kernel. Its corresponding Hilbertian
metric is the usual Euclidean metric ‖·‖2. However, whereas the metric (i.e. ‖·‖2) is translation
invariant, the kernel (i.e. the inner product) is clearly not. In the sequel we shall explore this
asymmetry by taking the example of the LCA group R.

2 Screw Functions and Positive Definite Kernels

Von Neumann and Schoenberg (1941) initiated an investigation that resulted in a complete char-
acterization of translation invariant Hilbertian metrics on the real line. Recall that a metric D
defined on some domain Ω is said to be Hilbertian if there exists a map ξ : Ω→ H such that for all
x,y ∈ Ω, D(x,y) = ‖ξ(x)− ξ(y)‖H. von Neumann and Schoenberg (1941) referred to the maps ξ
that generated these metrics as screw functions†. Subsequently there were generalizations of this
work to the more general class of homogeneous Hilbertian metrics (Fuglede, 2005). However we

†Von Neumann and Schoenberg (1941) also completely characterized transforms of Euclidean metrics on finite
dimensional spaces that are embeddable in H, i.e. functions of the kind F : R+ → R+ such that D(x,y) = F (‖x− y‖)
is a Hilbertian metric, thus completing a sequence of results that had previously characterized Hilbertian metric
transforms for H. It is important to note that only for R do these provide a complete characterization of all translation
invariant Hilbertian metrics.
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shall refrain from expanding our scope beyond translation invariant Hilbertian metrics on the real
line. Below we restate the first main theorem of von Neumann and Schoenberg (1941):

Theorem 4 ((von Neumann and Schoenberg, 1941), Theorem 1). All and only those translation
invariant metrics on R that can be expressed as the following Stieltjes integral are Hilbertian:

D2(x, y) = D2(x− y) =

∫ ∞
0

sin2 t(x− y)

t2
dγ(t)

where γ(t) is a non-decreasing function on R+ such that

∫ ∞
1

t−2dγ(t) exists.

Our main observation is that since translation invariant kernels all correspond to translation
invariant Hilbertian metrics, the above result can be used to arrive at a characterization of transla-
tion invariant kernels on the real line as well. This result is famously known as Bochner’s theorem
(Rudin, 1962). As a historical note we recall that although today Bochner’s theorem is taken to
be the result for general locally compact Abelian groups, it was originally proved for the group of
integers Z by Herglotz (1911) and for the group of reals R by Bochner (1933). The extension to
locally compact Abelian groups is actually due to Weil (1938). Bochner was the first to recognize
the key role this result plays in harmonic analysis.

However, note that it is not possible to work things the other way round, i.e. use Bochner’s
theorem as a starting point to arrive at the result of von Neumann and Schoenberg (1941) since
not all translation invariant metrics on the real line correspond to translation invariant kernels as
discussed above. This in some sense shows that, at least for the case of the real line, the result of
von Neumann and Schoenberg (1941) is a more general one than Bochner’s theorem and hence the
two are not equivalent.

However, Bochner’s theorem does not follow trivially from the above discussion and the proof
progression requires overcoming a few technical hurdles. Most importantly, one is require to qualify
Theorem 4 with other preconditions since the relation between translation invariant kernels and
Hilbertian metrics is not that of an exact bijection.

In the subsequent discussion we will, for sake of convenience, assume that the kernel K is
positive and normalized i.e. K(x, y) ∈ [0, 1] for all x, y. This restriction will allow us to present
the main ingredients of the proof without being bogged down by stray factors. We shall later relax
this condition to let K assume arbitrary real values (positive as well as negative) in Appendix A.
Our aim shall be to establish Bochner’s theorem in the following form:

Theorem 5. Every real valued translation invariant positive definite kernel on R is the Fourier
Stieltjes integral of some bounded positive Borel measure on R.

3 Proof of Theorem 5

Suppose we are given a translation invariant kernel K on the real line. We begin by constructing a
distance measure D on the real line as follows (recall the relation used in the proof of Corollary 2):

D2(x− y) = K(x, x) +K(y, y)− 2K(x, y),
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where x, y ∈ R. Since K is assumed to be translation invariant, D is translation invariant as well.
Applying Theorem 4 on D, we arrive at the following equalities

2K(0)− 2K(x, y) =

∫ ∞
0

sin2 t(x− y)

t2
dγ(t)

=

∫ ∞
0

1− cos 2t(x− y)

2t2
dγ(t)

=

∫ ∞
0

dγ(t)

2t2
−
∫ ∞
0

cos 2t(x− y)

2t2
dγ(t).

We realize that we might have committed blasphemy by this segregation of the two parts of the

integral since Theorem 4 does not assure us that

∫ ∞
0

t−2dγ(t) exists. It only assures us that∫ ∞
1

t−2dγ(t) exists. To remedy this, we use the following simple lemma:

Lemma 6.

∫ ∞
0

dγ(t)

t2
≤ 4K(0)

Proof. von Neumann and Schoenberg (1941) characterize bounded Hilbertian metrics by proving
that for any such metric D, lim

t→0+
γ(t) = γ(0) i.e. γ(t) does not have a discrete component at 0 and

that lim sup
t→∞

D2(t) = Θ

(∫ ∞
0

t−2dγ(t)

)
. More specifically, they prove

1

2

∫ ∞
0

t−2dγ(t) ≤ lim sup
t→∞

D2(t) ≤
∫ ∞
0

t−2dγ(t).

In our case, we have K(t) ∈ [0, 1] which gives us

D2(t) = 2K(0)− 2K(t) ≤ 2K(0).

This proves that our Hilbertian metric is bounded which, upon applying the result of von Neumann
and Schoenberg (1941), proves the claim.

This justifies the segregation of the integral into two parts. Rearranging terms we get

K(x, y) = K(0)−
∫ ∞
0

dγ(t)

4t2
+

∫ ∞
0

cos 2t(x− y)

4t2
dγ(t)

= C +

∫ ∞
0

cos 2t(x− y)

4t2
dγ(t),

where C = K(0) −
∫ ∞
0

dγ(t)

4t2
. Note that using Lemma 6, we have C ≥ 0. Using a change of

variables and a rescaling of the function γ(·) (which leaves all properties of γ(·) from Theorem 4
unharmed) gives us the following expression:

K(x, y) = C +

∫ ∞
0

cos t(x− y)

t2
dγ(t)

for some constant C ≥ 0.
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Now we transform this Stieltjes integral into a Fourier Stieltjes integral to arrive at the canonical
form of Bochner’s theorem (for example as given in (Rudin, 1962)). For any 0 ≤ x < ∞, define

α(x) :=

∫ x

0
t−2dγ(t) which gives us

K(x, y) = C +

∫ ∞
0

cos t(x− y)dα(t).

Note that α (·) is a non-decreasing right continuous function. Now define, for any interval S =
(a, b] ⊂ R, the measure µ as follows

µ(S) :=
α(b)− (1− 2 · 1a<0)α(a)

2
+
C

2
· 10∈(a,b].

An application of Carathéodory’s extension theorem allows us to extend µ to a Borel measure over

R. Since α (·) is a non decreasing function,

∫ ∞
0

t−2dγ(t) <∞ and C > 0, µ is a bounded positive

measure and satisfies

K(x, y) =

∫ ∞
−∞

eit(x−y)dµ(t).

This establishes Bochner’s theorem on the real line as claimed.

4 Extensions

We note that the above characterization can also be extended to separable kernels on finite di-

mensional Euclidean spaces i.e. kernels which can be written as K(x,y) =
d∏

i=1
Ki(xi,yi) where

Ki(xi,yi) is a translation invariant kernel on the ith dimension. The resulting characterization is
given as the following theorem:

Theorem 7. Every separable real valued translation invariant positive definite kernel on Rd is the
Fourier Stieltjes integral of some bounded positive Borel measure on Rd.

Proof. We have K(x,y) =
d∏

i=1
Ki(xi,yi) where every Ki is a translation invariant kernel. Using

Theorem 5, there exist some positive bounded Borel measures µ1, . . . , µn on R such that for all
i = 1, . . . , d, we have

Ki(xi,yi) =

∫ ∞
−∞

eit(xi−yi)dµi(t).

Thus we have

K(x,y) =

d∏
i=1

Ki(xi,yi) =

d∏
i=1

∫ ∞
−∞

eiti(xi−yi)dµi(ti)

=

∫ ∞
−∞

. . .

∫ ∞
−∞︸ ︷︷ ︸

d

(
d∏

i=1

eiti(xi−yi)

)
d

(
d∏

i=1

µi(ti)

)
=

∫
Rd

ei〈t,x−y〉dµ(t),

where µ = µ1× . . .×µd is a bounded positive product measure and we have used Fubini’s theorem
in the fourth step.
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This characterization applies to some of the most widely used translation kernels (Rahimi and
Recht, 2007) given below

1. Gaussian kernel K(x,y) = e−
‖x−y‖22

2 =
d∏

i=1

e−
(xi−yi)

2

2 .

2. Laplacian kernel K(x,y) = e−‖x−y‖1 =
d∏

i=1

e−|xi−yi|.

3. Cauchy kernel K(x,y) =

d∏
i=1

2

1 + (xi − yi)
2 .

A Generalizing the proof for arbitrary kernels

We now assume no normalizations on K, i.e. we allow for all x, y, K(x, y) ∈ R. What this lack
of normalization (more specifically, the ability of the kernel to take negative values) hinders is the

ability to use K(x, y) ≥ 0 to show that C = K(0)−
∫ ∞
0

dγ(t)

4t2
≥ 0 in the proof. Thus we are left,

at the end of the day, with the following characterization:

K(x, y) =

∫ ∞
−∞

eit(x−y)dµ(t) + C,

where µ is a bounded positive measure and C is some (possibly negative) real constant. We first
proceed by absorbing this constant into the measure µ by defining a new measure µ̃. For any set
S = (a, b] ⊂ R, define

µ̃(S) := µ(S) + C · 10∈(a,b].

which gives us

K(x, y) =

∫ ∞
−∞

eit(x−y)dµ̃(t).

Notice that this might have caused µ to acquire a discrete component at 0 (notice that due to the
property of γ (·) that lim

t→0+
γ(t) = γ(0), µ does not have a discrete component at 0 to begin with).

What we will show that unless this discrete component is non-negative, K cannot be a positive
definite kernel which will establish Bochner’s theorem.

This we shall show by proving that in case C 6= 0 (if C = 0 then we are done), then µ̃(0) is
actually an eigenvalue of K. This will imply that for K to be positive semi-definite, µ̃(0) ≥ 0 which
shall complete our proof.

Lemma 8. In case the modified distribution µ̃ has a discrete component µ̃(0) at 0 then µ̃(0) is an
eigenvalue of K.

Proof. For simplicity (and also without loss of generalization), assume that the domain of K is the
unit interval [−1, 1] so that the kernel is a function K : [−1, 1]× [−1, 1]→ R (note that the kernel
is still being allowed to take arbitrary real values). The purpose of proposing a compact domain is
to allow us to work with constant functions f(x) = c and still have f(x) ∈ `2 with respect to the
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Lebesgue measure. Consider the integral operator TK on `2 corresponding to the kernel K defined
as follows:

TK(f)(x) =

∫ ∞
−∞

f(y)K(x, y)dy.

We will show below that the constant function is an eigenfunction of this integral operator. Taking
f(x) = c we get

TK(f)(x) =

∫ ∞
−∞

f(y)K(x, y)dy =

∫ ∞
−∞

c

∫ ∞
−∞

eit(x−y)dµ̃(t)dy

=

∫ ∞
−∞

ceitx
(∫ ∞
−∞

e−itydy

)
dµ̃(t) =

∫ ∞
−∞

ceitxδ(t)dµ̃(t)

= cµ̃(0) = µ̃(0)f(x)

where δ(x) is the Dirac delta function and we have used Fubini’s theorem in the third step. This
proves the claim.
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