
Machine Learning manuscript No.
(will be inserted by the editor)

Robust non-Parametric Regression via Incoherent Subspace
Projections

Bhaskar Mukhoty · Subhajit Dutta · Purushottam
Kar

July 27, 2021

Abstract This paper establishes the algorithmic principle of alternating projections onto
incoherent low-rank subspaces (APIS) as a unifying principle for designing robust regression
algorithms that offer consistent model recovery even when a significant fraction of training
points are corrupted by an adaptive adversary. APIS offers the first algorithm for robust
non-parametric (kernel) regression with an explicit breakdown point that works for general
PSD kernels under minimal assumptions. APIS also offers, as straightforward corollaries,
robust algorithms for a much wider variety of well-studied settings, including robust linear
regression, robust sparse recovery, and robust Fourier transforms. Algorithms offered by
APIS enjoy formal guarantees that are frequently sharper than (especially in non-parametric
settings) or competitive to existing results in these settings. They are also straightforward to
implement and outperform existing algorithms in several experimental settings.

1 Introduction and Problem Statement

We have a regression problem with n training points with regression values (aka responses or
signal) denoted by the vector a∗ ∈ Rn (see below for examples). An adversary introduces
additive corruptions b∗ ∈ Rn so that the responses we actually observe are given by

y = a∗+b∗ (1)

Can, under some conditions on a∗,b∗, we recover a∗ (as well as parameters in its generative
model) despite the corruptions? This paper develops the APIS framework to answer this
question in the affirmative.
Key idea: If a∗ ∈ A and b∗ ∈B where A ,B are unions of low-rank subspaces that are
incoherent with respect to each other (see Section 1.1 for an introduction to incoherence and
Section 6.1 for details). Specifically, let a∗ ∈A ,b∗ ∈B where A =

⋃P
i=1 Ai and B=

⋃Q
j=1 B j

are the unions of subspaces, with rank(Ai)≤ s for all i ∈ [P] and rank(B j)≤ k ∀ j ∈ [Q] for
some integers s,k > 0. Then this paper shows that it is possible to recover a∗ consistently using
a simple strategy that involves alternating projections onto these unions using projection

Bhaskar Mukhoty, Subhajit Dutta, Purushottam Kar
Indian Institute of Technology Kanpur
E-mail: bhaskarm@cse.iitk.ac.in, duttas@iitk.ac.in, purushot@cse.iitk.ac.in

2 Bhaskar Mukhoty et al.

Algorithm 1 The APIS Algorithmic Framework
Input: Corrupted responses y, Projection operators ΠA (·),ΠB(·) that project onto A ,B
Output: An estimate â of the clean responses
1: Initialize a0← 0 and t← 0
2: for T = 1,2, . . . ,T −1 do
3: bt+1←ΠB(y−at) //denote Bt+1 ∈B to be a subspace that contains bt+1

4: at+1←ΠA (y−bt+1) //denote At+1 ∈B to be a subspace that contains at+1

5: t← t +1
6: end for
7: return aT

operators ΠA (·),ΠB(·) (see Algorithm 1). As we shall see, such incoherent unions of
subspaces implicitly arise in several learning settings, e.g., if a∗,b∗ are known to have s-
and k-sparse representations in two bases that are incoherent to each other. We denote the
privileged subspaces within these unions to which a∗ and b∗ belong as A∗ 3 a∗,B∗ 3 b∗.
What all is known to APIS: APIS requires the projection operators ΠA (·),ΠB(·) to be
executable efficiently at runtime as its alternating strategy may invoke these operators multiple
times. Thus, it needs the unions A ,B to be (implicitly) known. The discussions in Section 2
and Sections 5.1, 5.2 assure that these conditions are indeed satisfied in several interesting
learning applications. However, APIS does not require the vectors a∗,b∗ to be known, nor
does it assume that the subspaces A∗,B∗ to which they belong are known, nor does it require
A∗,B∗ to be unique either.

1.1 A Key to the Manuscript

The reader may be curious about several questions that need solutions for the above strategy
to make sense. We summarize APIS’s solutions to these questions below but provide more
details in subsequent discussions (that are underlined in italics for easy identification).

1. How are A ,B known to the algorithm?: Section 2 shows how in the case of robust linear
regression, the union A is implicitly known the moment training data is made available.
Section 5.1 shows that the same is true in several other important learning applications.
Section 5.2 on the other hand, shows how the union B is defined for several interesting
corruption models.

2. How are the projection operators for these unions constructed and efficiently exe-
cuted?: Projection onto unions of spaces can be intractable in general. Nevertheless,
Section 5 shows how for several interesting learning applications, the projection oper-
ators ΠA (·),ΠB(·) can be executed efficiently. Moreover, Table 1 gives explicit time
complexity for these projection operations in a variety of applications.

3. What if A ,B are not incoherent to each other?: As discussed in Sections 3 and 6.4,
APIS can exploit local incoherence properties to guarantee recovery even when strict
notions of incoherence fail to hold. See Section 2 for an introduction to incoherence.

4. Does the adversary know A (or perhaps even a∗) before deciding b∗?: As discussed
in Section 4, APIS allows a fully adaptive adversary that is permitted to decide the
corruption vector b∗ with complete knowledge of a∗,A∗ as well as A ,B.

5. Is the model in Equation (1) general enough to capture interesting applications and can
the unions A ,B be data-dependent?: The discussion in Section 5 shows that the model
does indeed capture several statistical estimation and signal processing problems such as

Robust non-Parametric Regression via Incoherent Subspace Projections 3

a∗

b∗

y = a∗ + b∗

𝐴

𝐵

(a) (b)

a∗

b∗

y = a∗ + b∗
𝐵

𝐴

Fig. 1 Illustrating the distinction between a pair of incoherent subspaces (Fig. 1(a)) and a pair of coherent
subspaces (Fig. 1(b)). For sake of simplicity, the unions A ,B contain a single subspace in these examples.

low-rank kernel regression, sparse signal transforms, robust sparse recovery, and robust
linear regression. In most of these settings, the union A is indeed data-dependent.

6. What if a∗,b∗ are only approximate members of these unions?: As discussed in Sec-
tion 6.4, APIS can readily accommodate compressible signals where the clean signal
a∗ does not belong to A but is well-approximated by vectors in A , as well as handle
unmodelled errors such as simultaneous sparse corruptions and dense Gaussian noise.

7. How low-rank must the subspaces in the unions be, i.e., how large can s,k be? : The key
result in this paper Theorem 1 guarantees recovery the moment a certain incoherence
requirement is satisfied. The pursuit of satisfying this requirement results in bounds on
s,k to emerge for various applications. Table 1 summarizes the signal-corruption pairings
for which APIS guarantees perfect recovery and bounds how large s,k can be. Detailed
derivations of these results are presented in the appendices and summarized in Section 6.

2 A Gentle Introduction to the Intuition behind APIS

We recall our model from Section 1. We have y = a∗+ b∗ with a∗ ∈ A ,b∗ ∈B, where
A =

⋃P
i=1 Ai and B =

⋃Q
j=1 B j are the unions of subspaces, with rank(Ai)≤ s for all i ∈ [P]

and rank(B j) ≤ k ∀ j ∈ [Q] for some integers s,k > 0. To present the core ideas behind
APIS, we consider a simplified scenario where P = 1 = Q,i.e., the unions consist of a single
subspace each A = {A} ,B = {B}. As Definition 1 shows, we say two subspaces A,B⊆ Rn

(of possibly different ranks) are µ-incoherent for some µ > 0, if ∀ u∈A, ‖ΠB(u)‖2
2≤ µ ·‖u‖2

2
and ∀ v ∈ B, ‖ΠA(v)‖2

2 ≤ µ · ‖v‖2
2. As the discussion after Definition 1 shows, an alternate

interpretion of this property is that for any two unit vectors a∈ A,b∈ B, we must always have
(a>b)2 ≤ µ . This means that if µ is small, then no two vectors from these two subspaces can
be very aligned to each other and thus, the vectors must be near-orthonormal. Definition 2
extends the concept of incoherence to unions of subspaces.

Fig. 1 illustrates this concept using a toy example where A is a rank-2 subspace of R3

and B is a rank-1 subspace of R3 i.e., s = 2,k = 1. Notice that in Fig. 1(a), the subspaces
A,B are highly incoherent indicating a value of µ → 0. It is not possible for two vectors, one
each from A,B, to be very aligned to each other. On the other hand, Fig. 1(b) illustrates an
example of a pair of subspaces that are quite coherent and have a high value of µ → 1. Also

4 Bhaskar Mukhoty et al.

a∗

b∗

y = a∗ + b∗

𝐴

𝐵

a∗

b∗

y = a∗ + b∗

𝐴

𝐵

b1 b1
a1

a∗

b∗

y = a∗ + b∗

𝐴

𝐵

a0 = 𝟎 a1 = Π𝐴 y − b1

= Π𝐴 a∗ = a∗
b1 = Π𝐵 y − a0

= Π𝐵 y = b∗

a0 a0

Fig. 2 An extreme example illustrating how perfect incoherence (µ = 0) allows APIS to perform recovery in
a single iteration of Algorithm 1. However APIS does not require perfect incoherence and guarantees recovery
even if we only have µ < 1

9 (see Theorem 1) and even if only local incoherence is assured (see Section 6.4).

shown in Fig. 1(b) are examples of two vectors a∗ ∈ A,b∗ ∈ B that are extremely aligned to
each other since the subspaces A,B are not incoherent and allow vectors to get very aligned.
Why incoherence helps robust recovery: To appreciate the benefits of incoherence, consider
an extreme example where A,B are perfectly incoherent with µ = 0 as illustrated in Fig. 2.
For example, take A =

{
(x,y,z) ∈ R3,x+ y+ z = 0

}
to be a rank-2 subspace of R3 and B ={

(t, t, t) ∈ R3, t ∈ R
}

to be a rank-1 subspace of R3. Clearly, for any (x,y,z) ∈ A,(t, t, t) ∈ B,
we have 〈(x,y,z),(t, t, t)〉= t(x+ y+ z) = 0. Now suppose the signal and corruption vectors
are chosen as a∗ ∈ A,b∗ ∈ B and we are presented with y = a∗+b∗. Separating these two
components is extremely simple in this case. To extract b∗ from y we simply project y onto
the subspace B to get ΠB(y) = ΠB(a∗+b∗) = ΠB(a∗)+ΠB(b∗) = 0+b∗ = b∗, where we
have ΠB(b∗) = b∗ due to the idempotence of orthonormal projections and ΠB(a∗) = 0 due
to perfect incoherence between the two subspaces. Having done this, we can recover a∗ by
simply shaving off the contribution of b∗ in y and projecting onto A to get ΠA(y−b∗) =
ΠA(a∗) = a∗. It is easy to see that the above two steps are simply a single iteration of
Algorithm 1. Thus, perfect incoherence allows straightforward recovery. Theorem 1 shows
that APIS assures recovery even when the subspaces are reasonably incoherent but not
perfectly incoherent. Section 6.4 extends this further to show how APIS offers recovery even
in cases where only local incoherence is present in the task structure.
Why lack of incoherence can make recovery impossible: To see why some form of inco-
herence is essential in general, consider a case similar to the one in Fig. 1(b) but taken to the
extreme i.e., where µ = 1. To present a general case, let us take A,B to be higher rank spaces.
For example, let A =

{
(a,b,c,d) ∈ R4,a+b = 0

}
and B =

{
(p,q,0,s) ∈ R4, p+q = 0

}
be

the two subspaces of R4 with ranks 3 and 2 respectively. Since the unit vector
(

1√
2
,− 1√

2
,0,0

)
lies in both A and B, the subspaces are coherent with µ = 1. Suppose we are unlucky to have
chosen the signal as a∗ = (u,−u,0,v) ∈ A for some u,v ∈ R. Note that a∗ ∈ A∩B. Then the
adversary can readily choose b∗ = (x,−x,0,y) ∈ B for some secret values of x,y ∈R that the
adversary does not reveal to anybody. Recall that the adversary is allowed to choose b∗ having
seen the value of a∗. Thus, we are presented with y = a∗+b∗ = ((u+x),−(u+x),0,(v+y)).
However, depending on x,y, this can be an arbitrary vector in the space B. Thus, recovering
a∗ becomes equivalent to recovering the secret values x,y which makes recovery impossible.
A real-life example: To make the above intuitions concrete, let us take the example of robust

Robust non-Parametric Regression via Incoherent Subspace Projections 5

linear regression where we have a∗ = X>w∗ ∈ Rn, where X = [x1, . . . ,xn] ∈ Rd×n is the
covariate matrix of the n data points and w∗ ∈ Rd is the linear model. In this case we always
have a∗ ∈ span(x1, . . . ,xn) i.e. P = 1 and A = {A} = span(x1, . . . ,xn). Suppose B = {B}
with B = A i.e., a completely coherent system with µ = 1. In this case, the adversary can
choose an adversarial model w̃ ∈ Rd and set b∗ = X>(w̃−w∗) ∈ B so that we are presented
with y = a∗+b∗ = X>w̃. Since w̃ is kept secret by the adversary, recovery yet again becomes
impossible. On the other hand, as Table 1 and calculations in Appendix B show, if the adver-
sary is restricted to impose only sparse corruptions, specifically B = {b ∈ Rn,‖b‖0 ≤ k} for
k ≤ n

154 , then A is sufficiently incoherent from B and APIS guarantees recovery.

3 Related Works and our Contributions in Context

Summary of contributions. APIS presents a unified framework for designing robust (non-
parametric) regression algorithms based on the principle of successive projections onto
incoherent sub-spaces and applies it to various settings (see Section 5). APIS also offers
explicit breakdown points and offers some of the fastest recoveries in experiments. Below,
we give a survey of past works in these settings and offer comparisons with our contributions.
Robust non-parametric regression. Classical results in this are mostly relying on robust
estimators such as Huber, L1 and median (Cizek and Sadikoglu, 2020; Fan et al., 1994),
some of which (e.g., those based on Tukey’s depth) are computationally intractable (Du et al.,
2018). Please refer to recent reviews in (Cizek and Sadikoglu, 2020; Du et al., 2018) for
details. More recent work includes the LBM method (Du et al., 2018) that uses binning and
median-based techniques.
Comparison: We compare experimentally to all these methods in Section 7. Classical tech-
niques mostly do not offer explicit breakdown points; instead, they analyze the influence
function of their estimators (Cizek and Sadikoglu, 2020). Classical works and LBM also
consider only Huber contamination models where the adversary is essentially stochastic.
In contrast, APIS offers explicit breakdown points against a fully adaptive adversary (see
Section 4). LBM does not scale well with dimension d. Unless it receives n = (Ω (1))d

training points, it has to settle for coarse bins that increase the bias or face a situation where
most bins are unpopulated, affecting the recovery. In contrast, APIS requires kernel ridge
regression problems to be solved, for which efficient routines exist even for large d.
Robust linear regression. Past works adopt various strategies such as robust gradient meth-
ods e.g., SEVER (Diakonikolas et al., 2019), RGD (Prasad et al., 2018), hard thresholding
techniques TORRENT (Bhatia et al., 2015), and reweighing techniques STIR (Mukhoty
et al., 2019), apart from classical techniques based on robust loss functions such as Tukey’s
Bisquare and constrained l1-minimization based morphological component analysis (MCA)
(McCoy and Tropp, 2014).
Comparison: We compare experimentally to all these methods in Section 7. On the theoretical
side, APIS offers more attractive guarantees. SEVER requires n > d5 samples whereas APIS
requires n > Ω (d log(d)) samples. RGD offers theoretical guarantees only for Huber and
heavy-tailed contamination models where the adversary is essentially stochastic, whereas
APIS can tolerate a fully adaptive adversary (see Section 4). APIS offers much sharper
guarantees (see Section 6.4) than TORRENT and STIR in the hybrid corruption case where
apart from sparse corruptions, all points face Gaussian noise. However, TORRENT and STIR
offer better breakdown points than APIS.
Robust Fourier and other signal transforms. Several works offer recovery of Fourier-
sparse functions under sparse outliers, with the discrete cube or torus being candidate

6 Bhaskar Mukhoty et al.

domains, and propose algorithms based on linear programming (Chen and De, 2020; Gu-
ruswami and Zuckerman, 2016). These offer good theoretical guarantees but are expensive
(poly(n) runtime) to implement (the authors themselves offer no experimental work). On
the other hand, APIS only requires “fast” transforms such as FFT to be carried out several
times (and consequently, APIS offers an O (n logn) runtime in these settings). Under sparse
corruptions, APIS guarantees robust versions of several other transforms such as robust
Hadamard transforms (see Table 1). APIS is additionally able to handle dense corruptions
in special cases as well (see Section 6). The work of Bafna et al. (2018) uses an algorithm
proposed by Baraniuk et al. (2010), in the context of performing robust Fourier transforms in
the presence of sparse corruptions. However, their RIP-based analysis is restrictive and only
applies to transforms such as Fourier, for which every entry of the design matrix is O (1/

√
n)

(see (Bafna et al., 2018, Theorem 2.2.)). This is not true of transforms, e.g., Haar wavelet,
where design matrix entries can be Ω (1). APIS continues to give recovery guarantees even
in such cases, and it can handle certain cases where corruptions are dense, i.e., ‖b∗‖0 = Ω (n)
which Bafna et al. (2018) do not consider.
Use of (local) incoherence in literature. The general principle of alternating projections
and the notion of incoherence has been used in prior work. For example, Hegde and Baraniuk
(2012) apply this principle to the problem of signal recovery on incoherent manifolds.
However, our application of the alternating projection principle to robust non-parametric
regression is novel and not addressed by prior work. Notions of incoherence and incoherent
bases are also well-established in compressive sensing (Candes and Wakin, 2008) and matrix
completion (Chen, 2015). However, to the best of our knowledge, APIS offers the first
application of these notions to robust non-parametric recovery. It is well-known (Krahmer
and Ward, 2014; Zhou et al., 2016) that (global) incoherence may be unavailable in practical
situations (e.g., Fourier and wavelet bases are not incoherent). Nevertheless, several results in
compressive sensing (Krahmer and Ward, 2014), matrix completion (Chen et al., 2014) and
robust PCA (Zhang et al., 2015) assert that local notions of incoherence can still guarantee
recovery. Section 6.4 shows that APIS can as well exploit local incoherence properties to
guarantee recovery in settings where strict notions of incoherence fail to hold.
Learning incoherent spaces. An interesting line of work has pursued the goal of learning
incoherent dictionaries for the task of classification Schnass and Vandergheynst (2010);
Barchiesi and Plumbley (2013, 2015). Specifically, a set of discriminative subspaces (sub-
dictionaries) are learnt, one per class so as to offer discriminative advantage in supervised
classification tasks. However, in the problem setting for APIS, as described after Equation 1,
the subspaces A ,B are well defined once once training data has been obtained and the
corruption model has been fixed and thus, do not need to be learnt. For this reason, these
works do not directly relate to the work in the current paper.

4 APIS: Alternating Projections onto Incoherent Subspaces

Adversary Model. APIS allows a fully adaptive adversary that is permitted to decide the
corruption vector b∗ with complete knowledge of a∗,A∗ as well as A ,B.

We note that this is the most potent adversary model considered in the literature. Specif-
ically, given a pair of incoherent unions A ,B, first a subspace A∗ and a∗ ∈ A∗ are chosen
arbitrarily. The adversary is now told A∗,a∗ and is then free to choose a subspace B∗ in the
union B and b∗ ∈ B∗ using its knowledge in any way.

APIS is described in Algorithm 1 and involves alternately projecting onto unions of
subspaces A ,B. For specific applications, the projection steps take on various forms, e.g.,

Robust non-Parametric Regression via Incoherent Subspace Projections 7

solving a (kernel) least-squares problem, a Fourier transform, or hard-thresholding. These
are discussed in Section 5.

Notation. For v ∈ Rd and set T ⊆ [d], let vT ∈ Rd denote a vector with coordinates in
the set T identical to those in v and others set to zero. For any matrix X ∈ Rd×n and any sets
S ⊆ [n],T ⊆ [d], we let XT

S = [x̃i j] ∈ Rd×n be a matrix such that x̃i j = xi j if i ∈ T, j ∈ S and
x̃i j = 0 otherwise. We similarly let XT = [zi j] denote the matrix with entries in the rows in T
identical to those in X and other entries zeroed out i.e. zi j = xi j if i ∈ T and zi j = 0 otherwise.
XS is similarly defined as a matrix with entries in the columns in S identical to those in X and
other entries zeroed out.

Projections. For any subspace S ⊆ Rn, ΠS denotes orthonormal projection onto S and
Π⊥S denotes the orthonormal projection onto the ortho-complement of S so that for any v∈Rn

and any subspace S, we always have v = ΠS(v)+Π⊥S (v). We abuse notation to extend the
projection operator Π·(·) to unions of low-rank subspaces. Let A =

⋃P
i=1 Ai ⊆ Rn be a

union of P subspaces, then for any v ∈ Rn we define ΠA (v) = argminz=ΠAi (v),i∈[P]
‖v− z‖2

2.
Projection onto a union of subspaces is expensive in general (requiring time linear in P, the
number of subspaces in the union) but will be efficient in all cases we consider (see Table 1).

Hard Thresholding. The hard-thresholding operator will be instrumental in allowing
efficient projections in APIS. For any n,k < n, let S n

k = {z ∈ Rn : ‖z‖0 ≤ k} be the set of
all k-sparse vectors. For any z ∈ Rn,k < n, let HTk(z) := ΠS n

k
(z) denote the projection of z

onto S n
k . Note that this operation is possible in O (n logn) time by sorting all the coordinates

by magnitude, retaining the top k coordinates (in magnitude) and setting rest to 0.

5 Applications and Projection Details

The signal and corruption model in Equation (1) does indeed capture several statistical
estimation and signal processing problems. In most of these settings, the union A is indeed
data-dependent. The discussion below shows that in each case, the union of subspaces A
is well-defined once training data is available. On the other hand, the union of subspaces
B is well-defined once the corruption model has been identified. The projection operators
ΠA ,ΠB can be executed in polynomial time (see Table 1 for time complexity details).

5.1 Examples of Signal Models Supported by APIS

Linear Regression. Here we have a∗=X>w∗, where X = [x1, . . . ,xn]∈Rd×n is the covariate
matrix of the n data points and w∗ ∈ Rd is the linear model. It is easy to see that Equation (1)
recovers robust linear regression as a special case with P = 1 and A = A, where A =
span(x1, . . . ,xn). Using the SVD X =UΣV>, we can project onto A simply by solving a
least squares problem i.e. we have ΠA (z) =VV>z = (X>X)†z.
Low-rank Kernel Regression. Consider a Mercer kernel K : Rd ×Rd → R such as the
RBF kernel and let G ∈ Rn×n be the Gram matrix with Gi j = K(xi,x j). Low-rank kernel
regression corresponds to the case when the uncorrupted signal satisfies a∗ = Gααα∗ where
ααα∗ ∈ Rn belongs to the span of the some s eigenvectors of G. Specifically, consider the
eigendecomposition G =V ΣV>, V = [v1, . . . ,vr] ∈ Rn×r is the matrix of eigenvectors (r is
the rank of the Gram matrix) and Σ = diag(s1, . . . ,sr)∈Rr×r is the diagonal matrix of strictly
positive eigenvalues (assume s1 ≥ s2 ≥ . . .≥ sr > 0). APIS offers the strongest guarantees in
the case when ααα∗ ∈ span(v1, . . . ,vs), i.e., when ααα∗ lies in the span of the the top eigenvectors.
Note that in this case, a∗ too is spanned by the top s eigenvectors of G since a∗ = Gααα∗. We

8 Bhaskar Mukhoty et al.

stress that the guarantees continue to hold (see Section C in supplementary) but deteriorate
if ααα∗,a∗ are spanned by s eigenvectors that include the lower ones as well. This is because
Gram matrices corresponding to popular kernels such as the RBF kernel are often very
ill-conditioned. Then, we can see that Equation (1) recovers the robust low-rank kernel
regression problem as a special case with P = 1 and A = A, where A = span(v1, . . . ,vs).
Projection onto A = A is given by ΠA (z) = ΠA(z) =VsV>s z, where Vs = [v1, . . . ,vs] ∈Rn×s.
Section 6.5 shows how this restriction of the signal to the span of the top-s eigenvectors does
not affect the universality of popular kernels such as the RBF kernel.
Sparse Signal Transforms. Consider signal transforms such as Fourier, Hadamard, wavelet,
etc. Sparse signal transforms correspond to the case when a∗ = M>ααα∗, where M ∈ Rn×n

is the design matrix of the transform (for sake of simplicity, assume M to be orthonormal
as is often the case) and ααα∗ ∈ Rn is an s-sparse vector, i.e., ‖ααα∗‖0 ≤ s. It is easy to see
that Equation (1) recovers the robust sparse signal transform problem with P =

(n
s

)
and

A =
⋃

T⊂[n],|T |=s AT with AT = span(
{

mi
}

i∈T), where mi is the ith column of the design
matrix M. Given that M is orthonormal, projection onto a given subspace AT is given by
ΠAT (z) = MT M>T z. The orthonormality of M can be further exploited to carry out projection
onto the union A in O (n logn) time by using “fast” versions of these transforms followed by
a hard-thresholding operation. Specifically, we have ΠA (z) = Mv, where v = HTs(M>z).
Sparse Recovery. In the sparse recovery signal model, the uncorrupted signal satisfies
a∗ = X>w∗ where w∗ ∈ Rd is an s∗-sparse linear model i.e. ‖w∗‖0 ≤ s∗ for some s∗ < d.
Equation (1) recovers the robust sparse recovery problem as a special case with P =

(d
s∗
)

and
A =

⋃
T⊂[d],|T |=s∗ AT where the subspace AT is given by AT = span(x1

T , . . . ,xn
T). Projection

onto a given subspace AT can be easily seen to be ΠAT (z) = ((XT)>(XT))†z. Projection onto
the union A can then be shown to be simply the classical sparse recovery problem that can
be solved efficiently if X satisfies properties such as RIP or RSC (see (Agarwal et al., 2012)).
Specifically, we have ΠA (z) = X>ŵ where ŵ = argmin‖w‖0≤s∗‖X>w− z‖2

2. The projection
step ΠA (·) can be carried out in O (nd) time here as well by employing projected gradient
and iterative hard-thresholding methods (see (Agarwal et al., 2012)).

5.2 Examples of Corruption Models Supported by APIS

Sparse Fully Adaptive Adversarial Corruptions. This is most widely studied case in
literature and assumes a sparse corruption vector i.e. ‖b∗‖0 ≤ k for some k < n. The model
in Equation (1) recovers this case with Q =

(n
k

)
and B =

⋃
T⊂[n],|T |=k BT with BT as the

subspace of all vectors with support within the set T . Note that the convergence guarantees
for APIS do not impose any restrictions on the magnitude of corruptions. Instead, the number
of iterations required for recovery merely scale logarithmically with the L2 norm of the
corruption vector i.e. the runtime scales as log(‖b∗‖2) (see Theorem 1). It can be easily seen
that the hard-thresholding operator HTk(·) (Section 4) offers projection onto the union B.
Dense Fully Adaptive Adversarial Corruptions. Unlike several previous works, APIS also
allows corruption vectors that are dense ‖b∗‖0 = Ω (n), i.e., most points suffer corruption.
This is because APIS only requires the unions A ,B to be incoherent and does not care if B
contains dense vectors. We will see such examples in Section 6, with noiselet corruptions,
and in Section6.4 where we will exploit local incoherence results to guarantee recovery when
the signal is Fourier-sparse, and the corruptions are Wavelet-sparse. In Section 7, we will
establish that APIS offers recovery in such dense corruption settings, experimentally as well.

As noted earlier, in both the corruption models, the adversary has full knowledge of
a∗,A∗ before choosing b∗,B∗ in any manner, i.e., the adversary is fully adaptive.

Robust non-Parametric Regression via Incoherent Subspace Projections 9

5.3 Do the subspaces really need to be low-rank? What if this is too strict and a∗ /∈A ?

For exact recovery guarantees (which APIS does offer), some low-rank restriction seems to be
necessary, especially when working with universal models such as the Gaussian kernel whose
Gram matrix is often full-rank (and ill-conditioned), or the Fourier transform whose design
matrix is also full-rank (but well-conditioned). Given such full-rank designs, unless additional
restrictions are put (e.g., low-rank), recovery remains an ill-posed problem. However, in
Section 6.4, we will see that APIS offers non-trivial recovery even if the clean signal a∗
does not belong to A but is well-approximated by vectors in A . Specifically, these are cases
when a∗ /∈A but rather a∗+ e∗ ∈A and ‖e∗‖2 is small. It is common in signal processing
tasks to consider signals (images etc) that are well-approximated by a sparse wavelet/Fourier
representation but not exactly sparse themselves.

6 Recovery, Breakdown Points, Misspecified Models and Universality

All detailed proofs and derivations are provided in the appendices.

6.1 Incoherence

A key requirement for robust recovery in model presented in Equation (1) is for the unions
A ,B to be incoherent with respect to each other. We present below a notion of subspace
incoherence suitable to our technique. We note that the notion presented below is similar to
notions of subspace incoherence prevalent in literature but suited for our setting.

Definition 1 (Subspace Incoherence) For any µ > 0, we say two subspaces A,B ⊆ Rn

(of possibly different ranks) are µ-incoherent if ∀u ∈ A, ‖ΠB(u)‖2
2 ≤ µ · ‖u‖2

2 and ∀v ∈ B,
‖ΠA(v)‖2

2 ≤ µ · ‖v‖2
2.

Note that the above definition uses the same incoherence constant µ for projections both

ways. This is justified since maxu∈A
‖ΠB(u)‖22
‖u‖22

= maxv∈B
‖ΠA(v)‖22
‖v‖22

. To see why, let U and V be

orthonormal matrices whose columns span A and B resp. and notice that µ = ‖V>U‖2
op =

‖U>V‖2
op where ‖·‖op is the operator norm. Since orthonormal projections are non-expansive,

we always have µ ≤ 1. However, our results demand stronger contractions which we will
establish for our application settings discussed in Section 5. However, first we extend the
notion of incoherence to unions of subspaces.

Definition 2 (Subspace Union (SU) Incoherence) For any µ > 0, we say that a pair of
unions of subspaces A =

⋃P
i=1 Ai and B =

⋃Q
j=1 B j is µ-SU incoherent if for all i ∈ [P], j ∈

[Q], the subspaces Ai,B j are µ-incoherent.

Theorem 1 states the main claim of this paper. Restrictions on s,k and breakdown points
emerge when trying to satisfy the incoherence criterion demanded by Theorem 1.

Theorem 1 Suppose we obtain data as described in Equation (1) where the two unions
A ,B are µ-incoherent with µ < 1

9 . Then, for any ε > 0 within T = O
(

log ‖a
∗‖2+‖b∗‖2

ε

)
iterations, APIS offers ‖aT −a∗‖2 ≤ ε . Moreover, in the known signal support case when
P = 1 (see below), the requirement is further relaxed to µ < 1

3 .

10 Bhaskar Mukhoty et al.

Proof (Sketch) We present the main steps in deriving the result for the known signal support
case when P = 1. We recall the notation from Algorithm 1 where At+1 3 at+1,Bt+1 3 bt+1,
and let pt = ΠA(b∗−bt) and pt+1 = ΠA(b∗−bt+1). Thus, we have at+1 = ΠA(y−bt+1) =
a∗+ΠA(b∗−bt+1) (since a∗ ∈ A and orthonormal projections are idempotent) which gives
us ‖at+1−a∗‖2 = ‖ΠA(b∗−bt+1)‖2 = ‖pt+1‖2. Let Q := Bt+1∩B∗ denote the meet of the
two subspaces, as well as denote the symmetric difference subspaces P := Bt+1∩ (B∗)⊥ and
R= B∗∩ (Bt+1)⊥ (recall that A 3 a∗,B∗ 3 b∗).

Below we show that ‖pt+1‖2 ≤ 3µ · ‖pt‖2 that establishes a linear rate of convergence
if µ < 1

3 as it grants ‖at+1−a∗‖2 = ‖pt+1‖2 ≤ 3µ · ‖pt‖2 = 3µ · ‖at −a∗‖2. To show that
‖pt+1‖2 ≤ 3µ · ‖pt‖2, we note that

bt+1 = ΠBt+1(a∗+b∗−at) = ΠBt+1(b∗−ΠA(b∗−bt)) = ΠBt+1(b∗−pt),

and thus b∗ − bt+1 = b∗ −ΠBt+1(b∗ − pt) = ΠR(b∗) + ΠBt+1(pt). This gives us, by an
application of the triangle inequality, ‖pt+1‖2 = ‖ΠA(b∗−bt+1)‖2 ≤ ‖ΠA(ΠR(b∗))‖2 +
‖ΠA(ΠBt+1(pt))‖2. Applying incoherence now tells us that, since pt ∈A by projection, we
have

‖ΠA(ΠBt+1(pt))‖2 ≤
√

µ · ‖ΠBt+1(pt)‖2 ≤ µ · ‖pt‖2

Using other arguments given in the full proof, it can be shown that ‖ΠA(ΠR(b∗))‖2 ≤
2µ · ‖pt‖2 which gives us ‖pt+1‖2 ≤ 3µ · ‖pt‖2 concluding the proof sketch.

Section A in the appendix gives the complete proof this result. APIS offers a stronger guaran-
tee, requiring µ < 1

3 , in the known signal support case (Chen and De, 2020). These are cases
when the union A consists of a single subspace i.e. P= 1. Note that this is indeed the case (see
Section 5) for linear regression and low-rank kernel regression. We now derive breakdown
points, as well as restrictions on s,k for various applications that arise when we attempt to sat-
isfy the incoherence requirements of Theorem 1. Table 1 summarizes the signal-corruption
pairings for which APIS guarantees perfect recovery and their corresponding breakdown
points essentially bounding how large s,k can be. Detailed derivations of these results are
presented in the supplementary material and summarized below.

6.2 Cases with Sparse Corruptions

In this case B = S n
k , the set of all k-sparse vectors. Calculating the incoherence constants

then reduces to application-specific derivations which we sketch below.

Linear Regression. If the covariate matrix is X , then we get µ ≤maxS⊂[n]
|S|=k

‖XS‖2op
λmin(XX>)

where

‖·‖op is the operator norm (see Section B in the appendix for proofs). It turns out that
this is satisfied in several natural settings. For example, if the covariates are Gaussian i.e.
xi ∼N (0, Id) then µ < 1

3 (as required by Theorem 1) with high probability whenever k < n
154 .

We stress that our results do not require data points to be sampled from a standard Gaussian
per se. The requirement µ < 1

3 is satisfied by other data distributions as well (see Section B).
Kernel Regression. For a Gram matrix G (calculated on covariates xi, i ∈ [n] using a PSD

kernel), we get µ ≤ Λ unif
k (G)

λs(G) where λs is the sth largest eigenvalue of G and Λ unif
k is the largest

eigenvalue of any principal k× k submatrix of G. For the special case of RBF kernel, further
calculations show that µ < 1

9 is satisfied, for instance, when covariates are sampled uniformly
over the unit sphere and we have s < Ω̃ (logn) ,k ≤O (

√
n). Yet again, these settings (RBF

Robust non-Parametric Regression via Incoherent Subspace Projections 11

Table 1 Some signal and corruption models handled by APIS, and their corresponding breakdown points and
per-iteration time complexity. For a vector v, t-sparse means ‖v‖0 ≤ t and t blah-sparse means v has a t-sparse
representation in the basis blah. In the last two rows, the corruption signals, although sparse in some basis (e.g.
noiselets), can be dense as vectors e.g. ‖b∗‖0 = n, i.e. all n points suffer corruption. APIS offers recovery with
such dense corruption whereas others e.g. Bafna et al. (2018), demand ‖b∗‖0� n. In the last row, APIS offers
recovery with a pair of bases (Fourier, Haar wavelet), that is not incoherent but only satisfies local incoherence.
The third row presents the special case for d = 2 (general case presented in Section C).

Signal Corruption Breakdown point Time per ΠA (·) Time per ΠB(·) Reference

Linear Regression
xi ∼N (0, Id)

k-sparse k < n
154 O (nd) O (n logn) Section B

Kernel Regression
w/ Gram matrix G
a is s-sparse Section 5

k-sparse 3Λ unif
k (G)< λs(G)

O (ns)
+O

(
n2s
)

one time
– as above – Section C

RBF kernel
xi ∼ unif(Sd−1)

k-sparse s < O
(

logn
log logn

)
k < O (

√
n)

– as above – – as above – Section C

s-sparse in either
Fourier, Hadarmard
or noiselet bases

k-sparse
sk < n

9
e.g. s,k ≤

√
n

3
O (n logn) – as above – (Foucart and Rauhut, 2013)

s-sparse in Fourier
or wavelet (Haar,
Daubechies D4/D8)

k noiselet-sparse sk < n
27 – as above – – as above – (Candes and Wakin, 2008)

(Foucart and Rauhut, 2013)

s noiselet-sparse
k-sparse in Fourier
or wavelet (Haar,
Daubechies D4/D8)

sk < n
27 – as above – – as above – (Candes and Wakin, 2008)

(Foucart and Rauhut, 2013)

s Haar-sparse and
anti concentrated k Fourier-sparse k4

s + sk2

n ≤
1
9 – as above – – as above – Section 6.4

kernel, unit sphere etc) are not essential, but merely sufficient conditions where APIS is
guaranteed to succeed.
Signal Transforms. For a variety of signal transforms including Fourier, Hadamard, noiselet,
we are assured µ < 1

9 , as desired by Theorem 1, whenever sk < n
9 . This can be realized in

several ways, e.g. s = O (1) ,k = O (n) or s,k = O (
√

n), etc. See Table 1 for a summary.

6.3 Cases with Dense Corruptions

Notably, APIS offers exact recovery even in certain cases where the corruption vector is
completely dense i.e. ‖b∗‖0 = n. Note that the adversary is still allowed to be completely
adaptive. One such case is when the signal is s-sparse in the Fourier or wavelet (Haar or
Daubechies D4/D8) bases, and the corruptions are k-sparse in noiselet basis (Coifman et al.,
2001). Since wavelets are known to represent natural signals well, this is a practically useful
setting. Note that a vector b∗ with a k-sparse noiselet representation even for k = 1 can be
completely dense i.e. ‖b∗‖0 = n. APIS also supports dense Gaussian noise the responses as
is discussed below.

6.4 Handing Model Misspecifications

In certain practical situations, the model outlined in Equation (1) may not be satisfied.
For instance, we could have a∗ /∈ A if we have an image that is not entirely (but only
approximately) sparse in the wavelet basis. Similarly, the unions A ,B could fail to be
incoherent (as is the case in the Fourier-Wavelet pair). In this section, we show how APIS
can still offer non-trivial recovery in these settings.

12 Bhaskar Mukhoty et al.

Unmodelled Error. In this case we modify Equation (1) to include an unmodelled error term.

y = ã+b∗+ e∗, (2)

where ã ∈A ,b∗ ∈B and a∗ = ã+e∗ /∈A . We make no assumptions on e∗ belonging to any
union of subspaces etc and allow it to be completely arbitrary. Section E in the supplementary
shows that if µ < 1

9 is satisfied, then for any ε > 0, within T ≤O (log((‖a∗‖2 +‖b∗‖2)/ε))
iterations, APIS guarantees a recovery error of

‖aT − ã‖2 ≤ ε +O

(
max
A∈A
‖ΠA(e∗)‖2 +max

B∈B
‖ΠB(e∗)‖2

)
.

We now look at two applications of this result.
Simultaneous sparse corruptions and dense Gaussian noise. Consider linear regression
where, apart from k adversarially corrupted points, all n points get Gaussian noise i.e. y =
X>w∗+b∗+e∗, where e∗ ∼N (0,σ2 · In). The above result shows that within T =O (logn)

iterations, APIS guarantees ‖wT −w∗‖2
2 ≤O

(
σ2
(
(d+k) lnn

n

))
. As n→ ∞, the model error

behaves as ‖w−w∗‖2
2 ≤ O (k logn/n). This guarantees consistent recovery if k logn/n→ 0

as n→ ∞. This is a sharper result than previous works (Bhatia et al., 2015; Mukhoty et al.,
2019) that do not offer consistent estimation even if k logn/n→ 0.
Compressible Signals. Given an image a∗ that is not itself wavelet-sparse, but still (s,ε)-
approximately wavelet sparse i.e. there exists an image ã that is s wavelet-sparse, and
‖a∗− ã‖2 ≤ ε · ‖a∗‖2. In particular, ã can be taken to be the best s wavelet-sparse approxi-
mation of a∗. The above shows that even if a∗ is subjected to adversarial corruptions, APIS
offers a recovery of ã to within O (ε · ‖a∗‖2) error within O (log(1/ε)) iterations.

Handling Lack of Incoherence. Pairs of bases that are not incoherent are well-known
(Krahmer and Ward, 2014; Zhou et al., 2016), the most famous example being the Fourier-
Wavelet pair which can only assure µ ≈ 1 no matter how small s,k are. Thus, Theorem 1, if
applied directly, would fail to offer a non-trivial recovery result if the signal is wavelet-sparse
and corruptions are Fourier-sparse. However, in Section F in the supplementary, we show
that using local incoherence properties of these two bases (which are also well-studied e.g.
(Krahmer and Ward, 2014)), APIS can be shown to continue to offer exact recovery if the
signal is not just sparse in the wavelet domain, but also anti-concentrated as well i.e. it
spreads its mass over its wavelet support elements (please see Section F in the appendix
for details). For this settings, we show that the incoherence constant satisfies µ ≤ k4

s + sk2

n .
Now µ < 1

9 can be ensured if, for example, sk2 ≤ n/18 (i.e. s,k are small compared to n
which controls the second term) and k4 < s/18 (i.e. s� k which controls the first term). We
note that some form of signal restriction, for example, signal anti-concentration, seems to
be necessary since a spike signal having support over a single wavelet-basis element, can
be irrevocably corrupted by an adaptive Fourier-sparse signal, given that the bases are not
incoherent. Also, notice that this is yet another instance of APIS guaranteeing recovery when
the corruptions are dense since a Fourier-sparse vector b∗ can still have ‖b∗‖0 = Ω (n).

6.5 Does APIS retain Universality?

Kernel (ridge) regression with the RBF kernel is known to be a universal estimator (Micchelli
et al., 2006). However, APIS requires the signal a∗ to have a low-rank representation in

Robust non-Parametric Regression via Incoherent Subspace Projections 13

terms of the top-s eigenvectors of the Gram matrix. As Table 1 indicates, for the RBF kernel,
Theorem 1 allows s to be as large as sn < O (logn/ log logn) for n points. Does this model
retain universality despite this restriction? What sort of functions can a∗ still approximate? We
sketch an argument below that indicates an answer in the affirmative, along with a qualitative
outline of functions that can be still described by this low-rank model.

Several results on random matrix approximation guarantee that if data covariates are
chosen from nice distributions then, as the number of covariates n→ ∞, not only do the
eigenvalues of the Gram matrix closely approximate those of the integral operator induced
the PSD kernel (Minh et al., 2006; Rosasco et al., 2010), but the empirical operator also
approaches the integral operator in the Hilbert-Schmidt norm. This assures us that eigen-
vectors of the Gram matrix closely approximate the eigenfunctions of the integral operator.
For instance, Rosasco et al. (2010) offer an explicit two-way relation between the eigen-
vectors and the eigenfunctions. Now, in the uni-dimensional case (d = 1), for any i ≤ n,
the ith largest eigenfunction of the integral operator for the RBF kernel is represented in
terms of the ith-order Hermite polynomial (Rasmussen and Williams, 2006). The ith Hermite
polynomial is of degree i and Hermite polynomials form a universal basis (as they constitute
an orthogonal polynomial sequence). In particular, the first s Hermite polynomials span all
degree-s polynomial functions. Thus, even with the restriction on sn, APIS does allow signals
a∗ that are (upto vanishing approximation errors) spanned by Hermite polynomials of order
upto sn. Now, APIS allows sn ≤ O (logn/ log logn) and as n→ ∞, sn → ∞ as well (albeit
slowly). Thus, a∗ can represent functions that are (upto approximation errors) arbitrarily high
degree polynomials.

A similar argument holds for multi-dimensional spaces and product kernels e.g. RBF
since, for such kernels, the eigenfunctions and eigenvalues in the multi-dimensional case
are products of their uni-dimensional counterparts (Fasshauer, 2011). Although it would be
interesting to make the above arguments rigorous, they nevertheless indicate that APIS offers
robust recovery for a model that is still universal in the limit. In Section 7, we will see that
APIS offers excellent reconstruction for sinusoids, polynomials as well as their combinations
over multi-dimensional spaces, even under adversarial corruptions.

7 Experiments

Extensive experiments were carried out comparing APIS to state-of-the-art competitor algo-
rithms on three key robust regression tasks

1. Robust non-parametric regression to learn (multi-dimensional) sinusoidal and polynomial
functions (see Figures 3, 8, and Table 2) and robust Fourier transform (see Fig. 8)

2. Robust linear regression (see Fig. 4)
3. Image denoising on the benchmark Set12 images (see Fig. 5) with sparse adversarial salt-

and-pepper corruption, as well as dense-checkerboard pattern corruptions (see Figures 6,
7, and Table 3).

7.1 System Configuration

Experiments for which runtimes for various algorithms were recorded were carried out on a
64-bit machine with Intel® Core™ i7-6500U CPU @ 2.50GHz, 4 cores, 16 GB RAM and
Ubuntu 16.04 OS, except for the Deep CNN model from (Zhang et al., 2017) which was
trained on NVidia K80 GPUs (made available by the Kaggle platform for which the authors

14 Bhaskar Mukhoty et al.

are grateful). All methods were implemented in Python, except those from (Gu et al., 2014;
Cizek and Sadikoglu, 2020), for which codes were made available by the authors themselves,
in R and MATLAB respectively. All figures e.g. Figures. 3, 4, 6 and 7 show actual predictions
by various algorithms, and all results are reported over a single run of the algorithms.

7.2 Baselines and Competitor Algorithms

Below are described the state-of-the-art competitor algorithms chosen alongside APIS in
various experiments.
Robust Non-parametric Kernel Regression. Based on recommendations of the recent
survey by Cizek and Sadikoglu (2020), the widely studied Huber and median estimators were
chosen as baselines. The Nadaraya-Watson (kernel regression) and kernel ridge regression
estimators were also chosen as baselines. In addition, the recently proposed LBM method
(Du et al., 2018) for non-parametric regression was chosen as a competitor.
Robust Linear Regression. Recent state-of-the-art algorithms were chosen as competitors
including SEVER Diakonikolas et al. (2019), RGD Prasad et al. (2018), STIR Mukhoty
et al. (2019), TORRENT Bhatia et al. (2015) and the constrained L1 minimization based
morphological component analysis (MCA) approach of McCoy and Tropp (2014). The
classical robust M-estimator based on Tukey’s bi-square loss was also chosen as a baseline.
We note that the SEVER algorithm as described in Diakonikolas et al. (2019) eliminates
corrupted points sluggishly and is slow. A modification was done to offer the algorithm a
handicap by revealing the true number of corrupted points to speed up the algorithm. Results
are reported for both SEVER as well as this modified variant SEVER-M.
Image Denoising. For image experiments, comparisons are reported against a wide variety
of standard state-of-the-art image denoising methods, including local methods, as well as
methods based on total-variation and deep learning. We briefly summarize these here. In
image denoising, non-local self-similarity (NSS) based methods exploit the fact that image
patches often repeat themselves. In the BM3D method (Dabov et al., 2007), similar patches
found using block-matching (BM) are stacked in 3D and taken to a transform domain for
noise attenuation. A weighted average of the cleaned patches is then used to estimate each
pixel of the output image. Another NSS-based method is WNNM (Gu et al., 2014) that
utilizes the low-rank structure of similar patches. Weighted nuclear norm minimization is
used as a convex relaxation of low rank approximation. Given a set of image patches Y, a
low rank estimate X̂ is found such that:

X̂ = argminX‖Y−X‖F +‖X‖w,∗

where, ‖X‖w,∗ = ∑i wiσi(X) is the weighted nuclear norm of X. Comparisons are also
reported against the total variation regularization based method TV-Bregman (solved using
the split-Bregman method (Getreuer, 2012)) that uses local smoothness property of natural
images. The superiority of the WNNM method, among non-deep methods, was reported by
Bouwmans et al. (2018). Comparisons are also reported with a deep CNN-based technique
(DnCNN) that performs Gaussian denoising based on residual learning. This network has 17
CNN layers with the ReLU activation function and intermediate layers additionally using
batch normalization. However, to adapt the network to adversarial corruption settings, the
architecture was retrained separately on salt-paper noise (DnCNN-SP) and block noise
(DnCNN-Block) using the 400 image dataset used by the authors (Zhang et al., 2017). Recent
studies (Fan et al., 2019) have demonstrated the effectiveness of DnCNN over filtering
methods on image denoising tasks.

Robust non-Parametric Regression via Incoherent Subspace Projections 15

7.3 Performance Metrics

Robust Non-parametric Regression. For the results in Fig. 3 and Table 2, the root mean
squared error (RMSE) on test points was used as a performance metric. It is notable that these
experiments were conducted on synthetic data and in order to enable an unbiased evaluation
of the recovery of the function being learnt (e.g. sinusoid, polynomial etc), test points were
not subjected to adversarial corruptions or Gaussian noise.
Robust Linear Regression. For the results in Fig. 4, again synthetic settings were used, and
performance was measured in terms of model recovery error i.e. the L2 distance of the model
recovered by an algorithm and the true model. Note that directly measuring model recovery
error was not performed in non-parametric settings since in those settings, the function being
learnt by various algorithms is, in general, not expressible in terms of a compact parameter.
Image Denoising. Performance was measured in experiments reported in Figures 6, 7 and
Table 3 using standard performance measures, namely peak signal to noise ratio (PSNR) and
structural similarity index measure (SSIM). The mean squared error (MSE) of a noisy n×m
image N w.r.t. the original image I is defined as MSE = 1

mn‖N− I‖2
2. The PSNR of the noisy

image N is then defined to be

PSNR = 10log10
max(I)2

MSE

where, max(I) defined as the maximum value of a pixel in the image I. SSIM on the other
hand, tries to combine luminance, contrast and structural similarity between two images, but
at a patch level rather than the global level. Given two image patches X ,Y , their SSIM is
computed as

SSIM =
(2µX µY + c1)(2σXY + c2)

(µ2
X +µ2

Y + c1)(σ2
X +σ2

Y + c2)

where, µX ,σX ,σXY denote the mean, variance and co-variance respectively, and c1,c2 denote
constants. A complete description of this metric can be found in (Wang et al., 2004).

7.4 Hyperparameter Tuning

Hyperparameter tuning becomes non-trivial with corrupted data since responses in a given
validation set are also expected to be corrupted. Specifically, let the observed and predicted
responses in a validation set be denoted by y and ŷ. Since y itself contains corruptions, the
residual ‖r‖2,r = y− ŷ, is not a reliable indicator of performance. Instead, APIS proposes
using ‖r−ΠB(r)‖2 as an indicator. Note that if ŷ ≈ a∗, i.e., excellent performance, then
r≈ b∗ and indeed we have ‖r−ΠB(r)‖2→ 0. For sparse corruptions, the above involves
simply rejecting the top few validation points with the highest prediction error. Under this
strategy, algorithms need to have an (estimate of) k to construct the projection operator ΠB(·).
Methods that do not have k as a hyperparameter were offered the true value of k to allow
them to perform hyperparameter tuning. APIS was not offered this handicap as it did have k
as a tunable hyperparameter.
Hyperparameter Ranges. All hyperparameters that were tuned for various algorithms are
reported using Python syntax to specify ranges. For non-parametric regression, all algorithms
were offered the RBF kernel whose bandwidth was tuned in the range logspace(-2,2,5)
separately for all algorithms (except for the Huber and median methods, where code from
the authors of (Cizek and Sadikoglu, 2020) was used which itself performed all hyperparam-
eter tuning). For LBM, the number of bins M is shown to have an optimal value M ≈

√
n

16 Bhaskar Mukhoty et al.

d n LBM Huber Median KR KRR APIS
2 500 0.399 0.99 0.965 0.5 0.445 0.029
5 2000 – KR – 1.552 1.526 1.089 0.710 0.474
7 3000 – KR – 1.934 1.876 1.564 1.352 0.803

Table 2 Multidimensional Non-parametric Regression with RBF kernel. The problem settings (data,
corruption model, Gaussian noise) are identical to Fig. 3 except that the covariates are multi-dimensional now.
The first two columns report the dimensionality of the covariates and the number of training points. The rest
of the columns report test RMSE values for various algorithms. The true function being learnt was a sum of
uni-dimensional sinusoids i.e. f (x) = ∑

d
i=1 sin(xi). The figure on the right depicts this function for the d = 2

case. Figure courtesy academo.org

by Du et al. (2018) and was thus tuned in the range sqrt(n)*linspace(0.5,1.5,10).
For APIS, both s,k were tuned in the range n*linspace(0.05,0.2,10). For linear re-
gression, all algorithms except STIR required k to be tuned which was done in the range
n*linspace(0.01,0.2,20). For STIR, an η parameter (that needs to be strictly greater
than 1) was tuned in the range np.linspace(1.01,3.01,21). For RGD, two parameters
η ,δ were tuned in the ranges np.linspace(0.05,0.2,20) and np.linspace(0.1,0.9,9),
respectively.

7.5 Results

Figures 3 and 4 summarize the results of an empirical comparison of APIS with competitor
methods on non-parametric regression and linear regression, respectively. APIS offers far
superior convergence speeds on linear regression tasks (and vanishing model recovery error
comparable to that offered by several other algorithms) and the best RMSE values on
non-parametric regression tasks. Table 2 reports results on non-parametric regression on
multidimensional data. For d > 2, LBM results were identical to that of its base estimator
KR, as number of bins M ≈ (

√
n)d (at

√
n bins per dimension), far exceeded number of train

points resulting in bins having a single data point.
For image denoising experiments, gray-scale images of popular Set12 dataset (Fan et al.,
2019; Zhang et al., 2017) (shown in Fig.5) were used. Images were subjected to sparse
adversarial salt-and-pepper corruptions, as well as dense checkerboard corruptions. Figures 6
and 7 present visualizations of the performance of APIS and state-of-the-art de-noising
methods. APIS demonstrates superior recovery both in terms of subjective visual perception,
as well as in terms of PSNR and SSIM. The PSNR, SSIM metrics, and prediction times
offered by all methods averaged over the 12 images in the Set12 dataset, are reported in Table
3. For sparse adversarial salt-and-pepper corruptions, APIS improves PSNR by 25% and
SSIM by 20% over the next best model DnCNN-SP. For dense checkerboard corruptions,
APIS improves PSNR by 20% and SSIM by 14% to the next best DnCNN-Block.

academo.org

Robust non-Parametric Regression via Incoherent Subspace Projections 17

−3 −2 −1 0 1 2 3
Covariate, x

−2

−1

0

1

2

Fu
nc

tio
n

va
lu

e

sin(x), n=500, d=1, k/n=0.1
TrainClean
TrainCorr
True

LBM (0.083)
Huber(0.147)
Median(0.647)

KR (0.245)
KRR (0.220)
APIS (0.034)

−3 −2 −1 0 1 2 3
Covariate, x

−3

−2

−1

0

1

2

3

4

Fu
nc

tio
n

va
lu

e

x*sin(3x), n=500, d=1, k/n=0.1
TrainClean
TrainCorr
True

LBM (0.729)
Huber(0.686)
Median(0.707)

KR (0.434)
KRR (0.494)
APIS (0.085)

−6 −4 −2 0 2 4 6
Covariate, x

−6

−4

−2

0

2

4

6

Fu
nc

tio
n

va
lu

e

x, n=500, d=1, k/n=0.05
TrainClean
TrainCorr
True

LBM (0.056)
Huber(0.902)
Median(0.910)

KR (0.400)
KRR (0.343)
APIS (0.021)

−4 −3 −2 −1 0 1 2 3 4
Covariate, x

−3

−2

−1

0

1

2

3

Fu
nc

tio
n

va
lu

e

x(x-2)(x+2)(x-4)(x+4)/50, n=500, d=1, k/n=0.05
TrainClean
TrainCorr
True

LBM (0.173)
Huber(0.859)
Median(0.853)

KR (0.133)
KRR (0.295)
APIS (0.051)

Fig. 3 Non-parametric kernel regression with RBF kernel. The four panels demonstrate the performance
of various algorithms on four functions, a sinusoid f (x) = sin(x), a hybrid function f (x) = x · sin(3x), a linear
function f (x) = x and a quintic polynomial f (x) = x(x− 2)(x+ 2)(x− 4)(x+ 4)/50. The headings of the
panels show the function being learnt, the number of training points, and the fraction of corrupted training
points. The RMSE values offered by various algorithms is mentioned in parentheses against method names
in the legends. The true function curve is plotted using a thick light blue curve. 500 training points were
sampled from N (0,22). A fraction (k

n) these points were sampled to be subjected to adversarial corruption
with probability proportional to the magnitude of their function value i.e. | f (x)|. Responses were modified for
the corrupted points by setting y =− f (x) i.e. flipping the sign of the response but retaining the magnitude.
Gaussian noise sampled from N (0,0.12) was added to all points (even clean ones). In the figures, corrupted
points are depicted using a red cross and clean points using an empty gray circle. Hyperparameter tuning
was done for all methods as described in the main text. 1000 test points were sampled from N (0,1.52) for
estimating the RMSE for various algorithms. No corruption or Gaussian noise was added to test responses. In
all cases, APIS offers the best test RMSE that is 2 to 5× smaller than the next best method.

Sparse salt-and-pepper corruptions Dense checkerboard corruptions

PSNR SSIM Time (sec) PSNR SSIM Time (sec)

APIS 28.92 0.856 1.85 22.89 0.787 82.15
DnCNN-SP/Block 23.04 0.714 2.14 20.12 0.69 2.03

TV-Bregman 17.24 0.407 0.09 10.58 0.465 0.09
WNNM 16.24 0.523 642.51 10.40 0.486 527.36
BM3D 15.54 0.465 206.58 10.90 0.459 232.69

Noisy image 10.21 0.050 - 10.99 0.677 -

Table 3 PSNR, SSIM metric values and recovery times for various methods, averaged over all 12 images of
the Set12 dataset (see Fig. 5). For sparse adversarial salt-and-pepper corruptions, APIS improves PSNR by
25% and SSIM by 20% over the next best method that happens to be DnCNN-SP. For dense checkerboard
corruptions, APIS improves PSNR by 20% and SSIM by 14% with respect to the next best method that
happens to be DnCNN-Block. It is notable thought that the training time of DnCNN models i.e. DnCNN-SP
and DnCNN-Block is quite large (around 6 hours each on NVidia K80 GPUs), and is not shown in the table.

18 Bhaskar Mukhoty et al.

10−2 10−1 100

Time in sec

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

||w
−
w

* |
| 2

n=10000, d=100, k/n=0.2

STIR
TORRENT
SEVER
SEVER-M
RGD
Bi-square
MCA
APIS

10−1 100 101

Time in sec

10−2

10−1

100

101

||w
−
w

* |
| 2

n=10000, d=100, k/n=0.2, σnoise = 0.1
STIR
TORRENT
SEVER
SEVER-M
RGD
Bi-square
MCA
APIS

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
k/n (supplied)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

||w
−
w

* |
| 2

n=500, d=50, k/n (actual)=0.15, iter=200

TORRENT
SEVER
APIS

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
k/n (supplied)

0.0

0.2

0.4

0.6

0.8

1.0

||w
−
w

* |
| 2

n=500, d=50, k/n (actual)=0.15, σnoise = 0.1, iter=200

TORRENT
SEVER
APIS

Fig. 4 Linear regression. The figures demonstrate convergence of the algorithms with respect to time (top)
and sensitivity with respect to hyper-parameter k (bottom). The headings of the panels show the number of
training points, the fraction of corrupted training points, and the variance of the dense Gaussian noise (if
present). For the top row, 10000 training points were generated as xi ∼N (0, Id) for d = 100. A true model and
an adversarial model were both chosen as w∗,wa ∼N (0, Id). For clean points, y = x>w∗, for 20% corrupted
points y = x>wa. The left column has no Gaussian noise, while the plots on the right column have Gaussian
noise N (0,0.12), added to all points (even clean ones). The timed convergence plots show that in absence of
Gaussian noise, most methods offer recovery of w∗ to machine precision level although APIS offers fastest
recovery (RGD, SEVER offer slow recovery). The bottom row shows APIS offer stable recovery in a wide
range of settings.

Fig. 5 The Set-12 Dataset (Fan et al., 2019; Zhang et al., 2017) is a collection of 12 popular gray scale
images. All images were scaled to 512×512 pixels for our experiments.

Robust non-Parametric Regression via Incoherent Subspace Projections 19

psnr=9.94, ssim=0.04

Corrupted

psnr=17.43, ssim=0.41

TV-Bregman

psnr=14.60, ssim=0.49

BM3D

psnr=17.59, ssim=0.60

WNNM

psnr=24.11, ssim=0.75

DnCNN-SP

psnr=25.36, ssim=0.90

APIS
cameraman, adversarial salt-pepper corruption, k/n =0.2

psnr=10.17, ssim=0.07

Corrupted

psnr=17.03, ssim=0.36

TV-Bregman

psnr=14.94, ssim=0.37

BM3D

psnr=16.62, ssim=0.45

WNNM

psnr=21.85, ssim=0.62

DnCNN-SP

psnr=27.17, ssim=0.76

APIS
Barbara, adversarial salt-pepper corruption, k/n =0.2

psnr=10.30, ssim=0.07

Corrupted

psnr=18.10, ssim=0.44

TV-Bregman

psnr=17.23, ssim=0.56

BM3D

psnr=16.65, ssim=0.63

WNNM

psnr=21.48, ssim=0.76

DnCNN-SP

psnr=27.11, ssim=0.80

APIS
monarch, adversarial salt-pepper corruption, k/n =0.2

Fig. 6 Image denoising with sparse adversarial corruptions. For each image, sparse adversarial salt-and-
pepper corruptions were added to 20% of the pixels. Corruptions were added to these pixels by setting lighter
pixels i.e. those with grayscale value > 127 to completely black i.e., the grayscale value of 0, and setting
darker pixels i.e. those with grayscale value < 127 to completely white i.e., the grayscale value of 255. The
first column shows the image obtained as a result of these corruptions. The subsequent columns show the
image recovered by various algorithms. Below each image is shown the PSNR and SSIM values for that image.
APIS not only offers visually better recovery, but also the best PSNR and SSIM values, often significantly
better than the next best method. In particular, APIS is able to preserve the minute checkerboard pattern on
the tablecloth and the fine stripes on the scarf in the Barbara image (second row), and the fine details of the
flowers and the extremely thin antennae of the butterfly in the Monarch image (third row), whereas all the
other methods lose these fine details. (Please zoom-in for better viewing.)

20 Bhaskar Mukhoty et al.

psnr=11.03, ssim=0.68

Corrupted

psnr=10.70, ssim=0.50

TV-Bregman

psnr=11.15, ssim=0.57

BM3D

psnr=10.96, ssim=0.67

WNNM

psnr=16.35, ssim=0.65

DnCNN-Block

psnr=20.04, ssim=0.79

APIS
cameraman, block corruption

psnr=10.92, ssim=0.65

Corrupted

psnr=10.33, ssim=0.36

TV-Bregman

psnr=11.01, ssim=0.42

BM3D

psnr=10.78, ssim=0.45

WNNM

psnr=21.04, ssim=0.70

DnCNN-Block

psnr=21.43, ssim=0.70

APIS
Barbara, block corruption

psnr=11.09, ssim=0.67

Corrupted

psnr=10.14, ssim=0.46

TV-Bregman

psnr=10.92, ssim=0.54

BM3D

psnr=10.89, ssim=0.09

WNNM

psnr=16.42, ssim=0.68

DnCNN-Block

psnr=25.51, ssim=0.76

APIS
monarch, block corruption

Fig. 7 Image denoising with dense corruptions. For each image, dense corruptions were introduced by
superimposing a dense checkerboard pattern on the entire image, thus corrupting all pixels. The first column
shows the image obtained as a result of these corruptions. The subsequent columns show the image recovered
by various algorithms. Below each image is shown the PSNR and SSIM values for that image. Similar to the
observation made in the caption for Fig. 6, APIS offers superior recovery and preserves fine details in both
images. In contrast, TV-Bregman, BM3D, and WNNM fail to offer any reasonable recovery in either of the
examples, while DnCNN-Block retains much of the block corruption. (Please zoom-in for better viewing.)

Fig. 8 Phase Transition. This figure demonstrates the phase transition behavior of APIS on robust non-
parametric regression with RBF kernel (left) and robust Fourier transform (right) tasks, by considering various
sparsity and corruption levels. For each combination of (s,k) ∈ [n]× [n], a synthetic dataset (a∗,b∗) was
created randomly and APIS was executed to obtain its estimate â of the signal. An approximation error of
‖a∗− â‖2 < 10−4 · ‖a∗‖2 was considered a “success”. The experiment was repeated 50 times for each (s,k)
pair giving us a success likelihood p(s,k) ∈ [0,1] for each pair (s,k). The figures plot these success likelihood
values with a white pixel indicating p(s,k) = 1 i.e. all 50 experiments succeeded for that value of (s,k), a black
pixel indicating p(s,k) = 0 i.e. none of the 50 experiments succeeded for that value of (s,k) and shades of gray
indicating intermediate likelihood values in the range (0,1). For robust non-parametric regression with RBF
kernel, a Gram matrix was first generated by sampling 100 data points, from the surface of the unit sphere in
10 dimensions, i.e. S9. Next, the signal was generated as a random vector in the span of the top s eigen-vectors
of the Gram matrix. For robust Fourier transform, first a random s-sparse vector ααα∗ was generated and then the
signal was created as a∗ = Fααα∗ where F is the matrix corresponding to the Fourier transform. In both cases,
adversarial corruption was introduced to a∗ as done in Fig.3. In both figures, the recovery limit guaranteed by
Theorem 1 is outlined in magenta whereas the empirical 100% success region is outlined in green. Additionally,
the figure on the left for robust non-parametric regression with RBF kernel is zoomed in for easy viewing.

Robust non-Parametric Regression via Incoherent Subspace Projections 21

References

Agarwal A, Negahban SN, Wainwright MJ (2012) Fast global convergence of gradient
methods for high-dimensional statistical recovery. Annals of Statistics 40(5):2452—2482

Bafna M, Murtagh J, Vyas N (2018) Thwarting Adversarial Examples: An L0-Robust Sparse
Fourier Transform. In: Proceedings of the 32nd Annual Conference on Neural Information
Processing Systems (NIPS)

Baraniuk RG, Cevher V, Duarte MF, Hegde C (2010) Model-based compressive sensing. IEEE
Transactions on Information Theory 56(4):1982–2001, DOI 10.1109/TIT.2010.2040894

Barchiesi D, Plumbley MD (2013) Learning incoherent subspaces for classification via
supervised iterative projections and rotations. In: IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), IEEE, pp 1–6

Barchiesi D, Plumbley MD (2015) Learning Incoherent Subspaces: Classification via Inco-
herent Dictionary Learning. Journal of Signal Processing Systems 79(2):189–199

Bhatia K, Jain P, Kar P (2015) Robust Regression via Hard Thresholding. In: Proceedings of
the 29th Annual Conference on Neural Information Processing Systems (NIPS)

Bouwmans T, Javed S, Zhang H, Lin Z, Otazo R (2018) On the applications of robust
pca in image and video processing. Proceedings of the IEEE 106(8):1427–1457, DOI
10.1109/JPROC.2018.2853589

Candes EJ, Wakin MB (2008) An Introduction To Compressive Sampling. IEEE Signal
Processing Magazine 25(2):21–30

Chen X, De A (2020) Reconstruction under outliers for Fourier-sparse functions. In: Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA)

Chen Y (2015) Incoherence-Optimal Matrix Completion. IEEE Transactions on Information
Theory 61(5):2909–2923

Chen Y, Bhojanapalli S, Sanghavi S, Ward R (2014) Coherent Matrix Completion. In:
Proceedings of the 31 st International Conference on Machine Learning (ICML)

Cizek P, Sadikoglu S (2020) Robust nonparametric regression: A review. WIREs Computa-
tional Statistics 12(3):e1492

Coifman R, Geshwind F, Meyer Y (2001) Noiselets. Applied and Computational Harmonic
Analysis 10(1):27–44

Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on Image Processing 16(8):2080–2095,
DOI 10.1109/TIP.2007.901238

Diakonikolas I, Kamath G, Kane D, Li J, Steinhardt J, Stewart A (2019) Sever: A Robust
Meta-Algorithm for Stochastic Optimization. In: 36th International Conference on Machine
Learning (ICML)

Du SS, Wang Y, Balakrishnan S, Ravikumar P, Singh A (2018) Robust Nonparametric
Regression under Huber’s ε-contamination Model, arXiv:1805.10406 [math.ST]

Fan J, Hu TC, Truong YK (1994) Robust Non-Parametric Function Estimation. Scandinavian
Journal of Statistics 21(4):433–446

Fan L, Zhang F, Fan H, Zhang C (2019) Brief review of image denoising techniques. Visual
Computing for Industry, Biomedicine, and Art 2(1):7

Fasshauer GE (2011) Positive Definite Kernels: Past, Present and Future. Dolomites Research
Notes on Approximation 4:21–63

Foucart S, Rauhut H (2013) A Mathematical Introduction to Compressive Sensing. Applied
and Numerical Harmonic Analysis, Birkhäuser

Getreuer P (2012) Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman.
Image Processing On Line 2:74–95

22 Bhaskar Mukhoty et al.

Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application
to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp 2862–2869

Guruswami V, Zuckerman D (2016) Robust Fourier and Polynomial Curve Fitting. In:
Proceedings of the 57th IEEE Annual Symposium on Foundations of Computer Science
(FOCS)

Hegde C, Baraniuk RG (2012) Signal recovery on incoherent manifolds. IEEE Transactions
on Information Theory 58(12):7204–7214, DOI 10.1109/TIT.2012.2210860

Krahmer F, Ward R (2014) Stable and Robust Sampling Strategies for Compressive Imaging.
IEEE Transactions on Image Processing 23(2):612–622

McCoy MB, Tropp JA (2014) Sharp recovery bounds for convex demixing, with applications.
Foundations of Computational Mathematics 14(3):503–567

Micchelli CA, Xu Y, Zhang H (2006) Universal Kernels. Journal of Machine Learning
Research 7:2651–2667

Minh HQ, Niyogi P, Yao Y (2006) Mercer’s Theorem, Feature Maps, and Smoothing. In:
Proceedings of the International Conference on Computational Learning Theory (COLT)

Mukhoty B, Gopakumar G, Jain P, Kar P (2019) Globally-convergent Iteratively Reweighted
Least Squares for Robust Regression Problems. In: Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS)

Prasad A, Suggala AS, Balakrishnan S, Ravikumar P (2018) Robust Estimation via Robust
Gradient Estimation, arXiv:1802.06485 [stat.ML]

Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. MIT Press
Rosasco L, Belkin M, Vito ED (2010) On Learning with Integral Operators. Journal of

Machine Learning Research 11:905–934
Schnass K, Vandergheynst P (2010) Classification via Incoherent Subspaces.

ArXiv:1005.1471 [cs.CV]
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error

visibility to structural similarity. IEEE Transactions on Image Processing 13(4):600–612
Zhang H, Zhou Y, Liang Y (2015) Analysis of Robust PCA via Local Incoherence. In:

Proceedings of the 29th Annual Conference on Neural Information Processing Systems
(NIPS)

Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: Resid-
ual learning of deep cnn for image denoising. IEEE Transactions on Image Processing
26(7):3142–3155

Zhou Y, Zhang H, Liang Y (2016) On Compressive orthonormal Sensing. In: 54th Annual
Allerton Conference on Communication, Control, and Computing (Allerton)

Conflict of interest

The authors declare that they have no conflict of interest.

Robust non-Parametric Regression via Incoherent Subspace Projections 23

Algorithm 2 The APIS Algorithmic Framework (reproduced from Algorithm 1)
Input: Corrupted responses y, Projection operators ΠA (·),ΠB(·) that project onto A ,B
Output: An estimate â of the clean responses
1: Initialize a0← 0 and t← 0
2: for T = 1,2, . . . ,T −1 do
3: bt+1←ΠB(y−at) //let Bt+1 ∈B be a subspace that contains bt+1

4: at+1←ΠA (y−bt+1) //let At+1 ∈B be a subspace that contains at+1

5: t← t +1
6: end for
7: return aT

A A Generic Recovery Guarantee for APIS– a proof of Theorem 1

In this section, we will prove Theorem 1. We will present the proof in two parts, presenting the main proof
ideas in Lem. 1 with the special case of P = 1 (the so-called known signal support case (Chen and De, 2020))
where the union A consists of a single subspace A. Recall that we denote using P (resp. Q), the number of
subspaces in the union A =

⋃P
i=1 Ai in which the uncorrupted signal a∗ resides (resp the union B =

⋃Q
j=1 B j

in which the corruption b∗ resides). We also recall that the known signal support case does capture linear
regression and low-rank kernel ridge regression. Note however, that even in the known signal support case,
we may still have Q > 1 i.e. B may still be a general non-trivial union of subspaces e.g. the set of k-sparse
vectors which has Q =

(n
k

)
. We will then extend the proof to the general case in Lem. 2 where both P,Q≥ 1.

We reproduce the APIS algorithm below for ease of reading.

A.1 Convergence Analysis for P = 1 i.e. A = A but still Q≥ 1

We now present the proof in the case of known signal support.

Lemma 1 Suppose we obtain data as described in Equation (1) where the two unions A ,B are µ-incoherent
with µ < 1

3 and in addition, the union A contains a single subspace (the “known signal support” model).

Then, for any ε > 0 within T = O
(

log ‖a
∗‖2+‖b∗‖2

ε

)
iterations, APIS offers ‖aT −a∗‖2 ≤ ε .

Proof To simplify notation, we denote at =: a,bt =: b,at+1 =: a+,bt+1 =: b+,Bt+1 =: B+ (please refer to
Algorithm 2 for notation). Let Q := B+ ∩B∗ denote the meet of the two subspaces, as well as denote the
symmetric difference subspaces P := B+ ∩ (B∗)⊥ and R= B∗ ∩ (B+)⊥ (recall that A 3 a∗,B∗ 3 b∗).

Denote p = ΠA(b∗−b) and p+ = ΠA(b∗−b+). In this case we have a+ = ΠA(y−b+) = a∗+ΠA(b∗−
b+) (since a∗ ∈ A and orthonormal projections are idempotent) and thus, ‖a+−a∗‖2 = ‖ΠA(b∗−b+)‖2 =
‖p+‖2. We will show below that ‖p+‖2 ≤ 3µ ·‖p‖2 which will establish, if µ < 1

3 , a linear rate of convergence
since we will have ‖a+−a∗‖2 = ‖p+‖2 ≤ 3µ · ‖p‖2 = 3µ · ‖a−a∗‖2.

We have
b+ = ΠB+ (a∗+b∗−a) = ΠB+ (b∗−ΠA(b∗−b)) = ΠB+ (b∗−p),

and thus b∗−b+ = b∗−ΠB+ (b∗−p) = ΠR(b∗)+ΠB+ (p). This gives us, by an application of the triangle
inequality,

‖p+‖2 = ‖ΠA(b∗−b+)‖2 ≤ ‖ΠA(ΠR(b∗))‖2 +‖ΠA(ΠB+ (p))‖2

Now, the projection step assures us that projecting onto B+ was the best option out of all the subspaces in B
and thus, if we denote z = b∗−p, then we have, for any subspace B ∈B,

‖ΠB+ (z)− z‖2
2 ≤ ‖ΠB(z)− z‖2

2.

Now, ΠB(z)− z = Π⊥B (z). Using this, in particular, we have, setting B = B∗

‖Π⊥B+ (z)‖2
2 ≤ ‖Π⊥B∗ (z)‖2

2

Canceling components in the subspace (B+)⊥ ∩ (B∗)⊥, as well as those in the subspace Q gives us

‖ΠR(z)‖2
2 ≤ ‖ΠP(z)‖2

2 = ‖ΠP(p)‖2
2

24 Bhaskar Mukhoty et al.

since Π⊥B∗ (b
∗) = 0. Now, ΠR(z) = ΠR(b∗)−ΠR(p) since projections are linear operators. Applying the

triangle inequality gives us ‖ΠR(z)‖2 ≥ ‖ΠR(b∗)‖2−‖ΠR(p)‖2. This gives us

‖ΠR(b∗)‖2 ≤ ‖ΠP(p)‖2 +‖ΠR(p)‖2

≤ ‖ΠB+ (p)‖2 +‖ΠB∗ (p)‖2,

where the second step follows since orthonormal projections are always non-expansive. Applying incoherence
results now tells us that, since p ∈A , we have

‖ΠA(ΠR(b∗))‖2 ≤
√

µ · ‖ΠR(b∗)‖2 =
√

µ(‖ΠB+ (p)‖2 +‖ΠB∗ (p)‖2)≤ 2µ · ‖p‖2

This gives us, upon applying contraction due to incoherence,

‖p+‖2 ≤ ‖ΠA(ΠR(b∗))‖2 +‖ΠA(ΠB+ (p))‖2

≤ 3µ · ‖p‖2

Thus, in the known signal support case, APIS offers a linear rate of convergence whenever µ < 1
3 . Now, APIS

initializes a0 = 0 which means that initially, we have

p1 = ΠA(b∗−b1) = ΠA(b∗−ΠB+ (a∗+b∗))

and thus, ‖p1‖2 ≤ ‖a∗‖2 +‖b∗‖2 since projections are always non-expansive. The linear rate of convergence

implies that within T = O
(

log ‖a
∗‖2+‖b∗‖2

ε

)
iterations, we will have ‖pT ‖2 ≤ ε . Using our earlier observation

‖aT −a∗‖2 = ‖pT ‖2 then finishes the proof.

A.2 Convergence Analysis for General Case i.e both P,Q≥ 1

We now present the proof in the general case.

Lemma 2 Suppose we obtain data as described in Equation (1) where the two unions A ,B are µ-incoherent

with µ < 1
9 (we allow both P,Q > 1 in this case). Then, for any ε > 0 within T = O

(
log ‖a

∗‖2+‖b∗‖2
ε

)
iterations, APIS offers ‖aT −a∗‖2 ≤ ε .

Proof As before, to simplify notation, we denote at =: a,bt =: b,at+1 =: a+,bt+1 =: b+,At+1 =: A+,Bt+1 =:
B+. Let Q := B+ ∩B∗ denote the meet of the two subspaces, as well as denote the symmetric difference
subspaces P := B+∩(B∗)⊥ and R= B∗∩(B+)⊥ (recall that B∗ 3 b∗). Also let M := A+∩A∗ denote the meet
of the two subspaces, as well as denote the symmetric difference subspaces L := A+ ∩ (A∗)⊥ and N= A∗ ∩
(A+)⊥ (recall that A∗ 3 a∗). We also introduce the additional notation p := maxA∈A ‖ΠA(b∗−b)‖2, p+ :=
maxA∈A ‖ΠA(b∗−b+)‖2 and correspondingly q :=maxB∈B ‖ΠB(a∗−a)‖2,q+ :=maxB∈B ‖ΠB(a∗−a+)‖2.

Note that the update step gives us a+ = ΠA+ (a∗+b∗−b+) which gives us

a+−a∗ = ΠN(a∗)+ΠA+ (b+−b∗),

i.e.
‖a+−a∗‖2 ≤ ‖ΠN(a∗)‖2 +‖ΠA+ (b+−b∗)‖ ≤ ‖ΠN(a∗)‖2 + p+,

by applying the triangle inequality. A similar analysis of the projection step, as we did to analyze the special
case for P = 1, then gives us

‖ΠN(a∗)‖2 ≤ ‖ΠA+ (b+−b∗)‖2 +‖ΠA∗ (b+−b∗)‖2 ≤ 2p+,

giving us
‖a+−a∗‖2 ≤ 3p+.

We now show that we have p+ ≤ 9µ · p i.e. the quantity p decreases at a linear rate whenever µ < 1
9 . Since the

update step gives us b+ = ΠA+ (b∗+a∗−a), an analysis similar to the one done for the special case for P = 1
gives us, for any A ∈A ,

‖ΠA(b∗−b+)‖2 ≤ ‖ΠA(ΠR(b∗))‖2 +‖ΠA(ΠB+ (a−a∗))‖2

≤
√

µ(‖ΠR(b∗)‖2 +q).

Robust non-Parametric Regression via Incoherent Subspace Projections 25

Going as before also gives us

‖ΠR(b∗)‖2 ≤ ‖ΠB+ (a−a∗)‖2 +‖ΠB∗ (a−a∗)‖2 ≤ 2q,

and thus, putting the results together gives us

p≤max
A∈A
‖ΠA(b∗−b+)‖2 ≤ 3

√
µ ·q,

or considering this result for a different iterate, we get p+ ≤ 3
√

µ ·q+. Since the updates w.r.t a and b are
absolutely symmetric, a similar analysis to the above also gives us q+ ≤ 3

√
µ · p and consequently, p+ ≤ 9µ · p.

Thus, APIS offers a linear rate of convergence in the general case whenever µ < 1
9 . A similar analysis as be-

fore confirms p1 = maxA∈A ‖ΠA(b∗−b1)‖2 = O (‖a∗‖2 +‖b∗‖2) and that within T = O
(

log ‖a
∗‖2+‖b∗‖2

ε

)
iterations, we would have pT ≤ ε

3 . Since we already saw above that ‖aT −a∗‖2 ≤ 3pT , this confirms the upper
bound on the number of iterations required.

B Robust Linear Regression using APIS

We recall that in this case, we have known signal support i.e. P = 1 with A = A being the row span of the
covariate matrix X ∈ Rd×n and B being the union of subspaces of k-sparse vectors.

Lemma 3 If the corruption vectors are (adaptive adversarial) k-sparse vectors and the covariates xi ∈Rd , i∈
[n] are sampled i.i.d. from a standard Gaussian i.e. xi ∼N (0, Id) and n = Ω (d), then with probability at
least 1− 1

d2 , APIS offers exact recovery at a linear rate if k < n
154 . Moreover, the projection operation ΠA (·)

can be performed in O (nd) time in this case.

Proof Let V denote the d right singular vectors of the covariate matrix X ∈Rd×n. Then the projection operator
ΠA is given as ΠA(z) = VV>z where VV> = X>(XX>)†X . Note that this can also be accomplished by
simply solving a least squares problem which can be done in O (nd) time using various (conjugate, stochastic)
gradient descent techniques. This settles the time complexity of the projection operation ΠA (·). However,
ΠA(z) =VV>z also gives us the following expression for the SU-incoherence constant.

µ = max
u,v∈Sn−1

‖v‖0≤k

(
v>VV>u

)2
≤ max

v∈Sn−1

‖v‖0≤k

‖VV>v‖2
2 = max

S⊂[n]
|S|=k

‖XS‖2
2

λmin(XX>)

The above constants are readily available from prior works e.g. TORRENT (Bhatia et al., 2015) and are
reproduced here (see (Bhatia et al., 2015, Lemma 14 and Theorem 15)). For any δ ∈ (0,1), with probability at
least 1−δ , we have

1. λmin(XX>)≥ n−3
√

513dn+178n log 2
δ

2. maxS⊂[n]
|S|=k
‖XS‖2

2 ≤ k
(
1+3e

√
6log en

k

)
+3
√

513dk+178k log 1
δ

To simplify the above bounds, we set δ = 1
d2 and notice that for large enough d, we have log(2d2)< d

100 so
that we get λmin(XX>)≥ n−3

√
515dn and maxS⊂[n]

|S|=k
‖XS‖2

2 ≤ k
(
1+3e

√
6log en

k

)
+3
√

515dk, each with con-

fidence at least 1− 1
d2 . We also assume that n is large enough so that

√
515dn < n

300 (n > 3002 ·515 ·d i.e. n =

Ω (d) suffices to ensures this) so that we get λmin(XX>)≥ 99n
100 and maxS⊂[n]

|S|=k
‖XS‖2

2 ≤ k
(101

100 +3e
√

6log en
k

)
.

This gives us

µ ≤
(

100
99

)
k
n

(
101
100

+3e
√

6log
en
k

)
Elementary calculations show that we have µ < 1

3 whenever k ≤ n
154 . Since Theorem 1 assures a linear rate of

convergence for APIS in the known support case whenever µ < 1
3 , this finishes the proof.

26 Bhaskar Mukhoty et al.

However, we note that similar breakdown points can be obtained even if the data covariates come from
other nice distributions, for example, sub-Gaussian distributions that include all distributions with bounded
support, arbitrary (non-standard) Gaussian distributions, mixtures of Gaussian distributions, and many more.
The following result sketches that APIS offers a linear rate of convergence even in this general setting.
However, the breakdown point is less explicit due to the generality of the result.

Lemma 4 If the corruption vectors are (adaptive adversarial) k-sparse vectors and the covariates xi ∈Rd , i∈
[n] are sampled i.i.d. from a sub-Gaussian distribution with sub-Gaussian norm R and covariance matrix
Σ ∈ Rd×d , and n = Ω (d), then with probability at least 1− 1

d2 , APIS offers exact recovery at a linear rate
if k < n

O(1) . The constants hidden in the O (·) ,Ω (·) notations used in this statement are either universal or
depend only on the sub-Gaussian norm R of the distribution.

Proof We note that the projection operation ΠA (·) can still be performed in O (nd) time in this case (by
solving a least squares problem). As before, we have

µ = max
u,v∈Sn−1

‖v‖0≤k

(
v>VV>u

)2
≤ max

v∈Sn−1

‖v‖0≤k

‖VV>v‖2
2 = max

S⊂[n]
|S|=k

‖XS‖2
2

λmin(XX>)
,

where VV> = X>(XX>)†X . For the case of sub-Gaussian distributions, the following relevant results are
available (see (Bhatia et al., 2015, Lemma 16 and Theorem 17)). For any δ ∈ (0,1), with probability at least
1−δ , we have the following where c,C are universal constants that depend only on the sub-Gaussian norm R
of the distribution.

1. λmin(XX>)≥ n ·λmin(Σ)−C ·
√

dn−
√

n
c log 2

δ

2. maxS⊂[n]
|S|=k
‖XS‖2

2 ≤ k
(
λmax(Σ)+

√ n
ck log en

k

)
+C ·

√
kd +

√
n
c log 2

δ

As before, to simplify the above bounds, we set δ = 1
d2 and notice that for large enough d and n = Ω (d), we

have λmin(XX>)≥ 99n
100 ·λmin(Σ) and maxS⊂[n]

|S|=k
‖XS‖2

2 ≤ k
(
λmax(Σ) · 101

100 +
√ n

ck log en
k

)
which gives us

µ ≤
(

100
99

)
k
n

(
λmax(Σ)

λmin(Σ)
· 101

100
+

1
λmin(Σ)

√
n
ck

log
en
k

)

Assuming w.l.o.g. λmax(Σ)≥ 1 and denoting κκκ := λmax(Σ)
λmin(Σ) as the condition number of the covariance matrix Σ

gives us

µ ≤ O

(
κκκ · k

n

(
1+
√

n
k

log
en
k

))
,

which can be shown to assure µ < 1
3 when k ≤O

(n
κκκ

)
. Now notice that the above breakdown point depends

on the condition number of the covariance matrix. This dependence is superfluous and can be removed, as we
show below.

Notice that if we let X̃ = Σ
− 1

2 X where X is the covariate matrix used by the algorithm and Σ is the
covariance matrix of the distribution generating the covariates, then we have

VV> = X>(XX>)†X = X̃>(X̃ X̃>)†X̃

where X̃ is now a matrix of covariates assumed to be sampled from a (still) sub-Gaussian distribution but with
identity covariance. This allows us to use the following improved upper bound on the incoherence constant

µ = max
S⊂[n]
|S|=k

‖X̃S‖2
2

λmin(X̃ X̃>)
,

as well as

1. λmin(X̃ X̃>)≥ n−C ·
√

dn−
√

n
c log 2

δ

2. maxS⊂[n]
|S|=k
‖X̃S‖2

2 ≤ k
(
1+
√ n

ck log en
k

)
+C ·

√
kd +

√
n
c log 2

δ

Robust non-Parametric Regression via Incoherent Subspace Projections 27

The above in turn give us

µ ≤O

(
k
n

(
1+
√

n
k

log
en
k

))
,

which can be shown to assure µ < 1
3 when k < n

O(1) where the constants hidden in the O (·) notation are either
universal or depend only on the sub-Gaussian norm R of the distribution. Note that the algorithm does not
need to know Σ at all (either exactly or even approximately) for the above trick to work. The algorithm can
continue to perform the ΠA (·) projections using VV> = X>(XX>)†X but the analysis uses the (equivalent)
VV> = X̃>(X̃ X̃>)†X̃ instead.

C Robust Low-rank Kernel Regression using APIS

We recall that in this case, the uncorrupted signal satisfies a∗ = Gααα∗ where G ∈Rn×n be the Gram matrix with
Gi j = K(xi,x j) corresponding to a Mercer kernel K : Rd ×Rd → R such as the RBF kernel. Moreover, ααα∗

belongs to the span of the some s eigenvectors of G i.e. ααα∗ =Vγγγ∗ where ‖γγγ∗‖0 ≤ s and V = [v1, . . . ,vr]∈Rn×r

is the matrix of eigenvectors of G and r is the rank of G. As we will see, APIS offers the strongest guarantees
in the case when ααα∗ ∈ span(v1, . . . ,vs), i.e., when ααα∗ lies in the span of the the top eigenvectors.

Thus, in this case, we have known signal support i.e. P = 1 with A = A being the span of the top s
eigenvectors of G and B being the union of subspaces of k-sparse vectors. Here we derive breakdown points
for the case of kernel ridge regression. Lem. 5 presents this result for general Mercer kernels, whereas Lem. 6
will yield a specific breakdown point for the special case of the RBF kernel.

Lemma 5 If the corruption vectors are (adaptive adversarial) k-sparse vectors and the uncorrupted signal
lies in the span of the top s eigenvectors of a Gram matrix G corresponding to a Mercer kernel, then APIS
offers exact recovery at a linear rate if 3 ·Λ unif

k (G) < λs(G) where λs(G) is the sth-largest eigenvalue of G
and for any k > 0, Λ

unif
k (G) denotes the largest eigenvalue of any principal k× k sub-matrix of G. Moreover,

the projection operation ΠA (·) can be performed in O (ns) time in this case apart from a one-time cost of
O
(
n2s
)
.

Proof Let v1, . . . ,vs ∈Rn be the top-s eigenvectors of G i.e. Ṽ = [v1, . . . ,vs]∈Rn×s and let Σ̃ = diag(λ1, . . . ,λs)∈
Rs×s denote the diagonal matrix containing the corresponding top-s eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λs > 0.
The time complexity of the projection step is settled by noting that the projection operator ΠA is given as
ΠA(z) = ṼṼ>z. Calculating Ṽ takes a one-time cost of O

(
n2s
)

whereas applying the projection operator
requires two multiplications with an n× s matrix which takes O (ns) time.

Consider the matrix X̃ = Σ̃
− 1

2 Ṽ>G. It is easy to see that

X̃>(X̃ X̃>)−1X̃ = ṼṼ>

Notice the parallels between the above and a similar expression derived in the linear regression case in the
proof of Lem. 3. An identical analysis then gives us

µ = max
u,v∈Sn−1

‖v‖0≤k

(
v>ṼṼ>u

)2
≤ max

v∈Sn−1

‖v‖0≤k

‖ṼṼ>v‖2
2 = max

S⊂[n]
|S|=k

‖X̃S‖2
2

λmin(X̃ X̃>)

Now, clearly we have λmin(X̃ X̃>)≥ λs which lower bounds the denominator in the last expression. To upper
bound the numerator, notice that X̃S = [x̃i]i∈S ∈ Rs×k where x̃i = Σ̃

− 1
2 Ṽ>Gi where Gi is the ith column of the

matrix G. Now consider x̂i = Σ
− 1

2 V>Gi where Σ ∈ Rr×r is the diagonal matrix of all the eigenvalues of G,
not just the top-s ones (assuming G is of rank r) and V ∈Rn×r is the matrix of all the eigenvectors of G and let
X̂ = [x̂i]ni=1 ∈ Rs×n and, in particular, X̂S = [x̂i]i∈S ∈ Rs×k .

Since X̃S is a projection of X̂S onto the top-s eigenvectors of G, we conclude that ‖X̃S‖2
2 ≤‖X̂S‖2

2. However,
notice that X̂>X̂ = G and thus, ‖X̂S‖2

2 is upper bounded by the largest eigenvalue of the principal sub-matrix
GS

S. Thus, we have

µ ≤ max
S⊂[n]
|S|=k

‖X̃S‖2
2

λmin(X̃ X̃>)
≤

Λ unif
k (G)

λs(G)

This concludes the proof upon noting that we get µ < 1
3 as desired by Theorem 1 for APIS to offer exact

recovery at a linear rate whenever 3 ·Λ unif
k (G)< λs(G).

28 Bhaskar Mukhoty et al.

We note that the above proof does not use anywhere the fact that the signal has support only among the
top-s eigenvectors of the Gram matrix. However, if we start considering other sets of s eigenvectors as possible
support, we will run into adverse incoherence constants. Specifically, if the set of eigenvectors contains the
smallest eigenvector of G as well, then we would have

µ ≤ max
S⊂[n]
|S|=k

‖X̃S‖2
2

λmin(G)

Notice that the denominator now has λmin(G) instead of λs(G). Since the eigenvalues of Gram matrices w.r.t
popular kernels such as RBF decay rapidly (see proof of Lem. 6 below), this would mean that µ could take a
very large value and it may be impossible to satisfy µ < 1

9 no matter how small the value of k. That is why we
restrict the support to the top-s eigenvectors. However, Section E.1 shows that APIS offers recovery even if
signals are not totally represented by the top-s eigenvectors but merely well-approximated by them.

C.1 Breakdown Point Derivations for the RBF Kernel

Our goal in this discussion will be to establish the following breakdown point result for robust kernel ridge
regression settings.

Lemma 6 If the corruption vectors are (adaptive adversarial) k-sparse vectors and the uncorrupted signal
lies in the span of the top s eigenvectors of a Gram matrix G corresponding to the RBF kernel κ(x,y) =

exp
(
− ‖x−y‖22

h2

)
with x,y ∈ Rd for d > 1 and h being the bandwidth parameter of the kernel, with the data

covariates x1, . . . ,xn ∈ Rd sampled from the uniform distribution over the unit sphere Sd−1, then APIS offers
exact recovery at a linear rate in the following settings. We note that these conditions are neither exhaustive
nor necessary but merely some sufficient conditions in which recovery is guaranteed by APIS.

1. Case 1: d = 2, s≥ e: if k ≤
√

n,ss ≤ n
1
5 (i.e. s≤O (logn/ log logn)), and h ∈

[√
40

logn ,
1.13

(20.4)
2.5

logn

]
, then

with probability at least 1− 4exp(−n
2
5), we have 3 ·Λ unif

k (G) < λs(G) i.e. µ < 1
3 as guaranteed by

Lem. 5.

2. Case 2: d > 2, s≥ e: if k≤
√

n, (s+ d
2−1)s+ d

2 −1

exp(s−1)(d
2)

d+1
2
≤ n

1
5 , and h∈

[√
40

logn ,

(
n

1
20

18.8

) 1
2s
]

, then with probability

at least 1−4exp(−n
2
5), we have 3 ·Λ unif

k (G)< λs(G) i.e. µ < 1
3 as guaranteed by Lem. 5.

Note that in both cases, the range which the bandwidth is allowed to take while ensuring recovery expands

with n. For example, in the d = 2 case, in the limit n→ ∞, the range expands to [0,1.13] since (20.4)
2.5

logn → 1
as n→ ∞ since the exponent 2.5

logn → 0.

Sample Complexity. Before giving derivations for the above results, we put in a word about the sample
complexity.

1. Case 1: d = 2, s≥ e: n = Ω (1) samples and s≤ O (logn/ log logn) clearly suffice in this case.

2. Case 2: d > 2, s≥ e: we first simplify the expression (s+ d
2−1)s+ d

2 −1

exp(s−1)(d
2)

d+1
2

using simple inequalities such as

(x+ y)p ≤ 2p(xp + yp) for any x,y ∈ R+, p ∈ N to obtain the following inequality (using the shorthand
D := d

2 −1 to avoid clutter.

2D
(

Ds +
ss

DD +
(s

D

)D
)
< n

1
5

Simple calculations show that n = (Ω (1))d as well as s < O (logd(n)) suffice to satisfy the above
requirement.

Note that in both cases, we can tolerate upto k ≤
√

n corruptions.

Robust non-Parametric Regression via Incoherent Subspace Projections 29

C.2 Some Pre-calculations

Let the data points {xi} be sampled from the uniform distribution over Sd−1 with d > 1, and the RBF kernel,

κ(xi,x j) = exp(− ‖x
i−x j‖2

h2). Let πr be the rth largest, r ∈ N∪{0} distinct eigenvalue of the integral transform
operator corresponding to the kernel function κ , then (Minh et al., 2006, Theorem 2) states

πr = exp(− 2
h2)h

d−2Ir+ d
2−1(

2
h2)Γ (

d
2
) (3)

where, I denotes the modified Bessel function of the first kind. Here each πr occurs with multiplicity
(2r+d−2)(r+d−3)!

r!(d−2)! . The eigenvalues also satisfy

(
2e
h2)

r A1

(2r+d−2)r+ d−1
2

< πr < (
2e
h2)

r A2

(2r+d−2)r+ d−1
2

(4)

where A1,A2 being independent of r are given as follows:

A1 =
2

d
2−1
√

π
exp(− 2

h2 −
1

12
+

d
2
−1)Γ (

d
2
)

A2 =
2

d
2−1
√

π
exp(− 2

h2 +
1
h4 +

d
2
−1)Γ (

d
2
)

with Γ denoting the Gamma function.
Let λ

(n)
r be the rth-largest eigenvalue of the n×n gram matrix Gi j = k(xi,x j) over n data points. We have

from (Rosasco et al., 2010, Theorems 5 and 7) that for a normalized mercer kernel κ(xi,xi)≤ 1 (which the
RBF kernel does satisfy), with probability 1−2exp(−τ),

|λ (n)
r −nπr| ≤ 2

√
2nτ

Hence, for a given principal sub-matrices of size k,

Pr(λ (k)
0 > kπ0 +2

√
2kτ1)≤ 2e−τ1

=⇒ Pr

(⋃
sub-matrices of size k

{λ (k)
0 > kπ0 +2

√
2kτ1}

)
≤
(

n
k

)
2e−τ1 ≤ (

ne
k
)k2e−τ1

⇐⇒ Pr
(

Λ
uni f
k > kπ0 +2

√
2kτ1

)
≤ (

ne
k
)k2e−τ1 =:

δ

2

⇐⇒ Pr

(
Λ

uni f
k > kπ0 +2

√
2k
(

k ln(
ne
k
)+ ln

4
δ

))
≤ δ

2
putting, τ1 = k ln(

ne
k
)+ ln

4
δ

(5)

Also we have,

Pr

(
λ
(n)
s < nπs−2

√
2n ln

4
δ

)
≤ δ

2
(6)

Combining Equations (5) and (6):

Pr

([
3Λ

uni f
k > 3kπ0 +6

√
2k(k ln(

ne
k
)+ ln

4
δ
)

]
∪

[
λ
(n)
s < nπs−2

√
2n ln

4
δ

])
≤ δ

⇐⇒ Pr

([
3Λ

uni f
k ≤ 3kπ0 +6

√
2k(k ln(

ne
k
)+ ln

4
δ
)

]
∩

[
nπs−2

√
2n ln

4
δ
≤ λ

(n)
s

])
≥ 1−δ

⇐⇒ Pr
(

3Λ
uni f
k ≤ λ

(n)
s

)
≥ 1−δ

30 Bhaskar Mukhoty et al.

whenever,

3kπ0 +6

√
2k(k ln

ne
k
+ ln

4
δ
)≤ nπs−2

√
2n ln

4
δ

⇐⇒ 3k
n

(
π0 +2

√
2

√
ln

ne
k
+

1
k

ln
4
δ

)
+2

√
2
n

ln
4
δ
≤ πs

⇐= 3k
n

(
π0 +2

√
2
√

ln
ne
k

)
+2
√

2

√
1
n

ln
4
δ
(3

√
k
n
+1)≤ πs using,

√
a+b≤

√
a+
√

b (7)

We break the remaining proof into the two cases d = 2 and d > 2 in the following two subsections.

C.3 Case 1: d = 2, s≥ e

From Equation (3) and using I0(x) = 1
π

π∫
0

exp(xcos(θ))dθ ≤ exp(x) we have,

π0 = exp(− 2
h2)I0(

2
h2)≤ exp(− 2

h2)exp(
2
h2)≤ 1

From Equation (4) we have, for s≥ e and ss ≤ nε2

πs ≥ (
2e
h2)

s exp(− 2
h2 − 1

12)
√

π(2s)s+ 1
2

=
exp(− 2

h2)

h2s

exp(s− 1
12)√

2πss+ 1
2

≥
exp(− 2

h2)

h2s

exp(11
12)√

2π

exp(s−1)

ss+ 1
2

≥
exp(− 2

h2)

h2s

exp(11
12)√

2π

1

ss− 1
2

using, exp(s−1)≥ s

≥
exp(− 2

h2)

h2s
1
ss using, s≥ e

≥
exp(− 2

h2)

h2s
1

nε2

From Equation (7) we require:

1
nε2
≥ h2s exp(

2
h2)

(
3k
n

+
6
√

2k
n

√
ln

ne
k
+2
√

2

√
1
n

ln
4
δ
(3

√
k
n
+1)

)

Let k ≤ nε3 . To satisfy the above requirement we break it into following cases:

1
(9+8

√
2)nε2

≥ h2s exp(
2
h2)

3k
n

⇐= n1−ε2−ε3 ≥ (9+8
√

2)h2s exp(
2
h2) (8)

Since k
n

√
ln ne

k ≤ (k
n)

3
5 ≤ n

3(ε3−1)
5 , for 0≤ k

n ≤ 0.5

6
√

2
(9+8

√
2)

1
nε2
≥ 6
√

2
k
n

√
ln

ne
k

h2s exp(
2
h2)

⇐= n
3
5 (1−ε3)−ε2 ≥ (9+8

√
2)h2s exp(

2
h2) (9)

Robust non-Parametric Regression via Incoherent Subspace Projections 31

Assume, 1
nε4

√
ln 4

δ
= 1 so that, δ = 4exp(−n2ε4)with, 0 < ε4 <

1
2

6+2
√

2
(9+8

√
2)

1
nε2
≥ 2
√

2h2s exp(
2
h2)

√
1
n

ln
4
δ
(3(

k
n
)0.5 +1)

⇐= 6+2
√

2
(9+8

√
2)

1
nε2
≥ h2s exp(

2
h2)

√
1
n

ln
4
δ
(6+2

√
2) since,

1
2
≥ k

n

⇐⇒ n
1
2−ε4−ε2 ≥ (9+8

√
2)h2s exp(

2
h2) using,

1
nε4

√
ln

4
δ
= 1 (10)

We now summarize, last three conditions in order to satisfy Equation (7)

– Breakdown point: set ε3 =
1
2 , k

n ≤ nε3−1 = n−
1
2

– Confidence bound: set 1
2 − ε4− ε2 =

3
5 (1− ε3)− ε2, so that ε4 =

1
5 .

This gives, δ = 4exp(−n2ε4) = 4exp(−n
2
5)

– Generality: we need 1
2 − ε4− ε2 ≥ 0 =⇒ 3

10 − ε2 ≥ 0

Set ε2 =
2

10 , so that ss ≤ nε2 = n
1
5

– Bandwidth: Using s≤ s lns≤ ε2 ln(n) = ln(n)
5 .

We require, n
1
10 ≥ 20.4h

ln(n)
2.5 exp(2

h2), which is satisfied if:

n
1
20 ≥ exp(

2
h2) and n

1
20 ≥ 20.4h

ln(n)
2.5√

40
ln(n)

≤ h≤ 1.13

(20.4)
2.5

ln(n)

Note that the permissible range for h improves with n.

C.4 Case: d > 2, s≥ e

For d > 2 we have from eq. 4,

π0 <
(2e)

d
2−1 exp(− 2

h2 +
1
h4)Γ (d

2)
√

π(d−2)
d−1

2
≤ 2exp(

1
h4),

where we have used that for d > 2, (2e)
d
2 −1

Γ (d
2)

√
π(d−2)

d−1
2
≤ 2. A short proof of this is given below. From1, we have

Γ (x)≤
√

2πxx− 1
2 exp(1

12x − x). So that,

(2e)
d
2−1

Γ (d
2)√

π(d−2)
d−1

2
≤

2
d
2−1√2π exp(d

2 −1+ 1
6d −

d
2)(

d
2(d−2))

d−1
2

√
π

= exp(
1

6d
−1)(

d
d−2

)
d−1

2

≤ 3exp(
1

18
−1) since, both are strictly decreasing on d > 2

= 1.11 < 1.2

1 https://dlmf.nist.gov/5.6

https://dlmf.nist.gov/5.6

32 Bhaskar Mukhoty et al.

Coming back to the original argument, assume, exp(s−1)(d
2)

d+1
2

(s+ d
2−1)s+ d

2 −1
≥ 1

nε2 and s≥ e so that,

πs > (
2e
h2)

s (2e)
d
2−1 exp(− 2

h2 − 1
12)Γ (d

2)
√

π(2s+d−2)s+ d−1
2

≥ (
e
h2)

s
(e)

d
2−1 exp(− 2

h2 − 1
12)
√

2π
d
2 (

d
2e)

d
2

√
2π(s+ d

2 −1)s+ d−1
2

=
1

h2s

exp(s− 2
h2 − 13

12)(
d
2)

d+1
2

(s+ d
2 −1)s+ d−1

2

≥
exp(− 2

h2)

h2s

exp(s−1)(d
2)

d+1
2

(s+ d
2 −1)s+ d

2−1
using, exp(− 1

12
)

√
s+

d
2
−1≥ exp(− 1

12
)
√

e≥ 1

≥
exp(− 2

h2)

h2s
1

nε2

From Equation (7), we require,

1
nε2
≥ h2s exp(

2
h2)

(
3k
n

(
1.2exp(

1
h4)+2

√
2
√

ln
ne
k

)
+2
√

2

√
1
n

ln
4
δ
(3(

k
n
)

1
2 +1)

)

Let k ≤ nε3 . In order to satisfy the above requirement we break it into following three cases:

1.4
18.8

1
nε2
≥ 3.6h2s exp(

2
h2 +

1
h4)

k
n

⇐= n1−ε2−ε3 ≥ 18.8h2s exp((1+
1
h2)

2) (11)

Since k
n

√
ln(ne

k)≤ (k
n)

3
5 ≤ n

3(ε3−1)
5 ,

8.5
18.8

1
nε2
≥ 6
√

2
k
n

√
ln(

ne
k
)h2s exp(

2
h2)

⇐= n
3
5 (1−ε3)−ε2 ≥ 18.8h2s exp(

2
h2) (12)

Assume, 1
nε4

√
ln 4

δ
= 1 so that, δ = 4exp(−n2ε4)with, 0 < ε4 <

1
2

8.9
18.8

1
nε2
≥ 2
√

2h2s exp(
2
h2)

√
1
n

ln
4
δ
(3(

k
n
)0.5 +1)

⇐= 8.9
18.8

1
nε2
≥ h2s exp(

2
h2)

√
1
n

ln
4
δ
(6+2

√
2) since,

1
2
≥ k

n

⇐⇒ n
1
2−ε4−ε2 ≥ 18.8h2s exp(

2
h2) using,

1
nε4

√
ln

4
δ
= 1 (13)

Below we instantiate the variables ε2,ε3 and ε4 which satisfies the above three conditions simultaneously.

– Breakdown point: set ε3 =
1
2 , k

n ≤ nε3−1 = n−
1
2

– Confidence bound: set 1
2 − ε4− ε2 =

3
5 (1− ε3)− ε2, so that ε4 =

1
5 .

This gives, δ = 4exp(−n2ε4) = 4exp(−n
2
5)

– Universality: we need 1
2 − ε4− ε2 ≥ 0 =⇒ 3

10 − ε2 ≥ 0. Set ε2 =
2

10 , so that (s+ d
2−1)s+ d

2 −1

exp(s−1)(d
2)

d+1
2
≤ nε2 = n

1
5

Robust non-Parametric Regression via Incoherent Subspace Projections 33

Table 4 This table is a subset of Table 1 and presents only the rows concerning signals that have a sparse
representation in a basis such as Fourier, wavelet etc with the corruption being either a sparse vector or having
a sparse representation in the noiselet basis. We note that noiselet corruptions can be dense vectors i.e. have
‖b∗‖0 = n despite having a sparse representation in the noiselet basis.

Signal Corruption Breakdown point Time per ΠA (·) Time per ΠB(·) Reference

s-sparse in either
Fourier, Hadarmard
or noiselet bases

k-sparse
sk < n

9
e.g. s,k ≤

√
n

3
O (n logn) O (n logn) (Foucart and Rauhut, 2013)

s-sparse in Fourier
or wavelet (Haar,
Daubechies D4/D8)

k noiselet-sparse sk < n
27 – as above – – as above – (Candes and Wakin, 2008)

(Foucart and Rauhut, 2013)

s noiselet-sparse
k-sparse in Fourier
or wavelet (Haar,
Daubechies D4/D8)

sk < n
27 – as above – – as above – (Candes and Wakin, 2008)

(Foucart and Rauhut, 2013)

– Bandwidth: Instantiating Equation (13) ,n
1

10 ≥ 18.8h2s exp(2
h2). we require:

n
1

20 ≥ exp(
2
h2) and, n

1
20 ≥ 18.8h2s

⇐⇒ h≥

√
40

ln(n)
and, h≤

(
n

1
20

18.8

) 1
2s

Assume Equation (13) holds. In order to satisfy Equation (11) we further require,

n
3

10 ≥ 18.8h2s exp((1+
1
h2)

2)

⇐= n
3

10 ≥ 18.8h2s exp(
2
h2)exp(1+

1
h4)

⇐= n
3

10 ≥ n
1
10 exp(1+

1
h4)

⇐= n
1
5 ≥ exp(

1
h4) ⇐= h≥ (

5
ln(n)−5

)
1
4

Hence to satisfy all conditions on the bandwidth we require,

max{

√
40

ln(n)
,

(
5

ln(n)−5

) 1
4
} ≤ h≤

(
n

1
20

18.8

) 1
2s

Note that here as well, the acceptable range of bandwidth improves with s that in turn improves with n.

D Robust Signal Transforms using APIS

Table 4 is a subset of Table 1, it only presents the rows concerning signals that have a sparse representation
in a basis such as Fourier, wavelet, etc., with the corruption being either a sparse vector or having a sparse
representation in the noiselet basis.

A proof of the breakdown points for examples in the first row i.e. when the signal has an s-sparse
representation in Fourier, Hadamard, or noiselet bases, is given below. The proof is quite generic and holds
for all transformations. The n×n design matrix has all its entries of magnitude O

(
1√
n

)
which is true of the

design matrices of the Fourier, Hadamard, and noiselet transforms.

Lemma 7 Consider the n× n (orthonormal) design matrix U corresponding to a transformation such as
Fourier etc. Let A be the union of subspaces of all signals that have an s-sparse representation in this basis i.e.
A = {a∗ : a∗ =Uααα∗,‖ααα∗‖0 ≤ s}. Also let B be the union of subspaces corresponding to k-sparse vectors i.e.
B = {b∗ : ‖b∗‖0 ≤ k}. Then the pair (A ,B) is µ-SU incoherent (see Section 6.1) for µ ≤ sk

n if every entry
of the design matrix U satisfies |Ui j| ≤ 1√

n .

34 Bhaskar Mukhoty et al.

Proof Note that to bound the SU incoherence constant, we only need to bound

max
ααα∈Sn−1 ,‖ααα‖0≤s
b∈Sn−1,‖v‖0≤k

(
(Uααα)>b

)2

Since ααα,b are sparse vectors, we have ααα>U>b≤‖UK
S ‖2 where S = supp(ααα) and K = supp(b) are the supports

of ααα,b. Now, for any matrix A ∈ Rs×k, we have ‖A‖2 ≤
√

sk · ‖A‖∞. Since UK
S is effectively an s× k matrix

since its other rows and columns are zeroed out, this gives us ‖UK
S ‖2 ≤

√
sk ·ν where ν := ‖UK

S ‖∞. However,

by assumption, ‖U‖∞ ≤ 1√
n which gives us (Uααα)>b≤

√
sk
n and thus, µ ≤max

ααα∈Sn−1 ,‖ααα‖0≤s
b∈Sn−1 ,‖v‖0≤k

(
(Uααα)>b

)2 ≤ sk
n

which finishes the proof.
An equivalent incoherence bound can also be derived from the results of (Foucart and Rauhut, 2013,

Ch. 12) who effectively show that ν ≤ 1√
n , but we presented the above proof in our notation for the sake of

convenience.

Corollary 1 APIS offers a linear rate of recovery when the signal is s-sparse in either the Fourier, Hadarmard
or noiselet bases and the corruption is a k-sparse vector, whenever sk < n

9 .

Proof Lem. 7 shows that the SU-incoherence constant in these cases is bounded by µ ≤ sk
n . Theorem 1 shows

that APIS has a linear rate of recovery when µ < 1
9 . Combining the two finishes the proof.

A proof of the breakdown points in the second and the third rows of Table 4 i.e. when the signal has an
s-sparse representation in the Fourier or wavelet (Haar, Daubechies D4/D8) bases and the corruption has a
k-sparse representation in the noiselet basis or the vice-versa, is given below. We note that corruptions having
a sparse representation in the noiselet, wavelet, or Fourier bases can nevertheless be dense as vectors i.e. have
‖b∗‖0 = n.

Lemma 8 APIS offers a linear rate of recovery when the signal is s-sparse in Fourier or wavelet (Haar,
Daubechies D4/D8) bases and the corruption has a k-sparse representation in the noiselet basis, or vice versa,
whenever sk < n

27 .

Proof The proof is a generalization of the one used for Lem. 7. Notice that here we have two bases involved,
one for the signal (e.g., wavelet) and one for the corruption (e.g., noiselet). Let U,V denote the design matrices
corresponding to these two bases. Then it is easy to see that calculating the SU-incoherence constant µ requires
us to bound

max
u∈Sn−1 ,‖u‖0≤s
v∈Sn−1 ,‖v‖0≤k

(
u>U>V v

)2

Going as before, we can see that since u,v are sparse vectors, we have u>U>V v ≤ ‖U>S VK‖2 where S =

supp(u) and K = supp(v) are the supports of u,v respectively. Now, as U>S VK is effectively an s× k matrix
since all its other rows and columns are zeroed out, we have ‖U>S VK‖2 ≤

√
sk · ν where ν := ‖U>S VK‖∞.

Now, results from Candes and Wakin (2008); Foucart and Rauhut (2013) show us that ν ≤ 3 for the (wavelet-
noiselet) and (Fourier-noiselet) systems where wavelet could either be the Haar or Daubechies D4/D8 variants.
Proceeding similarly as in Lem. 7 and then Cor. 1 finishes the proof.

E Handling Unmodelled Errors with APIS

Recall that in this case, we modify Equation (1) to include an unmodelled error term.

y = ã+b∗+ e∗,

where ã ∈A ,b∗ ∈B and a∗ = ã+ e∗. We make no assumptions on e∗ such as requiring it to belong to any
union of subspaces etc. e∗ can be completely arbitrary; in particular it can be dense ‖e∗‖0 = n and need
not have a sparse representation in any particular basis. A useful case is when ã can be taken to be the best
approximation of a∗ in the union of subspaces A . Below, we offer a recovery guarantee for APIS in this case.
As in Section A, we will first present the main proof ideas with the special case of P = 1 (the so-called known
signal support case (Chen and De, 2020)) where the union A consists of a single subspace A. We will then
extend the proof to the general case where both P,Q≥ 1. Recall that we denote using P (resp. Q), the number
of subspaces in the union A =

⋃P
i=1 Ai in which the signal ã resides (resp the union B =

⋃Q
j=1 B j in which

the corruption b∗ resides).

Robust non-Parametric Regression via Incoherent Subspace Projections 35

E.1 Convergence Analysis for P = 1 i.e. A = A but still Q≥ 1

We now present the proof in the case of known signal support.

Lemma 9 Suppose we obtain data as described in Equation (2) where the two unions A ,B are µ-SU
incoherent with µ < 1

3 and in addition, the union A contains a single subspace (the known signal support

model). Then, for any ε > 0 within T = O
(

log ‖a
∗‖2+‖b∗‖2

ε

)
iterations, APIS offers ‖aT − ã‖2 ≤ ε +

4
√

µ

1−3µ
·

maxB∈B‖ΠB(e∗)‖2 +2 · ‖ΠA(e∗)‖2.

Proof As in the proof of Lem. 1, denote p = ΠA(b∗−b) and p+ = ΠA(b∗−b+). Let Q := B+ ∩B∗ denote
the meet of the two subspaces, as well as denote the symmetric difference subspaces P := B+ ∩ (B∗)⊥ and
R= B∗ ∩ (B+)⊥ (recall that A 3 a∗,B∗ 3 b∗). We also use the shorthand r := e∗−ΠA(e∗). In this case, we
have a+ = ΠA(ã+b∗+e∗−b+). Since ΠA(ã) = ã, we get a+− ã = ΠA(b∗−b++e∗) . Applying the triangle
inequality gives us ‖a+− ã‖2 ≤ ‖ΠA(b∗−b+)‖2 +‖ΠA(e∗)‖2 = ‖p+‖2 +‖ΠA(e∗)‖2. Now, we have

b+ = ΠB+ (ã+b∗+ e∗−a) = ΠB+ (b∗+ e∗−ΠA(b∗+ e∗−b)) = ΠB+ (b∗−p+ r),

and thus b∗−b+ = ΠR(b∗)+ΠB+ (p− r). The triangle inequality then gives us

‖p+‖2 = ‖ΠA(b∗−b+)‖2 ≤ ‖ΠA(ΠR(b∗))‖2 +‖ΠA(ΠB+ (p− r))‖2

Now, if we denote z = b∗−p+ r, the projection step assures us, as before, that,

‖ΠR(z)‖2
2 ≤ ‖ΠP(z)‖2

2 = ‖ΠP(p− r)‖2
2

since Π⊥B∗ (b
∗) = 0. Going as before gives us

‖ΠR(b∗)‖2 ≤ ‖ΠB+ (p− r)‖2 +‖ΠB∗ (p− r)‖2

Applying incoherence results now tells us that

‖ΠA(ΠR(b∗))‖2 ≤
√

µ · ‖ΠR(b∗)‖2 =
√

µ(‖ΠB+ (p− r)‖2 +‖ΠB∗ (p− r)‖2)

≤ 2µ‖p‖2 +2
√

µ ·max
B∈B
‖ΠB(r)‖2

Putting things together gives us

‖p+‖2 ≤ ‖ΠA(ΠR(b∗))‖2 +‖ΠA(ΠB+ (p− r))‖2

≤ 3µ‖p‖2 +3
√

µ ·max
B∈B
‖ΠB(r)‖2

≤ 3µ‖p‖2 +3
√

µ ·max
B∈B
‖ΠB(e∗)‖2,

where the last step follows since r = Π⊥A (e∗) and projections are always non-expansive. Now, APIS initializes
a0 = 0 which means that initially, we have (using a∗ = ã+ e∗)

p1 = ΠA(b∗−b) = ΠA(b∗−ΠB+ (a∗+b∗))

and thus, ‖p1‖2 ≤ ‖a∗‖2 +‖b∗‖2 since projections are always non-expansive. Thus, if µ < 1
3 , then the linear

rate of convergence implies that within T = O
(

log ‖a
∗‖2+‖b∗‖2

ε

)
iterations, we will have

‖pT ‖2 ≤ ε +
4
√

µ

1−3µ
·max

B∈B
‖ΠB(e∗)‖2 +‖ΠA(e∗)‖2.

Using our earlier observation ‖aT − ã‖2 = ‖pT ‖2 +‖ΠA(e∗)‖2 then finishes the proof.

36 Bhaskar Mukhoty et al.

E.2 Application to simultaneous sparse corruptions and dense Gaussian noise case

Consider the robust linear regression problem with the true linear model being w∗ ∈ Rd where, apart from k
adversarially corrupted points, all n points get Gaussian noise i.e. y = X>w∗+b∗+ e∗, where e∗ ∼N (0,σ2 ·
In). It is easy to see that for any fixed r-dimensional subspace S, we have ‖ΠS(e∗)‖2 ≤ O (

√
r). Thus,

‖ΠA(e∗)‖2 ≤ O
(√

d
)

and taking a union bound over all
(n

k

)
subspaces of k-sparse vectors tells us that

maxB∈B‖ΠB(e∗)‖2 ≤ O
(√

k logn
)
.

Lem. 9 shows that within T = O (logn) iterations, APIS guarantees a model vector wT such that

‖Xwt −Xw∗‖2 ≤O
(√

d +
√

k logn
)

. Using wT −w∗ = X†(Xwt −Xw∗) and the lower bounds on the eigen-

values of XX> from the proof of Lem. 3 tell us that ‖wT −w∗‖2 = O
(√

d+
√

k logn√
n

)
. Squaring both sides tells

us that ‖wT −w∗‖2
2 ≤ O

(
σ2
(
(d+k) lnn

n

))
.

Note that as n→∞, the above model recovery error behaves as ‖w−w∗‖2
2≤O (k logn/n). This guarantees

consistent recovery if k logn/n→ 0 as n→ ∞. This is a sharper result than previous works (Bhatia et al., 2015;
Mukhoty et al., 2019) that do not offer consistent estimation even if k logn/n→ 0.

E.3 Applicability to Robust Non-parametric Kernel Ridge Regression

The above results are also useful when applying APIS to robust kernel ridge regression. In several cases, the
function (signal) we are trying to approximate need not be exactly represented in terms of the top s eigenvectors
of the Gram matrix (see Section C). However, Lem. 9 shows that APIS still offers recovery of the s-sparse
representation of the signal in terms of the top-s eigenvectors. As discussed in Section 6.5, this still constitutes
a universal model in the limit, and experiments in Section 7 show that APIS offers excellent reconstruction
even under adversarial corruptions for sinusoids, polynomials, and their combinations.

E.4 Convergence Analysis for General Case i.e both P,Q≥ 1

We now present the proof in the general case.

Lemma 10 Suppose we obtain data as described in Equation (2) where the two unions A ,B are µ-

SU incoherent with µ < 1
9 . Then, for any ε > 0 within T = O

(
log ‖a

∗‖2+‖b∗‖2
ε

)
iterations, APIS offers

‖aT − ã‖2 ≤ ε +O (maxB∈B‖ΠB(e∗)‖2 +‖ΠA(e∗)‖2).

Proof The analysis in the general case proceeds by extending the proof of Lem. 9 in a manner similar to
how Lem. 2 extended the proof of Lem. 1. We define the quantities p := maxA∈A ‖ΠA(b∗−b)‖2, p+ :=
maxA∈A ‖ΠA(b∗−b+)‖2 and correspondingly q := maxB∈B ‖ΠB(ã−a)‖2,q+ := maxB∈B ‖ΠB(ã−a+)‖2
as in the proof of Lem. 2 and introduce two new notations u=maxA∈A ‖ΠA(e∗)‖2 and v=maxB∈B‖ΠB(e∗)‖2.
We get the following results

‖a+− ã‖2 ≤ 3p++3u

p≤ 3
√

µ(q+u)

q+ ≤ 3
√

µ(p+ v)

The second result above can be rewritten as p+ ≤ 3
√

µ(q++u) which gives us p+ ≤ 9µ · p+(9µ ·v+3
√

µ ·u).
Thus, we continue to get a linear rate of convergence whenever µ < 1

9 and, since p1 ≤ O (‖a∗‖2 +‖b∗‖2),

after T = O
(

log ‖a
∗‖2+‖b∗‖2

ε

)
iterations get pT ≤ ε

3 . Since ‖aT − ã‖2 ≤ 3pT +3u from above, we get

‖a+−a∗‖2 ≤ ε +10µ · v+4
√

µ ·u+3u≤ ε +5 ·max
A∈A
‖ΠA(e∗)‖2 +2 ·max

B∈B
‖ΠB(e∗)‖2,

which finishes the proof.

Robust non-Parametric Regression via Incoherent Subspace Projections 37

E.5 Application to Recovery of Compressible Signals

The above result has applications in, for example, the sparse signal transform example, where e∗ may model
components of the signal not captured in the low-rank model. For instance, the signal may not come entirely
from any single rank-s subspace A ∈A but merely have most of its weight concentrated on a single rank-s
subspace A∗ ∈A . e∗ would then model the component of the signal orthogonal to A∗.

Consider an image a∗ that is not wavelet-sparse, but (s,ε)-approximately wavelet sparse meaning that
there exists an image ã that is s wavelet-sparse, and ‖a∗− ã‖2 ≤ ε · ‖a∗‖2. In particular, ã can be taken to be
the best s wavelet-sparse approximation of a∗. This means that ‖e∗‖2 ≤ ε · ‖a∗‖2. Lem. 10 shows that APIS
offers a recovery of ã to within O (ε · ‖a∗‖2) error within T = O

(
log ‖a

∗‖2+‖b∗‖2
ε·‖a∗‖2

)
= O

(
log 1

ε
+ log ‖b

∗‖2
ε‖a∗‖2

)
iterations.

F Handling Lack of Incoherence with APIS

The results of Theorem 1 and Lem. 7 and 8 rely on the notion of incoherence described in Section 6.1. However,
in certain situations, the bases in question are not incoherent. For example, when the signal is s-sparse in the
Haar wavelet basis and the corruption is k-sparse in the Fourier basis, it precludes the recovery guarantee
offered by APIS.

In the following, we sketch an argument, taking the (Haar-Fourier) case as an example, to show, when the
signal offers more structure, local incoherence can still be guaranteed and APIS, with suitable modifications
made to the signal projection step ΠA (·) to exploit this additional structure (discussed later), can offer exact
recovery at a linear rate.

As before, let U,V denote the design matrices corresponding to the signal and corruption bases. As before,
calculating the SU-incoherence constant µ requires us to bound

max
u∈Sn−1 ,‖u‖0≤s
v∈Sn−1 ,‖v‖0≤k

(
u>U>V v

)2

Since u,v are sparse vectors, we have u>U>V v ≤ ‖U>S VK‖2 where S = supp(u) and K = supp(v) are
the supports of u,v. Now, the proof strategy in Lem. 8 fails here since for the Haar-wavelet pair, we get
‖U>S VK‖∞ =: ν = 1 where S = supp(u) and K = supp(v) are the supports of u,v respectively (see, for
example (Zhou et al., 2016) for this lack of incoherence result).

This happens because there are individual basis vectors in the Haar and Fourier bases, say m,n whose
inner product is unity i.e. |〈m,n〉| = 1 i.e. m = ±n. This allows a situation where there is a signal that is
just 1-sparse in the Haar basis, specifically a∗ = c ·m for some c ∈ R, and the signal then gets corrupted
by a corruption vector that is again just 1-sparse in the Fourier basis, specifically b∗ = d · n for some
d ∈ R. Exact recovery is information theoretically impossible since the algorithm would essentially receive
y = a∗+b∗ = (c± d) ·m = (c± d) ·n with no way of separating c and d (we use ± since m,n could be
parallel or anti-parallel depending on convention).

F.1 Structured Anti-concentrated Signals

It turns out that one way to avoid the above problem is to ensure that our signal does not concentrate its mass
on just a few coordinates (this prevents the signal from being 1-sparse). Although several ways may exist
to enforce the above, in the following definitions, we present the notions of anti-concentrated signal with
stratified sparsity. Specifically, suppose the uncorrupted signal is a∗ =Uu with U being the design matrix of
the Haar wavelet transformation.

Definition 3 (Anti-concentrated Signal) A signal a∗ =Uu ∈ Rn is said to be (γ,s) anti-concentrated if it is
s-sparse i.e. ‖u‖0 ≤ s, and there exists some γ > 0, such that ‖u‖∞ ≤ γ√

s · ‖u‖2.

Note that, in general, all s-sparse vectors are at least (
√

s,s)-anti-concentrated. However, a (
√

s,s)-anti
concentrated signal is allowed to put almost all its weight on a single coordinate. In contrast, the most
anti-concentrated s-sparse vector, for which all s coordinates have equal magnitude, would be (1,s)-anti-
concentrated. Before presenting the notion of stratified sparsity, we need to introduce the notion of strata for
the Haar basis. The Haar basis elements can be arranged into logn-many strata with the ith stratum containing
ni = 2i basis elements (see the proof of Lem. 11 below for details).

38 Bhaskar Mukhoty et al.

Definition 4 (Stratified Sparsity) A signal a∗ = Uu ∈ Rn is said to be α-stratified sparse if for some
α ∈ (0,1), the support of u is such that the ith stratum of the Haar basis contains at most (ni)

α support
elements of u. Note that this implies that the vector u is s-sparse with s ≤ nα as well (although it need not
necessarily be anti-concentrated as required by Def. 3).

F.2 Local Incoherence with Structured Anti-concentrated Signals

Given signals with additional structure as described above in Defs 3 and 4, the following result shows how
local incoherence still continues to hold. Note that the following result starts giving vacuous results (µ → 1)
for (γ,s)-anti concentrated vectors, as γ →

√
s. This is as expected since γ ≈

√
s allows signals that are very

concentrated e.g. being close to being 1-sparse.

Lemma 11 Suppose the set of signals A is the set of s-sparse (w.r.t Haar basis), α-stratified and (γ,s)-anti-
concentrated signals with α ∈ (0,1),s = nα ,γ ∈ [1,

√
s]. Then, with respect to B being the set of k-sparse

corruption vectors (no further assumptions being imposed on corruption vectors), for some small universal
constant c > 0, the following (local) incoherence bound continues to hold.

µ ≤ c · γ2 ·


k2+4α

s α < 1
2

k2+4α

s + k2

s log2 n
k2 α = 1

2
k2+4α

s + sk2

n α > 1
2

Proof Calculating th SU-incoherence constant µ now requires us to bound

max
u∈Sn−1 ,‖u‖0≤s

u is α-strat., (γ,s)-anti-conc.
v∈Sn−1 ,‖v‖0≤k

(
u>U>V v

)2

Then, applying the L1−L∞ Hölder’s inequality gives us

|u>U>V v|= |∑
i∈S

∑
j∈K

uiv j(U>V)i j| ≤ max
i∈S, j∈K

|uiv j| ·∑
i∈S

∑
j∈K
|(U>V)i j| ≤ γk

√
s · ν̄s,k,

where (U>V)i j = u>i v j and ν̄s,k is the largest average value of entries in the matrix U>S VK for any choice of
sets S,K of size s,k respectively i.e.

ν̄s,k = max
S,K⊂[n]
|S|=s,|K|=k

1
sk ∑

i∈S
∑
j∈K
|(U>V)i j|

The above step is perhaps the most crucial in the proof since it shows that the incoherence constant µ

depends on the average of the |(U>V)i j| values rather than the largest values, which are always Ω (1) for the
Haar-Fourier system.

The result of (Krahmer and Ward, 2014, Lemma 6.1) shows that upon indexing the Haar basis elements
by i ∈ [1, logn− 1] into the logn strata and further indexing the 2i basis elements within the ith stratum
using l ∈ [0,2i−1], as well as indexing the Fourier basis elements by j ∈

[
− n

2 +1, n
2

]
\{0}, we get a local

incoherence bound

|u>i,lv j| ≤min

{
6 ·2 i

2

| j|
,3π ·2−

i
2

}
≤ O

(
min

{
2

i
2

| j|
,2−

i
2

})

Noting that 2−
i
2 ≤ 2

i
2
j iff i≥ 2log j, elementary calculations show that

ν̄s,k ≤ O

(
1
sk

k

∑
j=1

(
2log j

∑
i=1

2iα · 2
i
2

j
+

logn

∑
i=2log j

2iα ·2−
i
2

))

If α < 1
2 , the second summation is that of a decreasing series. Thus, the second summation can be upper

bounded in this case as
logn

∑
i=2log j

2i(α− 1
2) ≤ O

(
22log j(α− 1

2)
)
≤ O

(
j2α−1)

Robust non-Parametric Regression via Incoherent Subspace Projections 39

If α = 1
2 then we have a much simpler summation

logn

∑
i=2log j

20 ≤ O

(
log

n
j2

)

If α > 1
2 , the second summation is that of an increasing series. Thus, the second summation can be upper

bounded in this case as

logn

∑
i=2log j

2i(α− 1
2) ≤ O

(
2logn(α− 1

2)
)
≤O

(
nα− 1

2

)
= O

(
s√
n

)

Thus, ignoring constant factors, we get

logn

∑
i=2log j

2i(α− 1
2) ≤


j2α−1 α < 1

2
log n

j2 α = 1
2

s√
n α > 1

2

This gives us

k

∑
j=1

logn

∑
i=2log j

2i(α− 1
2) ≤


k2α α < 1

2
k log n

k2 α = 1
2

sk√
n α > 1

2

Similarly, the first summation can be bounded, ignoring constant factors, as

k

∑
j=1

(
1
j
·

2log j

∑
i=1

2i(α+ 1
2)

)
≤

k

∑
j=1

(
1
j

(
22log j(α+ 1

2)
))
≤

k

∑
j=1

(
1
j
· j2α+1

)
≤ k2α+1

Absorbing all constant factors into a single constant c > 0 gives us

ν̄s,k ≤
c
sk

k2α+1 +


k2α α < 1

2
k log n

k2 α = 1
2

sk√
n α > 1

2

=
1
s
·


k2α α < 1

2
k2α + log n

k2 α = 1
2

k2α + s√
n α > 1

2

which in turn gives us (renaming c2 =: c),

µ ≤
(
γk
√

s · ν̄s,k
)2 ≤ c · γ2 ·


k2+4α

s α < 1
2

k2+4α

s + k2

s log2 n
k2 α = 1

2
k2+4α

s + sk2

n α > 1
2

.

Thus, we do have incoherence when k� s as well as sk� n. We can get a stronger result if the corruption is
also assured to be anti concentrated. Specifically b∗ =V v where v is k-sparse as well as (δ ,k) anti-concentrated
for some δ ∈ [1,

√
k]. We present this improved result below and note that it offers superior dependence on k

due to the additional structure in the corruption vector.

µ ≤ c · γ2
δ

2 ·


k1+4α

s α < 1
2

k1+4α

s + k
s log2 n

k2 α = 1
2

k1+4α

s + sk
n α > 1

2

This finishes the proof.

40 Bhaskar Mukhoty et al.

Algorithm 3 Projection onto bounded, stratified, Haar-sparse vectors
Input: A vector z, Haar basis U , bounds for sparsity s, stratification α , and sup-norm M
Output: A vector ẑ that is s Haar-sparse, α-stratified, has ‖U>ẑ‖∞ ≤M and minimizes ‖z− ẑ‖2

2
1: v←U>z //Inverse Haar transform
2: Break up v into logn vectors v1, . . . ,vlogn, corresponding the logn strata of the Haar basis
3: for i = 1,2, . . . , logn do
4: v̂i← BHT(vi,2αi,M) //Apply Bounded Hard Thresholding
5: end for
6: Concatenate

{
v̂i : i ∈ [1, logn]

}
back into a single vector v̂

7: return U v̂

Algorithm 4 Bounded Hard Thresholding BHT
Input: A vector r ∈ Rn, sparsity t, sup-norm bound M
Output: A vector r̂ ∈ Rn that is t-sparse, has ‖r̂‖∞ ≤M and minimizes ‖r− r̂‖2

2
1: Create a new vector m ∈ Rn with mi = |ri|−min{|ri|,M} for all i ∈ [n]

2: Create a new vector d ∈ Rn with di =
√

r2
i −m2

i //Discounted magnitudes
3: Let S⊂ [n] denote the set of t coordinates with largest values of di
4: Create a new vector r̂ with r̂i = min{|ri|,M} · sign(ri) for i ∈ S and r̂ j = 0 for j /∈ S
5: return r̂

F.3 Algorithmic Modifications to APIS

Since signals now have additional structure, specifically, anti-concentration and stratified sparsity, we need to
modify the projection step ΠA (·) appropriately to handle both properties. Fortunately, simple modifications to
the hard-thresholding operator address both.

Algorithm 3 gives the recipe to perform projections onto vectors that are s-sparse in the Haar basis, as
well as stratified and sup-norm bounded (to ensure anti-concentration). The sup-norm bound M is a new
hyperparameter in the algorithm and can be tuned according to the hyperparameter tuning procedure outlined
in Section 7. After performing an inverse Haar transform, Algorithm 3 breaks up the resulting vector into
the logn strata offered by the Haar basis and performs Bounded Hard Thresholding (BHT) on each stratum
separately.

Algorithm 4 presents BHT, a modified hard thresholding operation that admits the sup-norm restriction in
addition to the sparsity restriction. Instead of the traditional hard-thresholding operator HT (see Section 4)
which simply selects the top t coordinates according to magnitude, BHT instead uses the discounted magnitude
of each coordinate to do so. The discounted magnitude d of a value v ∈ R given a sup-norm bound M > 0 is
defined as

d =
√

v2− (|v|−min{|v|,M})2

Note that if there is no sup-norm bound (equivalently if M = ∞), then the discounted magnitude is simply the
magnitude i.e. d = |v|. Thus, in the absence of an sup-norm bound, BHT becomes simply HT.

To prove the optimality of Algorithm 3 it is sufficient to prove the optimality of the BHT procedure since
Algorithm 3 simply applies it in a stratum-wise manner. We prove the optimality of BHT below.

Theorem 2 For any vector r ∈ Rn, t ∈ [n],M > 0, let p = BHT(r, t,M) (see Algorithm 4). Then p is t-sparse
and satisfies ‖p‖∞ ≤ M. Moreover, let q ∈ Rn be any vector that is also t-sparse and satisfies ‖q‖∞ ≤ M.
Then we must have ‖r−p‖2

2 ≤ ‖r−q‖2
2 i.e. BHT does provide the optimal projection onto sup-norm bounded

sparse vectors.

Proof That p is t-sparse and satisfies ‖p‖∞ ≤ M is immediate from the steps taken by Algorithm 4. To
prove the second part, let S = supp(p),T = supp(q) be the support of the two vectors. Assume w.l.o.g. that
|S|= t = |T |. Now, we create a third vector k with the same support as q but with possibly different values.
Specifically, set k j = min

{
|r j|,M

}
· sign

{
r j
}

for j ∈ T and k j = 0 for j /∈ T . Notice that k is also t-sparse,
supp(k) = T , and it satisfies ‖k‖∞ ≤M as well.

It is easy to see that ‖r−k‖2
2 ≤ ‖r−q‖2

2 which captures our intuition that once we have chosen a
t-sized support for our vector, the ideal thing to do is to fill coordinates in the support with the value
min

{
|r j|,M

}
· sign(r j) which maximally preserves the value in that coordinate subject to the sup-norm bound.

Robust non-Parametric Regression via Incoherent Subspace Projections 41

Now we prove that the choice of support made by BHT is optimal by showing that ‖r−p‖2
2 ≤ ‖r−k‖2

2.
To see this, we consider the following sequence of inequalities. We will find the shorthand mi := |ri| −
min{|ri|,M} very useful in the following. This is because

sign(r j) ·m j = r j−min
{
|r j|,M

}
· sign(r j)

is simply the residual error at any coordinate that is in the support of either p or k. Note that we have

‖r−k‖2
2 = ∑

i∈T
m2

i + ∑
j∈S\T

r2
j + ∑

l /∈S∪T
r2

l

‖r−p‖2
2 = ∑

i∈S
m2

i + ∑
j∈T\S

r2
j + ∑

l /∈S∪T
r2

l

This gives us

‖r−k‖2
2−‖r−p‖2

2 = ∑
i∈S\T

(r2
i −m2

i)− ∑
j∈T\S

(r2
j −m2

j) = ∑
i∈S\T

d2
i − ∑

j∈T\S
d2

j ,

where di =
√

r2
i −m2

i is the discounted magnitude of the ith coordinate as defined above. However, since BHT

always chooses the t coordinates with highest discounted magnitude, we must have ∑i∈S\T d2
i ≥ ∑ j∈T\S d2

j

since |S| = t = |T |. Thus, we get ‖r−k‖2
2 ≥ ‖r−p‖2

2 and since we have ‖r−k‖2
2 ≤ ‖r−q‖2

2 from the
construction of k as we saw earlier, this finishes the proof.

	Introduction and Problem Statement
	A Gentle Introduction to the Intuition behind APIS
	Related Works and our Contributions in Context
	APIS: Alternating Projections onto Incoherent Subspaces
	Applications and Projection Details
	Recovery, Breakdown Points, Misspecified Models and Universality
	Experiments
	A Generic Recovery Guarantee for APIS– a proof of Theorem 1
	Robust Linear Regression using APIS
	Robust Low-rank Kernel Regression using APIS
	Robust Signal Transforms using APIS
	Handling Unmodelled Errors with APIS
	Handling Lack of Incoherence with APIS

