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LECTURE

4
Online Parameter Estimation

1 Introduction

With this lecture, we will commence with algorithms for online learning. We will look at
the problem of predicting the outcomes of tosses of a fair coin, and study a natural algo-
rithm for doing the same. This shall introduce us to a popular algorithmic paradigm called
Follow-the-leader.

Although the problem of predicting the outcome of a coin toss may seem futile and without
application, it actually underlies the basic process of estimating the parameters of a system in
an online fashion.

1. Several systems we deal with are stochastic. For example, stock prices, interest rates
and currency prices are stochastic and predicting the behavior of these systems frequently
requires estimating latent parameters in an online fashion.

2. Parameter estimation is, in some sense, a precursor to learning. Intuitions gained in
studying online parameter estimation would aid in motivating online learning algorithms.

2 Online Parameter Estimation

In this lecture we will work with what is arguably the simplest stochastic system, involving a
single coin that is tossed repeatedly. Thus, at the heart of our system is a coin C with bias
p ∈ [0, 1]. The bias of a coin is defined to the be the probability of it landing heads, i.e.

p := P [C = H] .

As discussed in Lecture 1, online learning involves a game between the learner and an adversary.
In this system, the adversary would be tossing the coin and learner would try to predict the
outcomes of the tosses. We will now formalize the setting and set the notation.

2.1 The Online Bit Prediction Process

Algorithm 1 gives a description of the online process (often, one refers to the online process
as an online game instead). At each time step, the learner makes a prediction ŷt of what
it thinks would be the outcome of the next coin toss1. Next, the coin is actually tossed (by
the adversary), and its outcome is revealed to the learner as the feedback yt. Recall that the
adversary is honest, that is to say, it correctly reveals the outcome of the coin toss. Depending
on the prediction and the feedback, the learner incurs an instantaneous loss `t.

1We will use a random variable to encode heads by 1 and tails using 0.
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Algorithm 1: Online Bit Prediction

1: for t = 1, 2, . . . , T do
2: Predict ŷt ∈ {0, 1}
3: Receive yt ∈ {0, 1}
4: Incur loss `t := `

(
ŷt, yt

)
5: end for

This game can go indefinitely or terminate after a finite number of rounds or iterations.
If it does terminate after a finite number T of rounds, then the number T is often called the
horizon of the online process. In the future, we will be looking at online algorithms that are
horizon-aware, as well as those that are horizon-oblivious. Horizon-aware algorithms will re-
quire the knowledge of how many rounds the online process will go on for, often in order to set
hyperparameters to optimal values. Horizon-oblivious algorithms make no such assumption.

Remark 4.1 (From horizon awareness to pure bliss). It is often possible to take a horizon-aware
algorithm and convert to a horizon-oblivious one by using the so-called doubling trick. It involves
making a guess T0 about the horizon and taking all decisions (including hyperparameter settings)
according to the guess. If the guess proves to be wrong and the online process continues beyond
T0 rounds then we update the guess to a new value, typically T1 = 2 ·T0 and proceed thereafter
according to the new guess.

2.2 Instantaneous Loss

As mentioned before, the learner incurs a penalty or a loss at each time step. The loss, in this
case, would be a function of the learner’s prediction ŷt and the true outcome yt. The most
general form of describing this instantaneous loss function is via a loss matrix which can be
used to assign target specific losses etc. An example of a generic loss matrix is given in Table 1.

ŷ = 0 ŷ = 1

y = 0 a b

y = 1 c d

Table 1: A general loss matrix

For instance, we can have b � c to indicate a higher penalty for predicting a tails as a
heads than the other way round. Usually one has a = c = 0 to avoid penalizing the learner if
the prediction is indeed correct. However, for this lecture, we will focus on the misclassifica-
tion/mislabelling loss function which is a symmetric loss function that simply counts if there
was a misprediction of the toss.

`0-1 (ŷ, y) := I {ŷ 6= y}

The loss matrix corresponding to the misclassification loss is given in Table 2.

ŷ = 0 ŷ = 1

y = 0 0 1

y = 1 1 0

Table 2: The loss matrix corresponding to the 0-1 loss function.
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2.3 Putting it all together

To complete our description of the online prediction process, we introduce the notion of stream
history. At any given time t, the stream history contains all the information about the online
process till that time instant i.e.

Ht = {(ŷτ , yτ )}t−1τ=1

Any algorithm A performing prediction in this online game must utilize the stream history (and
possibly some additional advice Et) to decide its prediction.

A : (Ht, Et) 7→ ŷt

The advice may include randomness that randomized algorithms use to make stochastic pre-
dictions (we will see one such example in the next lecture) or else expert advice (yet again,
examples will be provided in the next lecture). However, the algorithm is prohibited from peek-
ing into the future, i.e. the algorithm does not have (even partial) access to the feedback or the
instantaneous loss at time t or beyond. The sources of advice (experts etc) the algorithm uses
are also not allowed to use such future information to constitute the advice.

Definition 4.1 (Cumulative Loss). Suppose we execute the online process for T rounds, and let
y ∈ {0, 1}T denote the vector of feedback received in these rounds. Then the cumulative loss
of an algorithm A over the T rounds, using ` as the instantaneous loss function, is defined as

L` (A,y) =

T∑
t=1

`
(
A
(
Ht, Et

)
, yt
)
.

For notation simplicity, we will often omit mention of the history and the advice and treat
them (and the restrictions thereon) as implicit, and use the notation At := A

(
Ht, Et

)
. In our

specific setting, where we are using the misclassification loss, we define the cumulative mistake
as follows

Definition 4.2 (Cumulative Mistake). Let the problem setting be as before and let the misclas-
sification loss ` = `0-1 be used to decide the instantaneous penalties. Then the cumulative
mistake incurred by an algorithm over T rounds is defined as

L0-1 (A,y) =
T∑
t=1

`0-1
(
At, yt

)
.

In the following, we shall assume that the feedback is decided by tossing the coin indepen-
dently. Thus, yt is sampled from Bernoulli distribution with bias p, i.e.

P
[
yt = 1 |

{
Ht ∪ ŷt

}]
= p,

since the toss is independent of the stream history and the current prediction.

3 A Worthy Benchmark

As discussed in Lecture 1, bounds on the cumulative mistake or cumulative loss are in themselves
not very indicative of the performance of an algorithm. The cumulative mistake could be very
large because the algorithm performed miserably. However, the cumulative mistake could also
be large because the prediction problem was very hard. We need a way to distinguish between
these two scenarios. Benchmarks help us out in this respect.
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In our case the second point is especially relevant since our adversary is extremely unpre-
dictable. Thus, it is essential to compare our performance to a reasonable benchmark. In the
following discussion, we shall establish one such benchmark. Later, we will develop algorithms
that can compete with this benchmark.

Recall that our algorithm uses history and additional advice to make the prediction. Without
loss of generality, we can assume that the algorithm makes its prediction by tossing a coin with
some bias p̂t i.e.

P
[
ŷt = 1 |

{
Ht, Et

}]
= p̂t

Note that in this case, the total advice to the algorithm would include Et, as well as the
random bits used to implement the above coin toss. Given this, we can calculate the expected
instantaneous loss at this time step as follows (in the following, the conditioning on the history
is implicit and omitted for the sake of notational simplicity):

E
[
`0-1

(
ŷt, yt

)]
= E

[
I
{
ŷt 6= yt

}]
= P

[
ŷt 6= yt

]
= P

[(
ŷt = 1, yt = 0

)
∪
(
ŷt = 0, yt = 1

)]
= P

[
ŷt = 1, yt = 0

]
+ P

[
ŷt = 0, yt = 1

]
= p̂t (1− p) + p

(
1− p̂t

)
(As they are independent events)

Exercise 4.1. Prove that
E
[
`0-1

(
ŷt, yt

)]
≥ min {p, 1− p}

Notice that the above suggests that the best option for us is to predict 1 as the outcome if
p > (1− p), and 0 otherwise. Indeed the result below shows that this is, in fact, true of not just
a single time step t, but the entire online process altogether.

Theorem 4.1. For any algorithm A, we have

E
[
L0-1 (A,y)

]
≥ T ·min {p, 1− p} .

Proof. For any algorithm A, we have

E
[
L0-1 (A,y)

]
= E

[
T∑
t=1

`0-1
(
At, yt

)]

=
T∑
t=1

E
[
`0-1

(
At, yt

)]
(By linearity of expectation)

=
T∑
t=1

E
[
`0-1

(
ŷt, yt

)]
≥

T∑
t=1

min {p, 1− p} (By Exercise 4.1).

Note that the expectation above is over the randomness of the toss of the coin, as well as any
internal randomness used by the algorithm, to make its prediction.

We note that there exists a very simple algorithm that achieves this lower bound. Consider
the algorithm which, if bias is greater than 1/2, predicts only 1 (i.e. Heads) otherwise predicts
0 (i.e. Tails) (see Algorithm 2). It is easy to see that the expected cumulative mistake incurred
by this algorithm achieves this lower bound. In the following, the notation BTp denotes the
product distribution over T Bernoulli distributions, all with bias p.
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Algorithm 2: OBP Benchmark A∗

1: Let y∗ ← I
{
p > 1

2

}
2: for t = 1, 2, . . . , T do
3: Predict y∗

4: end for

Lemma 4.2. E
y∼BTp

[
L0-1 (A∗,y)

]
= T ·min {p, 1− p} .

Proof. Without loss of generality, let us assume that p ≤ 1 − p, i.e. p ≤ 1
2 (a similar analysis

holds when p > (1 − p)). Thus, A∗ will always predict Tails for all t irrespective of stream
history. So, A∗ will make a mistake whenever the outcome is Heads. Hence, we have

E
y∼BTp

[
L0-1 (A∗,y)

]
=

T∑
t=1

E
[
`0-1

(
y∗, yt

)]
=

T∑
t=1

P
[
yt 6= 0

]
= Tp

= T ·min {p, 1− p}

This motivates us to select A∗ as the benchmark for our analysis. In the next section, we
will look at an algorithm that can compete with this benchmark.

4 Following the Leader

Given the nature of the benchmark, which purely relies on whether p > 1/2 or not, a natural
algorithm for the online coin toss prediction algorithm is one that tries to estimate p itself, in
order to figure out which side of 1/2 does it lie on.

This is interesting since it tells us how the online coin toss prediction problem is related to
the online parameter estimation problem – solving the coin toss prediction problem, in some
sense, requires us to estimate the bias of the coin (at least well enough to figure out whether it
is greater or lesser than 1/2).

Given the stochasticity of the coin tosses, it is tempting to use the counts of heads and tails
seen so far to perform the prediction: if we have seen more heads till now, predict heads else
tails. This is justified since if p > 1/2, we do expect to see more heads than tails. This intuitive
policy gives us the Majority algorithm,

Algorithm 3: Majority/FTL

1: for t = 1, 2, . . . , T do
2: Let p̂t ← 1

t−1
∑t−1

τ=1 y
τ

3: Predict ŷt = I
{
p̂t > 1

2

}
4: Receive yt

5: end for

As discussed, the Majority algorithm counts the heads and tails seen so far and predicts,
at every time step, whichever was more frequent till that time step.
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4.1 Enter the Experts

There is another nice interpretation of the Majority algorithm in terms of experts. Imagine
that we have experts giving us advice. The first expert E1, always thinks the next toss is going
to be Heads and advises us to predict ŷt = 1. The other E0 which always predicts Tails (and
tells us that we should predict ŷt = 0). At every time step, when we make a prediction, in some
sense we have to believe one of these two experts.

Given this problem setting, we can reinterpret the Majority algorithm described above as a
Follow-the-leader algorithm. At every time step, we simply believe the expert that has made
minimum mistakes so far, or alternatively, gotten most of the predictions correct so far. The
Follow-the-leader (or FTL in short) strategy is a very popular one in online learning de Rooij
et al. (2014) and one that we will revisit later in the course.

Also note that if p > 1/2 then the benchmark is actually the “Head” expert i.e. A∗ ≡ E1

and otherwise if p ≤ 1/2 then A∗ ≡ E0. Thus, the benchmark is always one of the experts and
hence, online bit prediction problem also becomes an attempt to find the best expert. In fact,
this is true of prediction with expert advice in general, which we will study in the next lecture.

4.2 A Mistake Bound for FTL

Coming back to the problem at hand, to obtain a mistake bound for the FTL strategy, we need
to note the situations in which it makes a mistake. Let p̂t := 1

t−1
∑t−1

τ=1 y
τ as in Algorithm 3.

Then there are two situations when FTL makes a mistake:

1. FTL disagrees with A∗ at time t and makes a mistake i.e. A∗ is correct at time t.

2. FTL agrees with A∗ at time t but makes a mistake since A∗ makes a mistake at time t.

We need not worry about mistakes of the second kind. This is because we are allowed to
make as many mistakes as the benchmark does. Our aim is to show that we do not make too
many more mistakes than the benchmark. Thus, our focus here would be to bound mistakes of
the first kind. This is formalized below in a proof. We will use the standard notation to denote

L0-1(FTL,y) :=
T∑
t=1

`0-1(FTLt, yt).

Let y∗ := I
{
p > 1

2

}
denote the (constant) response of the benchmark A∗. Also, let Bt be the

“bad” event that FTL disagrees with A∗ at time t i.e. Bt := I
{
p̂t > 1

2

}
6= y∗. This gives us

L0-1(FTL,y)− L0-1(A∗,y) =

T∑
t=1

`0-1(FTLt, yt)− `0-1(y∗, yt)

=

T∑
t=1

(
`0-1(FTLt, yt)− `0-1(y∗, yt)

)
·
(
I
{
Bt
}

+ I
{
¬Bt

})
=

T∑
t=1

(
`0-1(FTLt, yt)− `0-1(y∗, yt)

)
· I
{
Bt
}

+

T∑
t=1

(
`0-1(y∗, yt)− `0-1(y∗, yt)

)
· I
{
¬Bt

}
=

T∑
t=1

(
`0-1(FTLt, yt)− `0-1(y∗, yt)

)
· I
{
Bt
}
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≤
T∑
t=1

I
{
Bt
}
,

where in the third step, we have used the fact that ¬Bt implies that FTLt = y∗ and in the final
step we have used the fact that `0-1(FTLt, yt) − `0-1(y∗, yt) ≤ 1 since the 0-1 loss function only
takes the values 0, 1.

Thus, an application of linearity of expectation tells us that

E
[
L0-1(FTL,y)

]
≤ E

[
L0-1(A∗,y)

]
+

T∑
t=1

E
[
I
{
Bt
}]

= E
[
L0-1(A∗,y)

]
+

T∑
t=1

P
[
Bt
]

Thus, all we need to do is bound P
[
Bt
]
. Now, as the coin tosses yt, t = 1, 2, . . . are i.i.d.

realizations of the same Bernoulli random variable B(p), the strong law of large numbers tells
us that

P
[

lim
t→∞

p̂t = p
]

= 1

Thus, as t → ∞, Bt does not occur almost surely i.e. limt→∞ P
[
Bt
]

= 0. However, for finite
t, we need to use finite sample versions of the strong law of large numbers. Given that we are
working with Bernoulli random variables, the natural choice is the Chernoff bound. For the
subsequent analysis, we will assume, without loss of generality, that p ≤ 1/2. A similar result
will hold for p > 1/2 as well.

Theorem 4.3 (Chernoff Bound - right tail). (Wikipedia) Let X be a Bernoulli random variable
with bias µ i.e. EX = µ. Let X1, X2, . . . , Xn be i.i.d. realizations of X. Let X̄n = 1

n

∑
iXi

denote the empirical expectation. Then, for every ε > 0,

P
[
X̄n ≥ µ+ ε

]
≤ exp (−KL(µ+ ε‖µ) · n)

In order to use the above result, we need to quantify the separation between p and p̂t. The
following lemma does this.

Lemma 4.4. Bt =⇒ p̂t − p ≥ 1
2 − p

Proof. Recall that as assumed, we have p ≤ 1/2. Then Bt implies that p̂t must lie on the
“other” side of 1/2 i.e. p̂t > 1/2. This implies (see Figure 4.2) that p̂t − p > 1/2 − p which
establishes the claim.

Corollary 4.5. P
[
Bt
]
≤ (4p(1− p))t/2

Proof. First of all notice that E
[
p̂t
]

= p by linearity of expectation and the fact that the coin
tosses are all distributed as B(p). Next we notice that

P
[
Bt
]
≤ P

[
p̂t − p ≥ 1

2
− p
]

(Using Lemma 4.4)

= P
[
p̂t ≥ E

[
p̂t
]

+
1

2
− p
]

≤ exp

(
−KL

(
1

2

∥∥∥∥ p) · t) (Using Theorem 4.3)

= (4p(1− p))t/2.

We note that the same result also holds if p > 1/2. Note that 4p(1− p) < 1 for p 6= 1/2.
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Figure 1: If p ∈
[
0, 12
]

and p̂t ∈
[
1
2 , 1
]
, then the distance between p and p̂t is at least 1

2 − p.

Theorem 4.6 (FTL Mistake Bound). E
[
L0-1(FTL,y)

]
≤ E

[
L0-1(A∗,y)

]
+O (1)

Proof. The previous analysis tells us that

E
[
L0-1(FTL,y)

]
≤ E

[
L0-1(A∗,y)

]
+

T∑
t=1

P
[
Bt
]

Applying Corollary 4.5 proves the result upon application of the following inequality:

T∑
t=1

(4p(1− p))t/2 ≤
∫ T

0
(4p(1− p))t/2 dt ≤

∫ ∞
0

(4p(1− p))t/2 dt =
−2

ln (4p(1− p))
.

Note that 4p(1− p) ≤ 1 for all p ∈ [0, 1] so the right hand side is always a positive quantity.

This shows us that the Majority or the FTL algorithm enjoys a constant expected regret
against the optimal benchmark predictor A∗ in terms of mistake bounds – it makes only con-
stantly many more mistakes on expectation than the benchmark.

Remark 4.2 (High Confidence Bounds). The reader might be wondering why are we satisfied
with obtaining an expected mistake bound when the above online process can very well have a
large variance. Proofs of results on expectation are usually easier as well as cleaner. However,
we hasten to assure the reader that the results obtained above (as well as those we would be
obtaining in the future lectures) on expected mistake/regret bounds can, in most cases, be
converted to high probability bounds, at the cost of o(T ) additional mistakes/regret. These
techniques will be studied by us in the second part of the course.

5 Bracing for More Powerful Adversaries

The adversary that we dealt with in the bit prediction problem is a rather dull one – it pas-
sively tosses a coin and simply lets us know the result. Such adversaries are called stochastic
adversaries and they play a crucial role in the design and analysis of stochastic learning and
optimization algorithms. We will revisit them later in the second part of the course.

Stochastic adversaries are an example of non-reactive environments where the environment,
in this case the adversary, is not affected by our “action” i.e. our prediction. However, we
can, and will, deal with more “reactive” adversaries who participate in the online process more
intimately.

The most general and uninhibited of these are fully adaptive adversaries which critically
analyze each step taken by the learner before deciding the feedback. Such adversaries are
typically also fully aware of the algorithm that the learner is using to make predictions and are
frequently endowed with unbounded computational power.

Competing with such adversaries is, in general, very hard. For example, in the bit prediction
problem, a fully adaptive adversary can always make us incur T mistakes by simply giving
yt = 1 − ŷt as the feedback. Fully adaptive adversaries are thus, not interesting in the bit
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prediction problem. They are, however, studied very deeply in online linear classification and
regression tasks. We will ourselves revisit them soon.

A third class of adversaries, which are called oblivious adversaries, lie midway between
non-reactive and fully adaptive adversaries. These adversaries are fully aware of the learner’s
algorithm and usually have unbounded computational power, but they decide their feedback
before the online process begins.

An example is that of predicting a sequence of T coin tosses or bits where the bits y ∈ {0, 1}T
have been decided in advance. An interesting question in this case is whether we can compete
with the experts E0 and E1 in this new setting. In other words, can we get no more mistakes
than the following?

min
{∑

yt,
∑

(1− yt)
}

At first glance we notice that oblivious adversaries are not reactive and do not care about how
the online process evolves. However, the reader should notice (and indeed try to prove) that it is
impossible to defeat such adversaries using deterministic algorithms. We will look at defeating
such oblivious adversaries in the next lecture.
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