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Preliminaries: Convex Analysis and Probability Theory

1 Introduction

In this lecture, we will continue our discussion on vector spaces and convex analysis and look
at results such as the Riesz representation theorem and convex projections. In addition, we will
discuss some fundamentals of Probability Theory including σ-fields, probability measures, notion
of independence, expectations etc. We will present a formal definition of random variables and
distribution functions associated with them. Also, we will discuss various inequalities associated
with random variables.

2 Riesz Representation Theorem

For any inner product space (V, 〈·, ·〉)1, consider its dual space Flin. Recall that Flin consists of
all linear functionals over V . Now, let us define another set, that of linear functions Glin that
can be represented as follows:

Glin = {fv : u 7→ 〈u,v〉 , v ∈ V }.

Now, from the definition it is clear that Glin ⊆ Flin. Riesz representation theorem tells us for
Hilbert spaces, the reverse is true as well. Hilbert spaces are inner product spaces that are
complete with respect to the norm induced by the inner product2.

Theorem 3.1. (Riesz Representation Theorem) Let Flin and Glin be be defined as above for a
Hilbert space H. Then we have Glin = Flin.

This result tells us that the method used to define Glin gives us the only way linear functionals
can be defined. Proving this result in all its generality is beyond the scope of this course.
However, to give a flavor of the result, we prove the result below for Hilbert spaces that have
a countable orthonormal basis. For simplicity, we give the proof for finite basis, but the same
may be extended to the case of a countably infinite basis as well.

Note, however, that the Riesz representation theorem is a much more elegant result that
does not require a basis to be established over the Hilbert space.

Proof. To prove the equality, we need to prove Glin ⊇ Flin. Let V = Rn be the n-dimensional
Euclidean space with a finite orthonormal basis {e1, e2, . . . , en} i.e. 〈ei, ej〉 = I {i = j}. Then

1An inner product space is a vector space over which an inner product has been established
2An inner product space is said to be complete if every Cauchy sequence in that space converges, with respect

to the norm induced by the inner product, to an element in the space itself.
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every vector u ∈ V can be written as a unique linear combination of basis vectors of V as

u = u1 · e1 + u2 · e2 + . . .+ un · en,

where ui = 〈u, ei〉. Now, given a linear functional f ∈ Flin, define the vector

vf = f(e1) · e1 + f(e2) · e2 + . . .+ f(en) · en

Consider any vector u ∈ V . We have

f(u) = f(u1 · e1 + u2 · e2 + . . .+ un · en)

= f(u1 · e1) + f(u2 · e2) + . . .+ f(un · en)

= u1 · f(e1) + u2 · f(e2) + . . .+ un · f(en)

= 〈u, e1〉 · f(e1) + 〈u, e2〉 · f(e2) + . . .+ 〈u, en〉 · f(en)

= 〈u,vf 〉 ,

which establishes the result.

Definition 3.1 (Lipschitz Function). A function f : V → R on a normed space V , is said to be
L-Lipschitz if

|f(u)− f(v)| ≤ L ‖u− v‖ , ∀u,v ∈ V

where L is a constant. In other words, a Lipschitz function can not change values too abruptly.
For differentiable functions, this happens if the gradient is norm bounded.

Lemma 3.2. Let f : V → R be a differentiable function such that ‖∇f(x)‖ ≤ L. Then f is
L-Lipschitz.

Proof. The mean value theorem states that if f is differentiable, then for any u,v, there exists
a λ ∈ [0, 1] such that

f(u)− f(v) = 〈∇f((λ · u + (1− λ) · v)),u− v〉 .

Applying the Cauchy-Schwartz inequality and the fact that ‖∇f((λ · u + (1− λ) · v))‖ ≤ L
proves the result.

3 Convex Projections

Let us consider a constrained convex optimization problem

min
x∈C

f(x)

where f(·) is a convex function and C is the convex set which arises due to various convex
and/or affine constraints. A popular way solving these constrained optimization problems is
the projected gradient descent method which involves taking steps opposite to the direction of
the gradient and projecting back onto the constraint.

The convex projection step is crucial to this procedure. We analyze some properties of
convex projections now.
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Definition 3.2 (Convex Projection). Let C ⊂ V be a convex set and ‖·‖ be a (non-degenerate)
norm on the vector space V . Then the convex projection of a vector z ∈ V onto the set C is
defined as:

ΠC(z) := arg min
x∈C

‖x− z‖ (1)

The problem of fining a convex projection is a convex optimization problem itself but in most
of the cases, (1) has closed form solution.

Exercise 3.1. Prove that all norms are convex functions.

Example 3.1. Let C = B2(0, r) be the ball corresponding to the `2 norm, then the projection
of a vector z ∈ V onto C is given as:

ΠC(z) =

{
z, if z ∈ C

z
‖z‖ · r, if z 6∈ C.

1(0,1)
2 (0,1)

(0,1)
1

2

(0,1)

Figure 1: Graphical representation of two-dimensional norm balls associated with different
norms. Note that `1/2 (and in general `p for any p < 1) is not a norm although it is often
referred to as one.

3.1 Properties of Convex Projections

In the following, we will look at projections with respect to the `2 norm.
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3.1.1 Property I

If ẑ is the projection of z ∈ V onto a convex set C ⊂ V , then

〈x− ẑ, z− ẑ〉 ≤ 0, ∀x ∈ C (2)

in other words, the angle between the vectors x − ẑ and z − ẑ is always greater than 90◦.
Intuitively, the case when angle between vectors x− ẑ and z− ẑ becomes less than 90◦ is only
possible when C is a non-convex set.

x

z

ẑ

Figure 2: Graphical representation of projection property-I. The angle between the vectors x− ẑ
and z− ẑ is less greater 90◦.

Proof. (Bertsekas, 2010) The supporting hyperplane for the convex set C passing through vector
ẑ is given as:

〈w − ẑ, z− ẑ〉 = 0

We note that proving that the convex set is contained in the halfspace C ⊆ H = {w| 〈w − ẑ, z− ẑ〉 ≤
0} will establish the claimed result. Now, the projection ẑ is obtained by minimizing the fol-
lowing convex function:

f(x) =
1

2
‖z− x‖22 .

However, a point ẑ minimizes a function f over a convex set C if and only if

〈∇f(ẑ),x− ẑ〉 ≥ 0, ∀x ∈ C

Since ∇f(ẑ) = ẑ− z, this condition becomes equivalent to (2). This completes the proof.

3.1.2 Property II

If ẑ be the projection of z ∈ V onto a convex set C ⊂ V , then

‖x− z‖2 ≥ ‖x− ẑ‖2 , ∀x ∈ C (3)

i.e., ẑ is closer to all the points in C than z.

Proof. We have, for any x ∈ C,

‖x− z‖22 = ‖x− ẑ + ẑ− z‖22
= ‖x− ẑ‖22 + ‖z− ẑ‖22 − 2 〈x− ẑ, z− ẑ〉︸ ︷︷ ︸

≤0 (Property I)

≥ ‖x− ẑ‖22 + ‖z− ẑ‖2︸ ︷︷ ︸
≥0

≥ ‖x− ẑ‖22 .
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4 Probability Theory

Definition 3.3 (σ-Field (Ash and Doléans-Dade, 2005)). Let Ω represent the possible set of
outcomes of a random experiment and let F be a collection of subsets of Ω. Then F is called a
σ-field (or a σ-algebra) if the following conditions hold,

1. (Surety of an event) Ω ∈ F .

2. (Closure under complementation) If A ∈ F , then Ac ∈ F .

3. (Closure under countable unions) If A1, A2, . . . ∈ F , then
⋃∞
i=1Ai ∈ F .

F is often referred to as the event space is is supposed to denote the set of events we are
interested in analyzing. A few examples follow:

Example 3.2 (Roll of a dice). Ω = {1, 2, 3, 4, 5, 6}. A possible σ-field or event space over this set
of outcomes can be the power set of Ω (collection of all subsets of Ω) F = 2Ω. Another possible
σ-field or event space is F = {∅,Ω, {1, 3, 5}, {2, 4, 6}}.

Note that the second event space does not contain several events contained in the power
set event space – for instance the second event space does not allow us to talk about the event
where the roll of dice results in a prime number. However, both are σ-fields in their own right,
the second being a sub-field of the first.

Definition 3.4 (Probability Measure). A probability measure on a σ-field F is a nonnegative,
real-valued set function P : F → [0, 1] which satisfies following axioms:

1. P [A] ≥ 0, ∀A ∈ F .

2. P [Ω] = 1.

3. If {An}n≥1 is a countable collection of pairwise disjoint sets in F , i.e. Ai ∪Aj = φ unless
i = j, then

P
[⋃∞

j=1Aj

]
=
∑∞

j=1 P [Aj ] .

4.1 Random Variables

Definition 3.5 (Probability Space). A triplet (Ω,F ,P) of a set of outcomes, a valid σ-field
thereupon, and a valid probability measure thereupon, constitutes a probability space.

Definition 3.6 (Random Variable). A real-valued random variable X defined over a probability
space (Ω,F ,P) is a function X : Ω→ R satisfying the following properties

1. For every r ∈ R, the set Ar := {ω ∈ Ω : X(ω) ≤ r} satisfies Ar ∈ F . i.e., the set {X ≤ r}
is a measureable event for every r ∈ R.

2. The probabilities of events {X =∞} and {X = −∞} is zero:

P [X =∞] = 0, P [X = −∞] = 0.

Some examples of commonly used random variables is given below.
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Example 3.3 (Indicator Random Variable). Consider an event E ∈ F . The indicator random
variable for event E is defined as:

I[E] =

{
1, if E takes place, i.e. the outcome ω ∈ E.
0, if E does not take place, i.e. ω /∈ E.

Indicator variables are immensely useful in proving results in an elegant manner, as we shall
see soon.

Example 3.4 (Bernoulli Random Variable). Given a binary set of outcomes, e.g. a toss of a coin
Ω = {H,T}, one defines a Bernoulli variable assigning numeral values to these events.

Bp =

{
1, the first outcome takes place ω = H.
0, the second outcome takes place ω = T .

If the coin lands heads with probability p, also known as the bias of the coin, then we have the
following property for the Bernoulli variable.

Bp =

{
1, with probability p.
0, with probability 1− p.

Example 3.5 (Rademacher Random Variable). A Rademacher random variable R is defined to
have the following property:

R =

{
1, with probability 1

2 .
−1, with probability 1

2 .

A Rademacher random variable can, for instance, be realized by a fair coin.

4.2 Cumulative Distribution Function

The cumulative distribution function FX(x) of a random variable X describes the probability
that X takes on a value less than or equal to a number real number x ∈ R, that is,

FX(x) = P [X ≤ x] . (4)

When the function FX(x) is differentiable for every x, it’s derivative gives us the probability
density function (often abbreviated as PDF) fX(x) of the random variable X.

fX(x) = F ′X(x). (5)

When a random variable possesses a PDF, we have

P [a ≤ X ≤ b] =

∫ b

a
fX(t)dt

4.2.1 Properties of Distribution Function

The distribution function FX(x) has following properties (Papoulis, 1991):

1. limx→+∞ FX(x) = 1 limx→−∞ FX(x) = 0.

2. It is a nondecreasing function of x:

if x1 < x2 then FX(x1) ≤ FX(x2)
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3. If FX(x0) = 0 then FX(x) = 0 for every x ≤ x0.

4. P(X > x) = 1− FX(x).

5. The function FX(x) is right continuous:

FX(x+) = FX(x),

where FX(x+) = limε→0+ FX(x+ ε).

6. P [x1 < X ≤ x2] = FX(x2)− FX(x1).

7. P [X = x] = FX(x)− FX(x−),
where FX(x−) = limε→0+ FX(x− ε).

8. P [x1 ≤ X ≤ x2] = FX(x2)− FX(x−1 ).

4.3 Expectation

If Ω is discrete, then a random variable X : Ω → R can only take on values in a discrete set,
that is, X ∈ {a1, a2, . . . , }, ai ∈ R. Then the expectation of the random variable X is given as:

EX =
∑
i

ai · P [X = ai] (6)

If Ω is continuous, the expectation of the random variable X is given as:

EX =

∫ ∞
−∞

P [X ≥ t] dt (7)

Definition 3.7 (Variance). For a random variable X with a finite expectation, we define its
variance as its second centered moment

Var [X] = E(X − EX)2.

4.3.1 Properties of Expectation

1. If X ≡ c be a constant random variable, then E [X] = c.

2. (Linearity) If X and Y be two random variables, then E[X + Y ] = EX + EY .

3. If X and Y be two random variables such that X ≤ Y a.s., then EX ≤ EY .

4. (Law of iterated expectation) If X and Y be two random variables, then E[E[X|Y ]] = EX.

Note that the above results do not require any independence or correlation assumptions on the
random variables and hold universally.

4.3.2 Functions of random variables and Conditional Expectation

• (LOTUS – Law of the unconscious statistician) If g : R → R be a function and X be a
discrete random variable over a probability space (Ω,F ,P), then:

Eg(X) =
∑
i

g(ai) · P [X = ai] . (8)
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• If X and Y be two discrete random variables such that X ∈ {a1, . . . , an, . . .} and Y =
{b1, . . . , bm, . . .}, then the conditional expectation of random variable X given the event
{Y = b} is given as:

E[X|Y = b] =
∑
i

ai · P [X = ai|Y = b] . (9)

4.3.3 Independence

Two events E1, E2 ∈ F are independent if

P [E1 ∩ E2] = P [E1] · P [E2] .

Similarly, two random variables X and Y are called independent if

P [X ≤ r ∧ Y ≤ t] = P [X ≤ r] · P [Y ≤ t] , ∀r, t ∈ R.

Conditional Independence Consider three events E1, E2, E3 ∈ F . Given event E3 has al-
ready occurred, the events E1 and E2 are independent if

P [E1 ∩ E2|E3] = P [E1|E3] · P [E2|E3] .

Remark 3.1 ((Stoyanov, 1988)). The concept of independence can be extended to any finite
number of events or classes. We say that the events E1, . . . , En ∈ F are mutually independent
if for k = 2, . . . , n and 1 ≤ i1 < i2 < . . . < ik ≤ n we have

P [Ei1Ei2 . . . Eik ] = P [Ei1 ] · P [Ei2 ] · . . . · P [Eik ] .

If this relation is fulfilled in the particular case k = 2 we say that the given events E1, . . . , En
are pairwise independent.

Example 3.6. Suppose India is playing Australia in a series of two one-dayers. Assume that
the teams are evenly matched, i.e. for an given game there is equal chance of any team winning
the game. Then consider three events

E1 ⇒ India wins first match,

E2 ⇒ India wins second match,

E3 ⇒ The matches were not fixed.

Then, given event E3, the events E1 and E2 are independent. However, if E3 is not given, i.e.
if there is a possibility of the matches being fixed, say in favor of a particular country, then
the outcome of the first match reveals a significant amount of information about the expected
outcome of the second match and the events are no longer independent.

Example 3.7 (Pairwise independence does not imply mutual independence (Stoyanov, 1988)). Sup-
pose a box contains four tickets labelled 112, 121, 211, 222. Choose one ticket at random and
consider the events A1 = {1 occurs in the first place}, A2 = {1 occurs in the second place} and
A3 = {1 occurs in the third place}. We have P [A1] = P [A2] = P [A3] = 1

2 and

P [A1A2] = P [A1A3] = P [A2A3] =
1

4

This means that the three events are pairwise independent. However,

P [A1A2A3] = 0 6= 1

8
= P [A1]P [A2]P [A3]

and hence these events are not mutually independent.
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5 Inequalities Involving random variables

5.1 Jensen’s Inequality (Cover and Thomas, 2006)

Let f : R→ R be a convex function and let X be a real valued random variable, then

f(EX) ≤ Ef(X). (10)

Proof. For simplicity, we will assume that f is a differentiable function. Let us choose a x0 ∈ R
– we will fix x0 later. Then, by convexity of f , we have, a.e.

f(X) ≥ f(x0) + 〈∇f(x0), X − x0〉
Taking expectation of both sides:

Ef(X) ≥ f(x0) + 〈∇f(x0),EX − x0〉
where, the above inequality follows from the linearity of the expectation operator and the fact
that EX ≥ EY if X ≥ Y a.s. By choosing x0 = EX we have

f(EX) ≤ Ef(X),

which proves the result.

5.2 Markov’s Inequality

Theorem 3.3. Let X be a positive valued random variable i.e. X ≥ 0 a.s. then for any t > 0

P [X ≥ t] ≤ EX
t
. (11)

Proof. Let I be the indicator function, then

X = X · I {X < t}︸ ︷︷ ︸
≥0

+X · I {X ≥ t}︸ ︷︷ ︸
≥t·I{X≥t}

≥ t · I{X ≥ t}
taking expectation of both sides

EX ≥ t · P [X ≥ t] .
Note that we have used a very useful property of the indicator function here. For any event
A ∈ F , if we construct the indicator random variable I {A}, then we have EI {A} = P [A].

We will often use the notation µ to denote the expectation of a random variable i.e. µ = EX.
The notation σ is often used to denote the standard deviation i.e. σ2 = E(X − µ)2.

5.3 Chebychev Inequality

Theorem 3.4. Let the random variable X have expectation µ and variance σ2. Then ∀t > 0

P [|X − µ| > t] ≤ σ2

t2
.

Proof. Let Y = (X − µ)2. Notice that Y is a positive valued random variable. Applying
Markov’s inequality on the random variable Y we get:

P
[
(X − µ)2 ≥ a

]
≤ E[(X − µ)2]

a

⇒ P [|X − µ| > tσ] ≤ 1

t2
.

where t = a
σ .
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5.4 Hoeffding’s Inequality (Wasserman)

Let X be a random variable such that EX = µ and a ≤ X ≤ b a.s.. Let X1, X2, . . . , Xn be
independent and identically distributed (i.i.d.) realizations of the random variable X. Also, let
X̄n = 1

n

∑
iXi denote the empirical expectation of the random variables. Then, for any ε > 0,

P
[∣∣X̄n − µ

∣∣ ≥ ε] ≤ 2e−2nε2/(b−a)2 .

5.5 Chernoff’s Inequality (Wikipedia, b)

Let X be a Bernoulli random variable with bias µ i.e. EX = µ. Let X1, X2, . . . , Xn be i.i.d.
realizations of X. As before, let X̄n = 1

n

∑
iXi denote the empirical expectation. Then, for

every ε > 0,

P
[
X̄n ≥ µ+ ε

]
≤

((
µ

µ+ ε

)µ+ε( 1− µ
1− µ− ε

)1−µ−ε
)n

P
[
X̄n ≤ µ− ε

]
≤

((
µ

µ− ε

)µ−ε( 1− µ
1− µ+ ε

)1−µ+ε
)n

5.6 Bernstein Inequality (Wikipedia, a)

Let Xi be centered i.i.d. random variables i.e. EXi = 0 such that |Xi| ≤ M a.s. for some
M > 0. Also, let σ2 = 1

n

∑
i EX2

i . Then, for every ε > 0,

P
[
X̄n > ε

]
≤ exp

(
−nε2

2σ2 + 2
3Mε

)
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