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LECTURE

2
Preliminaries: Convex Analysis

1 Introduction

This lecture discusses a few mathematical preliminaries necessary to study convex analysis.
Definitions and properties (with proofs wherever necessary) have been presented below.

2 Vector spaces

We begin with defining the ubiquitous concept of a vector space and several properties associated
with them, as well as mathematical operations defined on them. The concept of a vector space
is, in general, defined over an arbitrary field of scalars. However, we shall restrict ourselves to
real vector spaces, i.e. those defined over the field of reals.

Definition 2.1 (Vector Space). A real vector space V is a set of mathematical objects which are
called vectors, having certain properties, as mentioned below.

2.1 Properties of vector spaces

Let u and v be two vectors in a vector space V . Then the following properties hold:

For all u,v,w ∈ V then

1. Closure under Addition: u + v ∈ V

2. Commutativity : u + v = v + u

3. Associativity : u + (v + w) = (u + v) + w

4. Identity : ∃ 0 ∈ V such that v + 0 = v 1

5. Inverse: For every v ∈ V , ∃ v′ ∈ V such that v + v′ = 0 2

6. Distributivity over real operations: This property allows vectors to interact with real
scalars (in general, elements of the underlying field). For all a, b ∈ R, we have

a · v ∈ V (however 0 · v = 0)

(a+ b) · v = a · v + b · v
a · (u + v) = a · u + a · v

10 is called the additive identity of the vector space
2v′ is called the additive inverse of the vector v
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Example 2.1. Some examples of vector spaces include:

1. Rn, which is the set of all n-dimensional vectors with real components.

2. B(X ), which is the set of bounded functions over the domain X .

3. C1(X ), which is the set of once differentiable functions over the domain X .

4. C∞(X ) which is the set of functions over the domain X which are infinitely differentiable
(smooth functions).

3 Inner Product

The previous section introduced us to the concept of vector spaces. It behooves us to now define
the concept of an inner product as a natural extension to describe the interaction of two vectors
in a vector space as defined in Definition 2.1.

Definition 2.2 (Inner Product). An inner product is a real valued bivariate function on vector
spaces (mapping a pair of vectors to the set of reals) having the following properties.

3.1 Properties of Inner Products

An inner product, denoted as 〈·, ·〉 := (u,v) 7→ R, has the following properties:

1. Distributivity : 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉

2. Positive Definiteness: ∀u 6= 0, 〈u,u〉 > 0

3. Commutativity : 〈u,v〉 = 〈v,u〉

4. Linearity : For a scalar a, 〈a · u,v〉 = a 〈u,v〉

Example 2.2. Some examples of inner products include:

1. 〈x,y〉 =
∑d

i=1 xiyi for vectors in the d-dimensional space.3

2. (Weighted inner products) For any vector w > 04, we define 〈x,y〉w =
∑d

i=1wixiyi

3. (Inner product induced by a matrix) For any real positive definite (PD) matrix5 A, (A � 0),
we define 〈x,y〉A := x>Ay

4 Norm

Inner products gave us an idea about the interaction of two vectors. This section introduces us
to the concept of norm which corresponds to abstract notions of lengths of vectors in a vector
space.

Definition 2.3 (Norm). A norm is a real valued univariate function on vector spaces (mapping
from a vector to the set of real numbers) having the following properties.

3This is the notion of dot product we generally have for vectors, also denoted frequently as 〈x,y〉 = x>y
4For 2 d-dimensional vectors u,v, the notation u > v implies a coordinate-wise relation i.e. for all i ∈ [d],

ui > vi. We define the relation u ≥ v similarly.
5A PD matrix is a square symmetric matrix with all eigenvalues > 0
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4.1 Properties of Norms

A norm, defined as ‖.‖ := (v) 7→ R, has the following properties:

1. Positivity : ∀u 6= 0, ‖u‖ > 0.6

2. Identity of the indiscernables ‖0‖ = 0 7

3. Positive Homogeneity : For any scalar a ∈ R, ‖a · v‖ = |a| · ‖v‖

4. Traingle Inequality/Subadditivity : ‖u + v‖ ≤ ‖u‖+ ‖v‖.8

4.2 Induced Norms

Corresponding to every inner product defined over a vector space, we can define a norm as
follows:

‖u‖ :=
√
〈u,u〉.

Such a norm is said to be induced by the corresponding inner product.

Theorem 2.1. An induced norm is also a norm.

Proof. Left as an exercise.

Example 2.3. Some examples of commonly used norms are:

1. `p norms, where 1 ≤ p < ∞ defined as ‖x‖p :=
(∑d

i=1 |xi|
p
)1/p

. The `2 norm is often

referred to as the Euclidean norm. The `1 norm is often referred to as the Manhattan
norm.

2. l∞ norm, defined as ‖x‖∞ := maxi |xi|

3. Norms induced by a matrix, defined as ‖x‖A =
√
x>Ax 9

4.3 Dual Norms

Before discussing the concept of a dual norm, we first define the notion of the dual of a normed
space.

Definition 2.4 (Normed Space). A normed space, (V, ‖.‖), is a vector space over which a norm
has been established.

Definition 2.5 (Linear Functional). A real valued univariate function over a normed space f :
V → R is said to be a linear functional if it satisfies the following properties:

• f(u) + f(v) = f(u + v), ∀u,v ∈ V .

• f(a · u) = a · f(u), ∀u ∈ V and a ∈ R

Definition 2.6 (Dual Space). The vector space of all linear functionals over a vector space V ,
which we shall denote as Flin(V ), is referred to as the dual space of V .

6Norms for which this property does not hold i.e. ‖u‖ = 0 for some u 6= 0 are called degenerate norms. By
definition, norms are non-degenerate.

7The concept behind this property is that if two vectors are an additive identity away from each other, the
“distance” between them should be 0. If u,v are two vectors, and u = v, then ‖u− v‖ = 0.

8The intuition behind this is that a detour should increase the “distance” travelled.
9Such a norm is non-degenerate iff A is a positive definite matrix, i.e. all its eigenvalues are strictly positive.
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It is an easy exercise to show that the set of all linear functionals indeed forms a vectors
space. For sake of brevity, we will often refer to the dual space by the notation Flin alone. We
now define the dual norm of a vector space as follows:

Definition 2.7 (Dual Norm). Given a linear functional space Flin, associated with a normed
vector space (V, ‖·‖), the dual norm defined on Flin is given by

‖f‖∗ := sup {f(x), ‖x‖ ≤ 1}

Example 2.4. Examples of dual norms are:

1. ‖.‖2 is the dual norm of itself.

2. ‖.‖1 is the dual norm of ‖.‖∞

3. The dual norm of ‖.‖p is ‖.‖q such that 1/p+ 1/q = 1

5 Cauchy-Schwartz Inequality

The Cauchy-Schwartz inequality gives a relation between the inner product of two vectors and
the product of their `2 or Euclidean norms.

Theorem 2.2. (Cauchy-Schwartz Inequality) |〈u,v〉| ≤ ‖u‖2 ‖v‖2

Proof. We will consider two separate cases for the proof.

1. Case 1 (‖u‖ = 0 or ‖v‖ = 0) Since norms are non-degenerate, this implies that either
u = 0 or v = 0. Thus, both the left and the right hand sides of the inequality are zero
and the inequality holds.

2. Case 2 (u 6= 0,v 6= 0) In this case we can assume, w.l.o.g. 10, that ‖u‖ = 1, ‖v‖ = 1.
Now we only need to prove that

|〈u,v〉| ≤ 1

Consider the vector u⊥ = u − 〈u,v〉v. It is easy to see that 〈u⊥,v〉 = 〈u,v〉 −
〈u,v〉 〈v,v〉 = 〈u,v〉 − 〈u,v〉 ‖v‖2 = 〈u,v〉 − 〈u,v〉 = 0. Thus, u⊥ is the component
of u orthogonal to v.

By the positivity property of norms and also by Theorem 2.1, we have ‖u⊥‖22 ≥ 0 which
gives us
=⇒ 〈u− 〈u,v〉v,u− 〈u,v〉v〉 ≥ 0
=⇒ ‖u‖2 + ‖〈u,v〉v‖2 − 2 〈u, 〈u,v〉v〉 ≥ 0
=⇒ 1 + 〈u,v〉2 − 2 〈u,v〉2 ≥ 0
=⇒ 〈u,v〉2 ≤ 1
=⇒ |〈u,v〉| ≤ 1,

which concludes the proof. We note that the Cauchy-Schwartz inequality also holds for degen-
erate norms (also known as semi-norms). We establish this in Appendix A.

10Without loss of generality
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6 Some miscellaneous definitions

6.1 Hyperplanes and Halfspaces

The next mathematical object we shall deal with are hyperplanes defined as follows.

Definition 2.8 (Hyperplane). For every f ∈ Flin (i.e. a linear functional), we define a corre-
sponding hyperplane, Hf as

Hf := {v : f(v) = 0}

As we can see, in vectors over R2, all straight lines are hyperplanes. In vectors over the
Euclidean space R3, all planes are hyperplanes, given by Ha =

{
v : a>v = 0

}
Corresponding to every hyperplane, there exists two halfspaces defined as the set of vectors
on either “side” of the hyperplane.

Definition 2.9 (Halfspace). For every f ∈ Flin, we define the halfspace Ef as

Ef = {v : f(v) ≥ 0} .

Halfspaces may be defined using either a strict (>) or a non-strict (≥) inequality. For
example, corresponding to linear form v 7→ a>v, we have the halfspace Ea =

{
v : a>v ≥ 0

}
.

6.2 Balls and Ellipsoids

Definition 2.10 (Ball). A ball, corresponding to a norm, is defined as B‖‖(v, r) := {x : ‖x− v‖ ≤ r}.
The vector v is called the center of the ball and the scalar r is called the radius of the ball.
The notation B‖‖(r) is often used to refer to B‖‖(0, r).

Example 2.5. B2(0, r) = {x : ‖x‖2 ≤ r}

Definition 2.11 (Ellipsoid). An ellipsoid, similar to a ball, is defined as EA(v, r) := {x : ‖x− v‖A ≤ r}.
An ellipsoid is induced by a PD matrix A.

Remark 2.1. All ellipsoids are balls as they are balls corresponding to norms induced by PD
matrices, but not all balls are ellipsoids.

7 Linear Combinations of Vectors

This section deals with several types of combinations of vectors. Note that combinations are
important in our analysis, as we shall often define ‘sets’ generated by combinations of vectors.
Given two vectors u,v ∈ V , a linear combination of these vectors is a vector of the form
λ · u + µ · v, where the combination coefficients λ and µ are scalars i.e reals.

In the following we will look at special types of linear combinations.

1. Convex : A convex combination of the vectors u and v is a linear combination where the
coefficients are non-negative and add up to one i.e. of the form λ · u + (1− λ) · v, for any
λ ∈ [0, 1].

2. Conic: A conic combination of the vectors u and v is a linear combination where the
coefficients are non-negative i.e of the form λ · u + µ · v, for any λ ≥ 0, µ ≥ 0

3. Affine: An affine combination of the vectors u and v is a linear combination here the
coefficients add up to one i.e. of the form λ ·u+ µ · v, where λ, µ are such that λ+ µ = 1

5



Figure 1: A convex function on the real line. Figure 2: A convex and a non-convex set.

Definition 2.12 (Convex Set). A set that is closed under all possible convex combinations is
called a convex set. That is to say a set C ⊂ V is called convex if for all u,v ∈ C and λ ∈ [0, 1],
we have λ · u + (1− λ) · v ∈ C.

An illustrative example of a convex and a non-convex set is given in Figure 2. Similarly,
sets closed under conic and affine combinations are, respectively, called conic and affine sets.
Examples of convex sets include polytopes in Euclidean spaces, intervals over the real line, balls
induced by norms. Examples of conic sets include the set of all PSD matrices. Examples of
affine sets include those in Euclidean spaces

H(f,b) := {v : f(v) = b}

8 Convex functions

So we finally arrive at the juncture of defining convex functions.

Definition 2.13 (Convex Function). A function f : V → R, is called convex if ∀ u,v ∈ V, λ ∈
[0, 1],

f(λ · u + (1− λ) · v) ≤ λf(u) + (1− λ)f(v).

See Figure 1 for an illustration.

This fundamental definition is however cumbersome to work with. A weaker but more
workable definition is that of mid-point convexity :

Definition 2.14 (Midpoint convexity). A function is called mid-point convex if ∀ u,v ∈ V ,

f

(
u + v

2

)
≤ f(u) + f(v)

2
.

Theorem 2.3. A continuous function is convex iff it is mid-point convex. (For a proof, originally
by Jensen in 1905, refer to Sra et al. (2014))

Example 2.6. Examples of convex functions are norms. The summation and supremum oper-
ations preserve convexity i.e. the sum and supremum of convex functions are convex as well.
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8.1 Derivatives of functions

Definition 2.15 (Fréchet derivatives). A real-valued function f : V → R defined over a normed
space is said to possess a Fréchet derivative g ∈ Flin at a point x ∈ V if the following limiting
behavior exists

lim
h→0

|f(x + h)− f(x)− g(h)|
‖h‖

= 0

The derivative g is often referred to as the gradient of f .

Lemma 2.4. A differentiable function is convex iff

f(x) ≥ f(y) + 〈∇f(y),x− y〉 ,

where ∇f is the gradient of the function f .

Proof. (Adapted from Boyd and Vandenberghe (2004)). Since f is continuous, we will use the
midpoint convexity definition to prove the result.

(If) Consider z = x+y
2 . The gradient condition gives us

f(x) ≥ f(z) + 〈∇f(z),x− z〉
f(y) ≥ f(z) + 〈∇f(z),y − z〉

Adding the equations and dividing by two gives us the required result

f(x) + f(y)

2
≥ f(z) = f

(
x + y

2

)
(Only if) For sake of simplicity, assume that f is defined and differentiable over the entire

vector space. Then for λ ∈ (0, 1], we have, by the convexity property

f(λ · x + (1− λ) · y) ≤ λf(x) + (1− λ)f(y)

which, upon rearranging, gives us

f(x) ≥ f(y) +
f(y + λ · (x− y))− f(y)

λ
.

Now, we have

f(y + λ · (x− y))− f(y)

λ
=
f(y + λ · (x− y))− f(y)

λ

=
f(y + λ · (x− y))− f(y)− 〈∇f(y), λ · (x− y)〉

λ︸ ︷︷ ︸
(A)

+ 〈∇f(y), (x− y)〉

Now we have

(A) =
f(y + λ · (x− y))− f(y)− 〈∇f(y), λ · (x− y)〉

λ

=
f(y + λ · (x− y))− f(y)− 〈∇f(y), λ · (x− y)〉

λ · ‖x− y‖
· ‖x− y‖

Taking λ→ 0 and using Definition 2.15 gives us (A)→ 0 which proves the result.
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A The Cauchy-Schwartz Inequality for Semi-norms

To establish this, we need only analyze the case when ‖u‖ = 0 which the following claim does.

Claim 2.5. If ‖u‖ = 0 then 〈v,u〉 = 0 for all v ∈ V .

Proof. Consider any vector v and look at the vector z = v− r · u, where r = t · 〈u,v〉 for some
real value t (note that in the proof of the Cauchy-Schwartz inequality for norms, we had taken
r = 〈u,v〉 i.e. t = 1). This gives us

‖z‖22 = ‖v‖22 + r2 ‖u‖22 − 2r · 〈u,v〉
= ‖v‖22 − 2r · 〈u,v〉
= ‖v‖22 − 2t · 〈u,v〉2 .

Since, ‖z‖2 ≥ 0, this means 〈u,v〉2 ≤ 1/(2t) ‖v‖22. Since this holds for all values of t, taking
t → ∞ tells us that 〈u,v〉 = 0. This proves the Cauchy-Schwartz inequality for semi-inner
products as well.
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