
Online Learning and 
Optimization

Introduction



Course Details

• Name: CS773(A) – Online Learning and Optimization

• Nickname: OLO

• Instructor: Purushottam “Puru” Kar (purushot)

• Teaching Assistant: Vijay Keswani (vijaykes)

• Lectures: TuTh 1700-1830 hrs, KD102

• Office hours:
Puru: Fridays 1600-1700 hrs
Vijay: Wednesdays 1600-1700 hrs

• Website: http://tinyurl.com/olo15-16w

• Internal: http://tinyurl.com/olo15-16wi

http://tinyurl.com/olo15-16w
http://tinyurl.com/olo15-16wi


Auditors

• Please send a mail to Vijay confirming your decision

• Do this even if you have spoken to Vijay/Puru

• Feel free to participate in all aspects of the course
• Attend lectures

• Assist creditors in scribing notes

• Submit assignments – will be graded*

• Appear for examinations – will be graded*

• Participate in project groups



Grading Scheme

• 15%: Assignments
• Paper-pen (although LaTeX-ed preferred)

• Programming-based

• 15%: Scribing lecture notes for one lecture
• Typeset in LaTeX

• 15%: Mid-semester examination

• 15%: End-semester examination

• 40%: Term Project

Obtaining significant and publishable results in the project
would merit an A grade irrespective of performance in
other components of the course.



Scribing Duties

• Schedule up on internal website

• Can swap lectures with others
• Please inform Vijay and Puru beforehand

• Use the prescribed style file
• Available on internal website

• Do not edit style file – ask Puru in case of doubts

• Take pride in your scribed notes
• Well explained, details worked out

• Well referenced, proper citations, acknowledgements

• Properly formatted definitions, theorems, lemmata

• Illustrations when necessary

• Sample scribe also present



Project

• Form groups of 2 (1 or 3 allowed as special case)
• Auditors can join project groups but wont be counted

• The class can express any concerns regarding this rule

• Make groups known to Vijay and Puru

• Project proposals (written) due before class 19th Jan

• Mid-term presentations: 1st Mar, 2016

• Final presentations + report: 12th + 14th Apr, 2016

• Breakup
• Project proposal: 5%

• Mid-term presentation: 10%

• Final presentation: 20%

• Report: 5%



Project

• Some project ideas to be put up on internal website
• Expect list of suggested idea before 2nd Jan

• Discuss with friends, Puru for more ideas

• Please do not wait till 19th Jan to discuss

• Project topic needs to be related to the course

• Project has to be substantial
• Simple implementation of existing algorithms wont do

• Reading projects possible but require extensive coverage and 
insight into what was done and what can be done

• Objective of the course
• Lectures act as enablers – introducing basics, tools

• Project investigation is where thorough instruction takes place



Reference Material

• No textbook for the course

• Reference list up on website

• Locally cached copies for some on internal website

• [BVB] Boyd and Vandenberghe. Convex Optimization.

• [BCB] Bubeck and Cesa-Bianchi. Regret Analysis of Stochastic and 
Nonstochastic Multi-armed Bandit Problems.

• [CBL] Cesa-Bianchi and Lugosi. Prediction, Learning, and Games.

• [HZN] Hazan. Introduction to Online Convex Optimization.

• [MRT] Mohri, Rostamizadeh, and Talwalkar. Foundations of 
Machine Learning.

• [SSS] Shalev-Shwartz. Online Learning and Online Convex 
Optimization.



Use of Unfair Means

• The following are prohibited – severe penalties
• Copying answers in pen-paper assignments

• Copying code in programming assignments

• Passing off known results as one’s own

• Manipulating experimental results

• The following are prohibited – credit deductions
• Using material in scribes (figures, text) without acknowledging

• Using help from auditors in projects without acknowledging
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Traditional Machine Learning Primitives

Binary Classification Multi Classification

Regression Clustering Component Analysis

Multi-label Classfn
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Traditional “Batch” Learning

• A one round game between teacher and learner

• As expected, each tries to outdo the other
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“The art and science of designing algorithms that can 
adapt to sequential data”

• Binary predictions – online 
classification

• Real predictions – online 
regression

• “Incomplete data” – bandit 
learning

• General model
Data point: state
Prediction: action
Reinforcement Learning!!
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Online Learning – Applications 

• Online spam filtering
• Data point: email description

• Prediction: spam/okay

• Feedback: Correctness of prediction

• Portfolio selection
• Data point: market description

• Prediction: investment profile

• Feedback: revenue earned/lost

• Recommendation systems
• Data: user profile

• Prediction: items to buy/movies to watch

• Feedback: click on suggested items
mediasuite.ca, touchpointsa.com, cordcuttersnews.com, phx.corporate-ir.net, rednewswire.com



Online Learning – Applications 

• Ad-placement systems
• Data: user profile, history

• Prediction: ads displayed

• Feedback: click, purchase

• Weather prediction
• Data: Recent met data, historical

• Prediction: rain, amount

• Feedback: actual weather

• Stock price prediction
• Data: market description, past prices

• Prediction: future prices

• Feedback: actual prices

techgyd.com, metoffice.gov.uk, cnbc.com



Online Optimization

• Cousin of online learning - optimizing over data streams

• Immensely useful in optimization over large datasets

• Extends traditional “batch” optimization methods
• Gradient descent, Mirrored descent

• Newton’s method

• Widely used method
• defacto standard in several areas

• SVM solvers – LibSVM, Liblinear

• Training deep nets



Course Contents

• Online Prediction with Full Feedback
• Online classification, regression

• Learning with expert advice, portfolio selection

• Online Convex Optimization
• Review of batch optimization

• FTRL, OGD, OMD, SGD (OMG right??)

• Online Prediction with Limited Feedback
• Stochastic/adversarial multi-armed bandits

• Linear and contextual bandits

• Advanced topics*
• SVRG, Minimax rates, Zero-order optimization, shifting experts

• Feedback on topics appreciated



How to Feel no Regret



Online Classification

• At each time step t
• Learner receives a context 

• Learner proposes a label

• Teacher provides true label as feedback

• Learner incurs a loss of
• Example:

• Mistake Bound
• A bound on the quantity  



Online Learning

• At each time step t
• Learner proposes a predictor

• Teacher provides a penalty function as feedback

• Learner incurs a penalty

• Typically:

• Online linear regression: 

• Cumulative Penalty
• A bound on the quantity   
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Some Points to Note

• The teacher chooses the true labels/penalty functions 
after the learner has made his move

• Consistent with what happened in the “batch” mode

• How does the teacher generate feedback?
• Stochastically 

• Adversarially

• How do we make sense of these settings? 

Learning
Algorithm

Test
Data

Predictor

Predictions

Feedback
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Notion of Regret

• How do we distinguish between situations where
• Data is easy and we should expect learner to do very well

• Data is ridiculous and no learner can do well

• Mistake and Cumulative Penalties do not capture this
• Is cumulative penalty high because of bad learner or bad data?

• Solution: compare learner against a benchmark

• Common benchmark: set of static predictors

• Regret of a learning algorithm 

• The algorithm gets to switch predictors, the benchmark 
gets to see the entire data



Notion of Regret

• Holy grail of online learning: vanishing regret

• Equivalently

• Ability to compete with the best predictor in hindsight !!



Up Next

• Brief Introduction to Convex Analysis

• Brief Introduction to Probability Theory

• Online parameter estimation

• Online classification

• Online regression

• Prediction with expert help


