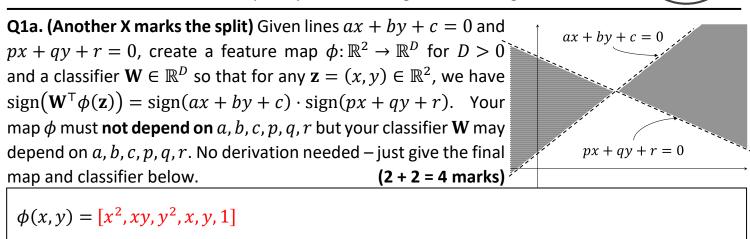
CS 771A:	(22 Feb 2024)					
Name	MELBO	40 marks				
Roll No	20007	Dept.	AWSM		Page 1 of 4	

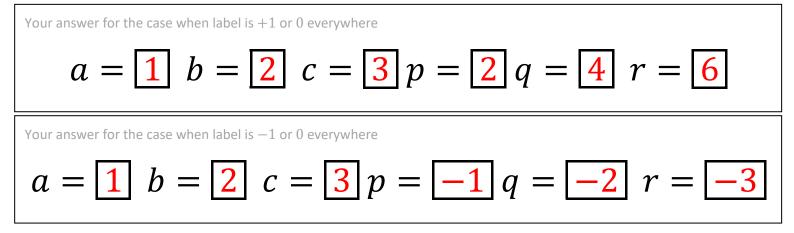
Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in **block letters** with **ink** on **each page**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases will get 0 marks.



$$\mathbf{W} = [ap, aq + bp, bq, ar + cp, br + cq, cr]$$

Q1b. (... except when it doesn't) In the figure, the two lines divide \mathbb{R}^2 into two regions labeled +1 and two labeled -1. Melbo warns us that this may not always be true and there may exist cases where the label is same almost everywhere. Assume $\operatorname{sign}(0) = 0$. Find values of a, b, c, p, q, r so that $\operatorname{sign}(ax + by + c) \cdot \operatorname{sign}(px + qy + r) = +1$ or 0 for every $\mathbf{z} = (x, y) \in \mathbb{R}^2$. Next, find values of a, b, c, p, q, r so that $\operatorname{sign}(ax + by + c) \cdot \operatorname{sign}(ax + by + c) \cdot \operatorname{sign}(px + qy + r) = -1$ or 0 for every $\mathbf{z} \in \mathbb{R}^2$. Next, find values of a, b, c, p, q, r so that $\operatorname{sign}(ax + by + c) \cdot \operatorname{sign}(px + qy + r) = -1$ or 0 for every $\mathbf{z} \in \mathbb{R}^2$. Note that all six values i.e., a, b, c, p, q, r in your responses must be non-zero. Moreover, you must ensure that $a \neq p, b \neq q, c \neq r$ in your responses. No derivations needed. (2 + 2 = 4 marks)



Q3. (Split subgradients) For 2D points $\mathbf{z} = (x, y) \in \mathbb{R}^2$, let $g(\mathbf{z}) = |x - 1|$ and $h(\mathbf{z}) = |y - 2|$.

- a. Find out the subdifferentials $\partial g(\mathbf{z})$ and $\partial h(\mathbf{z})$. Show brief derivation for any one function.
- b. Define $f(\mathbf{z}) \stackrel{\text{\tiny def}}{=} g(\mathbf{z}) + h(\mathbf{z})$. Find $\partial f(\mathbf{z})$ showing brief derivation. (*Hint: use sum rule*).

Page 2 of 4

Note that even though g, h depend only on one variable each, they are still technically multivariate functions. Thus, both $\partial g(\mathbf{z})$, $\partial h(\mathbf{z})$ will be sets of vectors and not sets of scalars. (4+4=8 marks)

Answer to part a.

Define $g(\mathbf{z}) \stackrel{\text{def}}{=} p(q(\mathbf{z}))$ with $q(\mathbf{z}) = x - 1$ and p(t) = |t|. Note that $\nabla q(\mathbf{z}) = (1,0)$ as q is differentiable and $\frac{\partial q}{\partial y} = 0$. Note that We get $\partial p(t) = \begin{cases} \{-1\} & t < 0 \\ [-1,1] & t = 0 \\ \{+1\} & t > 0 \end{cases}$ This gives us $\partial g(\mathbf{z}) = \begin{cases} \{(-1,0)\} & x < 1 \\ \{(u,0): u \in [-1,1]\} & x = 1 \\ \{(1,0)\} & x > 1 \end{cases}$ Similarly, we get $\partial h(\mathbf{z}) = \begin{cases} \{(0,-1)\} & y < 2 \\ \{(0,v): v \in [-1,1]\} & y = 2 \\ \{(0,1)\} & y > 2 \end{cases}$

Answer to part b.

Using the sum rule gives us
$$\partial f(\mathbf{z}) = \begin{cases} \{(-1, -1)\} & x < 1 & y < 2 \\ \{(u, -1): u \in [-1, 1]\} & x = 1 & y < 2 \\ \{(1, -1)\} & x > 1 & y < 2 \\ \{(-1, v): \in v[-1, 1]\} & x < 1 & y = 2 \end{cases}$$

 $\{(u, v): u, v \in [-1, 1]\} & x = 1 & y = 2 \\ \{(1, v): v \in [-1, 1]\} & x > 1 & y = 2 \\ \{(-1, 1)\} & x < 1 & y > 2 \\ \{(-1, 1)\} & x < 1 & y > 2 \\ \{(u, 1): u \in [-1, 1]\} & x > 1 & y > 2 \\ \{(1, 1)\} & x > 1 & y > 2 \end{cases}$

We can get a more compact representation for $\partial f(\mathbf{z})$ by using the max rule. For this, we first rewrite the function as $f(\mathbf{z}) = \max_{\mathbf{s} \in \{-1,1\}^2} s_1(x-1) + s_2(y-2) = \max_{\mathbf{s} \in \{-1,1\}^2} \mathbf{s}^{\mathsf{T}}(\mathbf{z}-\mathbf{c})$ where $\mathbf{c} = (1,2) \in \mathbb{R}^2$. The max rule then tells us that the subdifferential can be found by taking convex combinations of the subgradient at all the winners i.e. all \mathbf{s} such that $\mathbf{s}^{\mathsf{T}}(\mathbf{z}-\mathbf{c}) = f(\mathbf{z})$

$$\partial f(\mathbf{z}) = {\mathbf{g}: \|\mathbf{g}\|_{\infty} \le 1, \mathbf{g}^{\mathsf{T}}(\mathbf{z} - \mathbf{c}) = f(\mathbf{z})}$$

where $\|\mathbf{g}\|_{\infty} = \max|g_i|$ is the so-called *sup* norm.

Q4 (Balanced Budget) Melbo was asked to help the finance ministry create India's budget. India has *n* citizens classified as rich $(y_i = -1)$ or $\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{a}\|_2^2 + \mathbf{a}^\top \mathbf{x}$ poor $(y_i = +1)$. For each citizen $i \in [n]$, an amount x_i is to be decided. $x_i \leq +1$ for all $i \in [n]$ $x_i < 0$ means that $\mathbf{x} - x_i$ was given to citizen *i* as subsidy. $x_i > 0$ means $-1 \leq x_i$ for all $i \in [n]$ a tax of \mathbf{x}_i was demanded from that citizen. Amounts can be fractional (e.g. $x_i = 0.3414$). A few conditions must be kept in mind while deciding $\mathbf{x}^\top \mathbf{y} = 0$ the allocation (as elections are coming up \mathbf{x}_i)

CS 771A:	Intro to Machine Le	Midsem Exam	(22 Feb 2024)		
Name	MELBO	40 marks			
Roll No	20007	Dept.	AWSM		Page 3 of 4

- a. The govt wants to claim it is neither anti-poor nor anti-rich by ensuring $\sum_{i \in [n]} x_i y_i = 0$.
- b. Subsidy/tax is capped at ₹1 i.e. $-1 \le x_i \le 1$ to avoid allegations of tax terrorism or *revdi*.
- c. Despite all of the above, the govt must ensure a fiscal deficit of $\exists D$ i.e., $\sum_{i \in [n]} x_i = D$.

The ministry has an allocation $\mathbf{a} \in \mathbb{R}^n$ which it likes but which violates the conditions. Help Melbo find a valid allocation most aligned to \mathbf{a} by solving the optimization problem in the figure. We introduce dual variables α_j for the constraints $x_i \leq 1$, β_i for $-1 \leq x_i$ (we collect these dual variables as vectors $\mathbf{\alpha}$, $\mathbf{\beta} \in \mathbb{R}^n$), λ for $\mathbf{x}^{\mathsf{T}}\mathbf{1} = D$ and δ for $\mathbf{x}^{\mathsf{T}}\mathbf{y} = 0$. (4+2+3+7+8=24 marks)

- a. Fill in the circle indicating the correct constraint for the dual variables.
- No constraint 🔿 No constraint 🔿 No constraint 🔵 No constraint 🔵 b. Write down the Lagrangian $\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda, \delta)$ – no derivation needed. (2 marks) $\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda, \delta) = \frac{1}{2} \|\mathbf{x} - \mathbf{a}\|_{2}^{2} + \mathbf{a}^{\mathsf{T}}\mathbf{x} + \boldsymbol{\alpha}^{\mathsf{T}}(\mathbf{x} - \mathbf{1}) - \boldsymbol{\beta}^{\mathsf{T}}(\mathbf{x} + \mathbf{1}) + \lambda \cdot (\mathbf{x}^{\mathsf{T}}\mathbf{1} - D) + \delta \cdot \mathbf{x}^{\mathsf{T}}\mathbf{y}$ The sign for the last two terms can be + or - as they correspond to equality constraints. c. To simplify the dual $\max_{\alpha,\beta,\lambda,\delta} \{ \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \alpha, \beta, \lambda, \delta) \}$, solve $\min_{\mathbf{x}} \mathcal{L}$ to get an expression for \mathbf{x} in terms of α , β , λ , δ and constants such as **a**, **y**, **1** etc. No need for derivation. (3 marks) Setting $\frac{\partial \mathcal{L}}{\partial \mathbf{x}} = \mathbf{0}$ gives us $(\mathbf{x} - \mathbf{a}) + \mathbf{a} + \mathbf{\alpha} - \mathbf{\beta} + \lambda \cdot \mathbf{1} + \delta \cdot \mathbf{y} = 0$ which gives us $\mathbf{x} = (\mathbf{\beta} - \mathbf{\alpha}) - (\lambda \cdot \mathbf{1} + \delta \cdot \mathbf{v})$ d. Show us the simplified dual you get. Ignore constant terms e.g. $\|\mathbf{y}\|_2$, $\|\mathbf{a}\|_2$ etc. Note that we have turned the dual into a min problem by negating the objective. If a certain dual variable has no constraints, leave that box blank or write "No constraint". (7x1 marks) $\min_{\alpha,\beta,\lambda,\delta} \frac{1}{2} \| (\boldsymbol{\beta} - \boldsymbol{\alpha}) - (\boldsymbol{\lambda} \cdot \boldsymbol{1} + \boldsymbol{\delta} \cdot \boldsymbol{y}) \|_2^2 - (-\boldsymbol{\alpha} - \boldsymbol{\beta})^\top \boldsymbol{1} - \boldsymbol{\lambda} \cdot (-\boldsymbol{D})$
 - s.t. $\alpha_i \ge 0$ for all $i \in [n]$

 $\beta_i \ge 0$ for all $i \in [n]$

 \leftarrow Write constraint for α here.

(4x1 marks)

 \Leftarrow Write constraint for **β** here.

 \leftarrow Write constraint for λ here.

 $\gets \text{Write constraint for } \delta \text{ here.}$

Page 4 of 4

- e. For the simplified dual obtained above, let us perform block coordinate minimization.
 - 1. For any fixed value of $\alpha, \beta \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, obtain the optimal value of $\delta \in \mathbb{R}$.
 - 2. For any fixed value of $\alpha, \beta \in \mathbb{R}^n$, $\delta \in \mathbb{R}$, obtain the optimal value of $\lambda \in \mathbb{R}$.
 - 3. For any fixed value of $\boldsymbol{\alpha} \in \mathbb{R}^n$, $\lambda, \delta \in \mathbb{R}$, obtain the optimal value of $\boldsymbol{\beta} \in \mathbb{R}^n$.
 - 4. For any fixed value of $\beta \in \mathbb{R}^n$, $\lambda, \delta \in \mathbb{R}$, obtain the optimal value of $\alpha \in \mathbb{R}^n$.

Show brief steps. You may use the QUIN trick or shorthand notation to save space. (2+2+2+2 marks) Show steps to find δ

The problem marginalized over δ becomes $\min_{\delta} \frac{1}{2} \|\mathbf{p} - \delta \cdot \mathbf{y}\|_2^2$ where $\mathbf{p} = (\mathbf{\beta} - \mathbf{\alpha}) - \lambda \cdot \mathbf{1}$

Using first order optimality gives us $(\mathbf{p} - \delta \cdot \mathbf{y})^{\top}(-\mathbf{y}) = 0$ i.e., $\delta = \mathbf{p}^{\top}\mathbf{y}/||\mathbf{y}||_2^2 = \frac{1}{n}\mathbf{p}^{\top}\mathbf{y}$ where the last step follows as $y_i \in \{-1,1\}$

Show steps to find λ

The problem over λ becomes $\min_{\lambda} \frac{1}{2} \|\mathbf{q} - \lambda \cdot \mathbf{1}\|_2^2 + \lambda \cdot D$ where $\mathbf{q} = (\mathbf{\beta} - \mathbf{\alpha}) - \delta \cdot \mathbf{y}$

Using first order optimality gives us $(\mathbf{q} - \lambda \cdot \mathbf{1})^{\mathsf{T}}(-\mathbf{1}) + D = 0$ i.e., $\lambda = \frac{1}{n}(\mathbf{q}^{\mathsf{T}}\mathbf{1} - D)$

Show steps to find $\boldsymbol{\beta}$

The problem over $\boldsymbol{\beta}$ becomes $\min_{\boldsymbol{\beta} \ge 0} \frac{1}{2} \|\boldsymbol{\beta} - \mathbf{r}\|_2^2 + \boldsymbol{\beta}^\top \mathbf{1}$ where $\mathbf{r} = \boldsymbol{\alpha} + \lambda \cdot \mathbf{1} + \delta \cdot \mathbf{y}$. Note that in general, the QUIN trick is guaranteed to work only on unidimensional problems. To be safe, we focus on a coordinate β_i giving us $\min_{\beta_i \ge 0} \frac{1}{2} (\beta_i - r_i)^2 + \beta_i$. Applying the QUIN trick then gives us $\beta_i = \max\{r_i - 1, 0\}$. Thus, $\boldsymbol{\beta} = \max\{\mathbf{r} - \mathbf{1}, \mathbf{0}\}$ where $\max\{\cdot\}$ is applied coordinate-wise.

The problem over $\boldsymbol{\alpha}$ becomes $\min_{\boldsymbol{\alpha} \ge 0} \frac{1}{2} \| \mathbf{s} - \boldsymbol{\alpha} \|_2^2 + \boldsymbol{\alpha}^\top \mathbf{1}$ where $\mathbf{s} = \boldsymbol{\beta} - (\lambda \cdot \mathbf{1} + \delta \cdot \mathbf{y})$. As before, we focus on a coordinate α_i giving us $\min_{\alpha_i \ge 0} \frac{1}{2} (s_i - \alpha_i)^2 + \alpha_i$. Applying the QUIN trick now gives us $\alpha_i = \max\{s_i - 1, 0\}$ which means that $\boldsymbol{\alpha} = \max\{\mathbf{s} - \mathbf{1}, \mathbf{0}\}$.