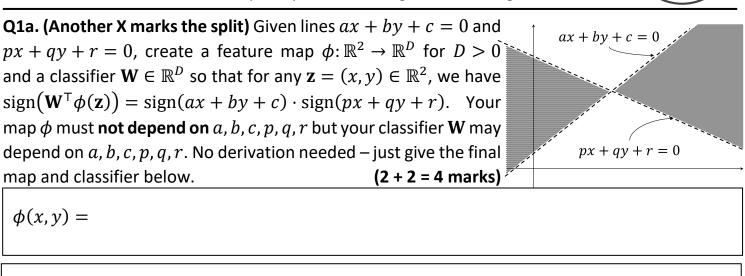
CS 771A: Intro to Machine Learning, IIT Kanpur				Midsem Exam	(22 Feb 2024)
Name					40 marks
Roll No		Dept.			Page 1 of 4

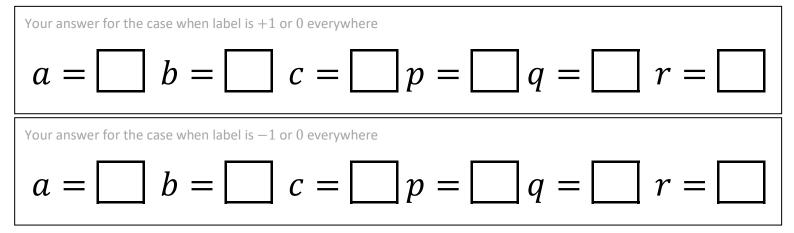
Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in **block letters** with **ink** on **each page**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases will get 0 marks.



W =

Q1b. (... except when it doesn't) In the figure, the two lines divide \mathbb{R}^2 into two regions labeled +1 and two labeled -1. Melbo warns us that this may not always be true and there may exist cases where the label is same almost everywhere. Assume sign(0) = 0. Find values of a, b, c, p, q, r so that sign $(ax + by + c) \cdot \text{sign}(px + qy + r) = +1$ or 0 for every $\mathbf{z} = (x, y) \in \mathbb{R}^2$. Next, find values of a, b, c, p, q, r so that sign $(ax + by + c) \cdot \text{sign}(px + qy + r) = -1$ or 0 for every $\mathbf{z} \in \mathbb{R}^2$. Note that all six values i.e., a, b, c, p, q, r in your responses must be non-zero. Moreover, you must ensure that $a \neq p, b \neq q, c \neq r$ in your responses. No derivations needed. (2 + 2 = 4 marks)



Q3. (Split subgradients) For 2D points $\mathbf{z} = (x, y) \in \mathbb{R}^2$, let $g(\mathbf{z}) = |x - 1|$ and $h(\mathbf{z}) = |y - 2|$.

a. Find out the subdifferentials $\partial g(\mathbf{z})$ and $\partial h(\mathbf{z})$. Show brief derivation for any one function.

b. Define $f(\mathbf{z}) \stackrel{\text{\tiny def}}{=} g(\mathbf{z}) + h(\mathbf{z})$. Find $\partial f(\mathbf{z})$ showing brief derivation. (*Hint: use sum rule*).

Page 2 of 4

Note that even though g, h depend only on one variable each, they are still technically multivariate functions. Thus, both $\partial g(\mathbf{z})$, $\partial h(\mathbf{z})$ will be sets of vectors and not sets of scalars. (4+4=8 marks)

Answer to part a.

Answer to part b.

Q4 (Balanced Budget) Melbo was asked to help the finance ministry create India's budget. India has *n* citizens classified as rich $(y_i = -1)$ or $\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{a}\|_2^2 + \mathbf{a}^\top \mathbf{x}$ poor $(y_i = +1)$. For each citizen $i \in [n]$, an amount x_i is to be decided. $x_i \leq +1$ for all $i \in [n]$ $x_i < 0$ means that $\mathbf{x} - x_i$ was given to citizen *i* as subsidy. $x_i > 0$ means $-1 \leq x_i$ for all $i \in [n]$ a tax of \mathbf{x}_i was demanded from that citizen. Amounts can be fractional (e.g. $x_i = 0.3414$). A few conditions must be kept in mind while deciding $\mathbf{x}^\top \mathbf{y} = 0$ the allocation (as elections are coming up \mathbf{O})

CS 771A: Intro to Machine Learning, IIT Kanpur Midsem Exar					(22 Feb 2024)
Name					40 marks
Roll No		Dept.			Page 3 of 4

- a. The govt wants to claim it is neither anti-poor nor anti-rich by ensuring $\sum_{i \in [n]} x_i y_i = 0$.
- b. Subsidy/tax is capped at $\gtrless 1$ i.e. $-1 \le x_i \le 1$ to avoid allegations of tax terrorism or *revdi*.
- c. Despite all of the above, the govt must ensure a fiscal deficit of $\exists D$ i.e., $\sum_{i \in [n]} x_i = D$.

The ministry has an allocation $\mathbf{a} \in \mathbb{R}^n$ which it likes but which violates the conditions. Help Melbo find a valid allocation most aligned to \mathbf{a} by solving the optimization problem in the figure. We introduce dual variables α_j for the constraints $x_i \leq 1$, β_i for $-1 \leq x_i$ (we collect these dual variables as vectors $\mathbf{\alpha}$, $\mathbf{\beta} \in \mathbb{R}^n$), λ for $\mathbf{x}^{\mathsf{T}}\mathbf{1} = D$ and δ for $\mathbf{x}^{\mathsf{T}}\mathbf{y} = 0$. (4+2+3+7+8=24 marks)

a. Fill in the circle indicating the correct constraint for the dual variables. (4x1 marks)

$\alpha_i \leq 0$	0	$\beta_i \leq 0$ C	$\lambda \leq 0$	$O \qquad \delta \leq$	≤0 ()
$\alpha_i \ge 0$	0	$\beta_i \ge 0$ C	$\lambda \ge 0$	$O \qquad \delta \ge$	≥0 0
No constraint	O No co	nstraint C) No constraint	O No constra	iint ()
b. Write down the	Lagrangian .	$\mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda, \delta)$) – no derivation n	eeded.	(2 marks)

- c. To simplify the dual $\max_{\alpha,\beta,\lambda,\delta} \{ \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \alpha, \beta, \lambda, \delta) \}$, solve $\min_{\mathbf{x}} \mathcal{L}$ to get an expression for \mathbf{x} in terms of $\alpha, \beta, \lambda, \delta$ and constants such as $\mathbf{a}, \mathbf{y}, \mathbf{1}$ etc. No need for derivation. (3 marks)
- d. Show us the simplified dual you get. Ignore constant terms e.g. $\|\mathbf{y}\|_2$, $\|\mathbf{a}\|_2$ etc. Note that we have turned the dual into a min problem by negating the objective. If a certain dual variable has no constraints, leave that box blank or write "No constraint". (7x1 marks)

Page 4 of 4

- e. For the simplified dual obtained above, let us perform block coordinate minimization.
 - 1. For any fixed value of $\alpha, \beta \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, obtain the optimal value of $\delta \in \mathbb{R}$.
 - 2. For any fixed value of $\alpha, \beta \in \mathbb{R}^n$, $\delta \in \mathbb{R}$, obtain the optimal value of $\lambda \in \mathbb{R}$.
 - 3. For any fixed value of $\boldsymbol{\alpha} \in \mathbb{R}^n$, $\lambda, \delta \in \mathbb{R}$, obtain the optimal value of $\boldsymbol{\beta} \in \mathbb{R}^n$.
 - 4. For any fixed value of $\beta \in \mathbb{R}^n$, $\lambda, \delta \in \mathbb{R}$, obtain the optimal value of $\alpha \in \mathbb{R}^n$.

Show brief steps. You may use the QUIN trick or shorthand notation to save space. (2+2+2+2 marks)

Show steps to find λ

Show steps to find δ

Show steps to find β

Show steps to find $\boldsymbol{\alpha}$