CS 771A: Intro to Machine Learning, IIT Kanpur				Endsem Exam	(28 Apr 2024)
Name					40 marks
Roll No		Dept.			Page 1 of 4

Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in **block letters** with **ink** on **each page**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases will get 0 marks.

Q1. (True-False) Write **T** or **F** for True/False (write only in the box on the right-hand side). You must also give a brief justification for your reply in the space provided below. (**3x(1+2) = 9 marks**)

1	Given any N values $a_1,, a_N > 0$, the optimization problem $\min_{x \in \mathbb{R}} \sum_{i \in [N]} (x - a_i)^3$	
L	always has a solution x^* that is finite i.e. $-\infty < x^* < \infty$.	
	π	
2	There exists a unique feature map $\varphi_{\text{lin}} \colon \mathbb{K}^2 \to \mathbb{K}^2$ for the linear kernel such that $(\phi_{\text{lin}}, (\phi_{\text{lin}}), (\phi_{\text{lin}}), (\phi_{\text{lin}}) \to (\phi_{\text{lin}})$	
2	same or different values of D for the two maps) that yield the same kernel value.	
	If $f \to \mathbb{D} \to \mathbb{D}$ are such that there may be points where either or both functions are	
3	not differentiable, then their sum $f + a$ can never be differentiable everywhere.	
	, , , , , , , , , , , , , , , , , , ,	

Page 2 of 4

Q2. (Kernel Smash) $K_1, K_2, K_3: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are Mercer kernels with 2D feature maps i.e., for any $x, y \in \mathbb{R}$, $K_i(x, y) = \langle \phi_i(x), \phi_i(y) \rangle$ with $\phi_1(x) = (1, x), \phi_2(x) = (x, x^2)$ and $\phi_3(x) = (x^2, x^3)$. Design a feature map $\phi_4: \mathbb{R} \to \mathbb{R}^7$ for kernel K_4 s.t. $K_4(x, y) = (K_1(x, y) + K_3(x, y))^2 + K_2(x, y)$ for any $x, y \in \mathbb{R}$. No derivation needed. Note that ϕ_4 must not use more than 7 dimensions. If your solution does not require 7 dimensions leave the rest of the dimensions blank. (5 marks) $\phi_4(x) =$

Q3. (Total confusion) The *confusion matrix* is a very useful tool for evaluating classification models. For a *C*-class problem, this is a $C \times C$ matrix that tells us, for any two classes $c, c' \in [C]$, how many instances of class c were classified as c' by the model. In the example below, C = 2, there were P + Q + R + S points in the test set where P, Q, R, S are strictly positive integers. The matrix tells us that there were Q points that were in class +1 but (incorrectly) classified as -1 by the model, S points were in class -1 and were (correctly) classified as -1 by the model, etc. **Give expressions for the specified quantities in terms of** P, Q, R, S. No derivations needed. Note that y denotes the true class of a test point and \hat{y} is the predicted class for that point. **(6 x 1 = 6 marks)**

				$\mathbb{P}[\hat{y} = y \hat{y} = 1]$	
		Predicted			
		class \widehat{y}		$\mathbb{P}[\hat{y} \neq y \hat{y} = 1]$	
		+1	-1		
yss y	+1	Р	Q	$\mathbb{P}[y=1 \hat{y}=1]$	
cle				$\mathbb{P}[\hat{y} = 1 y = 1]$	
True	- 1 R	S	$\mathbb{P}[\hat{v} = v v = 1]$		
Confusion Matrix					

 $\mathbb{P}[\hat{y} \neq y | y = 1]$

Q4 (Opt to Prob) Melbo has come across an anomaly detection algorithm that, given a set of data points in 2D, $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^2$, solves the following optimization problem:

$$\operatorname{argmin}_{\mathbf{c} \in \mathbb{R}^2, r \ge 0} r \text{ s.t. } \|\mathbf{x}_i - \mathbf{c}\|_{\infty} \le r \text{ for all } i \in [n]$$

where for any vector $\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2$, we have $\|\mathbf{v}\|_{\infty} \stackrel{\text{def}}{=} \max\{|v_1|, |v_2|\}$. Melbo's friend Melba thinks that this is just an MLE solution but Melbo is doubtful. To convince Melbo, create a likelihood distribution $\mathbb{P}[\mathbf{x} \mid \mathbf{c}, r]$ over the 2D space \mathbb{R}^2 with parameters $\mathbf{c} \in \mathbb{R}^2, r \ge 0$ such that $\left[\arg \max_{\mathbf{c} \in \mathbb{R}^2, r \ge 0} \{\prod_{i \in [n]} \mathbb{P}[\mathbf{x}_i \mid \mathbf{c}, r]\} \right] = \left[\arg \min_{\mathbf{c} \in \mathbb{R}^2, r \ge 0} r \text{ for all } i \in [n] \right]$. Your solution

must be a proper distribution i.e., $\mathbb{P}[\mathbf{x} \mid \mathbf{c}, r] \ge 0$ for any $\mathbf{x} \in \mathbb{R}^2$ and $\int_{\mathbf{x} \in \mathbb{R}^2} \mathbb{P}[\mathbf{x} \mid \mathbf{c}, r] d\mathbf{x} = 1$. Give calculations to show why your distribution is correct. (4 + 6 = 10 marks)

CS 771A:	Intro to Machine Lea	rning,	IIT Kanpur	Endsem Exam	(28 Apr 2024)
Name					40 marks
Roll No	C	Dept.			Page 3 of 4
Write down t	he density function of your li	kelihood	d distribution here.		
Cive coloulati	ana shawing why your likelih		ribution door indood ro	cult in the entimizatio	
Give calculati	ions showing why your likelin	iood aist	inducion does indeed re	suit in the optimizatio	n problem as wile.
Q5 (Positive Linear Regression) We have data features $\mathbf{x}_1,, \mathbf{x}_N \in \mathbb{R}^D$ and labels $y_1,, y_N \in \mathbb{R}$ stylized as $X \in \mathbb{R}^{N \times D}$, $\mathbf{y} \in \mathbb{R}^N$. We wish to fit a linear model with non-negative coefficients:					
	$\operatorname{argmin}_{\mathbf{w}\in\mathbb{R}^{D},}\frac{1}{2}\parallel$	X w –	$\mathbf{y}\ _2^2$ s.t. $w_j \ge 0$ for a	all $j \in [D]$	

- 1. Write down the Lagrangian for this optimization problem by introducing dual variables.
- 2. Simplify the dual problem (eliminate **w**) show major steps. Assume $X^{\top}X$ is invertible.
- 3. Give a coordinate descent/ascent algorithm to solve the dual. (2 + 3 + 5 = 10 marks)

Write down the Lagrangian here (you will need to introduce dual variables and give them names)

Page 4 of 4

Derive and simplify the dual. Show major calculations steps.

Give a coordinate descent/ascent algorithm to solve the dual problem.