CS 771A: Intro to Machine Learning, IIT Kanpur			Quiz II ((20 Mar 2024)
Name				20 marks
Roll No	Dep	t.		Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in **block letters neatly with ink**.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases will get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

(Noise to Regularize) The underlying principle behind the deep learning technique *dropout* is that adding noise to data can prevent models from overfitting. Let us derive this fact formally. Q1. Let $\epsilon \in \{-1, +1\}^D$ be a *D*-dim Rademacher vector with coordinates chosen i.i.d. $\epsilon_j = 1$ or -1 uniformly randomly. Find the following (no derivation) Note: $j, k \in [D], j \neq k$. (6 x 1 = 6 marks)

$\mathbb{E}[\epsilon_j + \epsilon_k] =$	$\operatorname{Var}[\epsilon_j + \epsilon_k] =$
$\mathbb{E}[\epsilon_j \epsilon_k] =$	$\operatorname{Var}[\epsilon_j \epsilon_k] =$
$\mathbb{E}[\epsilon_j/\epsilon_k] =$	$\operatorname{Var}[\epsilon_j/\epsilon_k] =$

Q2. Let $y, \lambda \in \mathbb{R}$ and $\mathbf{w}, \mathbf{x} \in \mathbb{R}^D$ be constants and $\mathbf{\epsilon} \in \{-1, +1\}^D$ be a Rademacher vector sampled independently of $y, \lambda, \mathbf{w}, \mathbf{x}$. Obtain a simplified expression (expectation is over the choice of $\mathbf{\epsilon}$ only). Give brief derivation. Your expression should not contain any ϵ_i terms. **(2 + 4 = 6 marks)**

Page 2 of 2

Q3. We have *N* datapoints $(\mathbf{x}^n, y^n) \in \mathbb{R}^D \times \mathbb{R}, n \in [N], \lambda \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^D$ all of which can be treated as constants. We also sample *N* Rademacher vectors $\boldsymbol{\epsilon}^n \in \{-1, +1\}^D, n \in [N]$ i.i.d. of each other as well as independent of the datapoints and λ, \mathbf{w} . Expectation is over the choice of $\{\boldsymbol{\epsilon}^n, n \in [N]\}$ only. Write down a simplified expression for the following (no derivation needed). (2 marks)

$$\mathbb{E}_{\{\boldsymbol{\epsilon}^n\}}\left[\sum_{n\in[N]} (\boldsymbol{y}^n - \mathbf{w}^{\mathsf{T}}(\mathbf{x}^n + \boldsymbol{\lambda} \cdot \boldsymbol{\epsilon}^n))^2\right] =$$

Q4 (IPL Intrigue). Melbo is a big IPL fan and is trying to analyse the performance of MI vs CSK on various kinds of pitches. Let M be the event that MI won a MI-vs-CSK match and C be the event that CSK won a MI-vs-CSK match. There are 3 kinds of pitches F = flat, G = green, D = dusty. A total of 24 matches were played between MI and CSK, $1/4^{\text{th}}$ of which were on green pitches and $1/3^{\text{rd}}$ on flat pitches. MI won 6 of the matches played on flat pitches. Both MI and CSK won equal number of matches played on green pitches i.e., $\mathbb{P}[M | G] = \mathbb{P}[C | G]$. Also, both flat and dusty pitches have been equally favourable for MI in that $\mathbb{P}[F | M] = \mathbb{P}[D | M]$. Find out the following quantities as fractions or decimals (no derivations needed). *Hint: either use Bayes rule or fill-up a 2 x 3 matrix showing which team won how many matches on what kind of pitch.* **(6 x 1 = 6 marks)**

$\mathbb{P}[F \mid M] =$	$\mathbb{P}[F \mid C] =$
$\mathbb{P}[G \mid M] =$	$\mathbb{P}[G \mid C] =$
$\mathbb{P}[D \mid M] =$	$\mathbb{P}[D \mid C] =$

uch nort

Anything written here will not be graded