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2.1 Hilbert spaces

Before we begin with some serious mathematics, we briefly digress to share an anec-
dote concerning the subject matter of our today’s study. Hilbert Spaces arose as a
result of the pioneering idea given by David Hilbert to consider ‘square summable in-
finite sequences’ as “points” in an n-dimensional space, while he was working with in-
tegral equations. Some time later, Hilbert, quite notorious for his absent-mindedness,
attended a conference with Richard Courant at which several of the papers presented
kept on referring to Hilbert spaces. After one such presentation, Hilbert turned to
Courant and asked a curious question: “Richard, exactly what is a Hilbert Space?”[1].

In the discussion that follows, we assume familiarity with elementary linear algebra.
In particular, the notions of linear mappings, vector spaces, orthonormal basis et

cetera are taken to be known to all.

Definition 2.1.1. A Hilbert space H is defined to be a vector space over the field

C of complex numbers with an inner product 〈 , 〉 : H ×H → C defined on it such

that for all u, v, w ∈ C

1. 〈 u , v 〉 = 〈 v , u 〉

2. 〈 u , α v + β w 〉 = α〈 u , v 〉 + β 〈 u , w 〉

3. 〈 αu+ β v , w 〉 = ᾱ 〈 u , w 〉 + β̄ 〈 v , w 〉

4. 〈 u , u 〉 ∈ R, 〈 u , u 〉 ≥ 0 and 〈 u , u 〉 = 0 iff u = 0

Example 2.1. Consider the n-dimensional vector space (Cn,+) over C with the
vector addition defined as the usual component-wise addition of vectors. The standard
inner product on this vector space is defined as

〈(x1, x2, . . . , xn) , (y1, y2, . . . , yn)〉 =

n∑
i=1

x̄iyi. (2.1)

Together with this inner product and the vector addition +, Cn is a Hilbert space.
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In general, Hilbert spaces may be finite or infinite dimensional. But for our endeavour,
it is sufficient to confine ourselves to finite dimensional Hilbert spaces though we shall
occasionally pause in between to make a remark or two about infinite dimensional
Hilbert spaces.

Example 2.2. An example of an infinite dimensional Hilbert space is the set of all
complex-valued functions over the real interval [0, 1]

{ f | f : [0, 1] → C }

with vector addition and inner product defined as follows

∀ x ∈ [0, 1] (f + g) (x) = f(x) + g(x)

〈f, g〉 =

∫
1

0

f̄ g dx (2.2)

Definition 2.1.2. For any linear map A : H → H, the adjoint of A = A∗ is given

by 〈 A∗u , v 〉 = 〈 u , Av 〉.

The following remarks about Hilbert spaces are in order:

Remark 2.1.1. For an infinite dimensional vector space over C to be a Hilbert space,
it should possess the property of completeness, i.e., every sequence of vectors in H
which is Cauchy should converge to some limit in H.

Remark 2.1.2. The second and third conditions stated in Definition 2.1.1 render the
inner product 〈 , 〉 to be a sesquilinear operator, which means conjugate linear in the
first operand and linear in the second operand.

Remark 2.1.3. If the Hilbert space H is finite-dimensional, then any linear operator
A : H → H can be represented by an n×n matrix with entries in C after fixing a basis
of H, and hence the adjoint of A = A∗ = ĀT is well defined. This is a basis-dependent
way of defining the adjoint of an operator, though it can be defined in a more general
way. The set of all linear operators on a finite-dimensional Hilbert space H together
with the addition operation is itself a finite-dimensional Hilbert space.

Remark 2.1.4. If however, the Hilbert space H is infinite dimensional, then the adjoint
of A = A∗ is defined iff A is a continuous linear operator on H. In this case, the
well-definedness of A∗ is guaranteed by the Riesz representation theorem. The set of
all linear operators on an infinite dimensional Hilbert space together with the usual
addition operation do not form a Hilbert space but the set of all continuous linear
operators on an infinite dimensional Hilbert space does form a Banach space.
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2.1.1 Notations

Physicists usually denote the adjoint A∗ of an operator A by the seemingly violent
notation A†, and the conjugate ᾱ of a acalar α by α∗. For all subsequent discussions,
we will take the middle path of denoting the adjoint of an operator A by A† and the
conjugate of a scalar α by ᾱ.

2.2 Dirac notation

We now arrive at what is arguably one of the greatest contibutions of physics to
humanity – the Dirac notation.

Let H be a finite-dimensional Hilbert space. The elements of H are called ket - vectors

denoted as |ψ〉 (pronounced as ket ψ)

Definition 2.2.1. A linear form or functional on H is a linear map from H to

C,

f : H → C

f (α u+ β v) = α f (u) + β f (v) ∀ α, β ∈ C u, v ∈ H

The space of all linear forms on H together with the usual addition of maps as the
vector addition forms a Hilbert space, known as the dual vector space of H, denoted
as H∗.

Corresponding to every element |ψ〉 ∈ H, there exists a unique 〈ψ| ∈ H∗, called bra

vector such that for all |x〉 , |y〉 ∈ H

1. 〈ψ| (|x〉) = 〈 ψ , x 〉 ≡ 〈ψ|x〉

2. |ψ〉 〈x| |y〉 = 〈x|y〉 |ψ〉

Example 2.3. 1. Let us fix an orthonormal basis for an n-dimensional Hilbert
space H as {|1〉 , |2〉 , . . . , |n〉}. We want an operator that on being given |k〉 as
input, produces |j〉 as output. It requires a little inspection to figure out that
|j〉 〈k| is one such operator.

2. Dual of α |ψ〉 is ᾱ 〈ψ|.

3. Dual of A |ψ〉 is 〈ψ|A†.
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Remark 2.2.1. (V ∗)∗ ∼= V iff V is a finite-dimensional vector space.

Remark 2.2.2. We had remarked in 2.1.3 that the adjoint of an operator can be
defined in more general terms. We further remark that if A is a linear map from H
to K, then A† can be thought of as a linear map from H∗ to K∗.

References

[1] http://www.anecdotage.com/index.php?aid=14087

http://www.anecdotage.com/index.php?aid=14087

	Hilbert spaces
	Notations

	Dirac notation

