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With that very broad overview to Quantum Computing and how it fits in the bigger
picture of science and engineering, we now introduce the Dirac notation and develop the
mathematical machinery for the subject, including a background in Linear Algebra.

2.1 Dirac Notation

The notation is listed here, with linear algebraic definitions in the next section, so that the
linear algebra could be presented in Dirac notation itself.

|ψ〉 Vector. Called ket-ψ.
〈ψ| Vector dual to 〈ψ|. Called bra-ψ.
〈φ|ψ〉 Inner product between the vectors |φ〉 and |ψ〉.

|φ〉 ⊗ |ψ〉 Tensor product of |φ〉 and |ψ〉.
|φ〉|ψ〉, |φψ〉 Abbreviations for |φ〉 ⊗ |ψ〉.
〈φ|A|ψ〉 Inner product between |φ〉 and A|ψ〉.
|φ〉〈ψ| Outer product. An operator.
A† Adjoint of A.

Table 2.1. Dirac Notation

2.2 Hilbert Spaces

The basic objects of linear algebra are vector spaces. Familiarity with vector spaces is
assumed. A vector space is defined over a field, which in this course will usually be the field
of complex numbers C.

2.2.1 Linear Functionals

Definition 1. For vector spaces V andW over a field F , a linear transformation T : V → W
is a function s.t.

T (c|α〉+ |β〉) = c(T |α〉) + T |β〉
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for all vectors |α〉, |β〉 ∈ V and all scalars c ∈ F . A linear transformation from V into V is
a linear operator.

Definition 2. A linear transformation T from a vector space V over F into the scalar field
F is a linear functional.

An important example of a linear functional is the trace function on a matrix, which is
a linear functional on the matrix space F nxn.

Definition 3. For an nxn matrix A with entries from field F , the trace is

trace(A) =
n∑

i=1

Aii,

Definition 4. The dual space V ∗ of a vector space V is the collection of all linear functionals
on V , which itself is a vector space in a natural way (i.e., with the natural definitions of
vector addition and scalar multiplication in V ∗).

For a finite-dimensional vector space V , the dual space V ∗ is of the same dimension as
V . Even more, the two are isomorphic. The isomorphism itself depends on the bases in the
two vector spaces. An invariant isomorphism using inner products will be described ahead.

2.2.2 Inner-products

Definition 5. An inner product 〈·|·〉 on a vector space V (over a field F ) is a function
mapping a pair of vectors to a scalar, satisfying the following:

1. 〈x|y〉 = 〈y|x〉

2. 〈x|αy + βz〉 = α〈x|y〉+ β〈x|z〉

3. 〈x|x〉 ≥ 0 and equality holds when x = 0 ((1) ⇒ 〈x|x〉 is real. So this property is
well-defined).

4. 〈αx|y〉 = α〈x|y〉.

The notation we adopt for inner products is the Physics notation, which is different from
the Mathematics notation in that the inner product is linear in the second argument while
sesqui-linear in the first argument.
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2.2.3 Hilbert Spaces

Definition 6. A vector space in which an inner product is defined is an inner product space.
A finite-dimensional inner product space is also a Hilbert space.

Infinite-dimensional Hilbert spaces have further properties, but we shall only deal with
finite-dimensional Hilbert spaces in this course. A Hilbert space will be denoted by H, and
would generally be C. The dual of a Hilbert space will be denoted by H∗. Hilbert spaces
are the basic objects in Quantum Computing.

With an inner product in the Hilbert space, we can know define the isomorphism between
H and H∗ in a bases-invariant manner: for a vector |v〉, define the dual vector 〈v| (a linear
functional) by

〈v|(|w〉) ≡ 〈v|w〉

For H to be Cn, we choose the standard inner product defined by

〈v|w〉 =
n∑

i=1

v∗iwi =
[
v∗1 . . . v∗n

] w1
...
wn


which leads to a convenient matrix representation of the operator 〈v|, which has not yet
been explicitly defined:

〈v| =
[
v∗1 . . . v∗n

]
.

2.3 Linear Operators

2.3.1 Linear Operators over H
Using the inner product, an outer product notation is defined for operators:

(|v〉〈u|)(|w〉) ≡ |v〉〈u|w〉 = 〈u|w〉|v〉.
It is easily verified that this defines a linear transformation from the Hilbert space U

containing |u〉 (and |w〉) to the Hilbert space V containing |v〉 for any |u〉 and |v〉, and a
linear operator when the two spaces are same. The converse is also true, that any linear
transformation can be expressed in the outer-product: if |vi〉 is a basis of V and |ui〉 a basis
of U , then

A =
∑
ij

〈vj|A|ui〉|vj〉〈ui|.

02, 03 - 3



CS682 Lecture 02, 03 — January 2, 4 Spring 2007

A useful interpretation of the outer-product notation is that |b〉〈a| is an operator that
maps |a〉 to |b〉 if |a〉 is of unit norm.

2.3.2 Adjoint of an Operator

Definition 7. In a Hilbert space H, the adjoint A∗ of an operator A is defined by

〈u|Av〉 = 〈A∗u|v〉.

For the choice of standard inner product, adjoint is same as conjugate-transpose. The
collection of operators over H is denoted by β(H). For H = Cn, β(H) = Mnxn(C), the
collection of all nxn matrices over C, which is a vector space.

2.3.3 Normal, Unitary and Hermitian Operators

Definition 8. An operator A is normal if A†A = AA†.

Definition 9. An operator A is unitary if A†A = AA† = I.

Definition 10. An operator A is Hermitian if A† = A.

2.3.4 Eigenvectors, Eigenvalues

Definition 11. An eigenvector of an operator A is a non-zero vector |x〉 such that A|x〉 =
λ|x〉 for a scalar λ, called the eigen value corresponding to the eigenvector |x〉.

Theorem 2.1. All eigenvalues of a Hermitian operator are real.

Theorem 2.2. All eigenvalues of a unitary operator have modulus 1, equivalently they lie
on a unit circle.

Theorem 2.3. On a finite-dimensional complex inner product space V , for a normal op-
erator A, there exists an orthonormal basis for V each vector of which is an eigenvector of
A.

2.3.5 Projections

Definition 12. A projection E of vector space V is an operator on V s.t. E2 = E. An
orthogonal projection is one whose range space and null space are orthogonal.

A projection is orthogonal iff it is Hermitian.
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Lemma 2.4. For a projection E on V with range space R and null space N , V = R ⊕N ,
the direct sum of R and N .

Lemma 2.5. If R and N are subspaces of V s.t. R ⊕ N = V , then there exists a unique
projection E with range space R and null space N .

Theorem 2.6. If V = W1 ⊕ . . .⊕Wk, then there exist k projections E1, . . . , Ek s.t.

EiEj = 0 if i 6= j (2.1)

I = E1 + . . .+ Ek (2.2)

R(Ei) = Wi (2.3)

where R(Ei) is the range space of Ei. By the above lemma, these projections are unique.
The converse is also true, i.e., for projections satisfying 2.1-2.3, V is the direct sum of their
range spaces.

Putting these together, we have the Spectral Theorem.

2.3.6 Spectral Theorem

Theorem 2.7. Let A be a normal operator on a finite-dimensional complex inner product
space V (or a self-adjoint (Hermitian) operator on a finite-dimensional real inner product
space V ). Let λi’s be the distinct eigenvalues of A. Let Wi be the eigenspace associated
with λi and Ei the orthogonal projection of V on Wi. Then Wi is orthogonal to Wj when
i 6= j, V is the direct sum of Wi’s, and

A = λ1E1 + λ1E2 + . . .+ λ1Ek.
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