Lecture 2

Warming up

We will start with the haskell interpreter ghci. To start the interpreter type
the following on the command line. You might see something like this.

$ ghci

GHCi, version 7.0.3: http://www.haskell.org/ghc/ :7 for help
Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

Prelude>

The Prelude> is the prompt and the interpreter is expecting you to type in
stuff. What you can type is any valid haskell expression. You can for example
use ghci like a calculator.

Prelude> 42

42

Prelude> 2 + 4

6

Prelude> sqrt 2
1.4142135623730951

The line 5 sqrt 2 is a function application, the function sqrt is applied on 2.
In haskell, applying a function f on an argument x is done by placing £ on the
left of x. Function application associates to the left, i.e. £ x y z means ((f
x) y)z.

2 LECTURE 2. WARMING UP
2.1 Types

Although it did not appear to be the case in this limited interaction, Haskell
is a strongly typed language unlike python or scheme. All values in haskell
have a type. However we can almost always skip types. This is because the
compiler/interpreter infers the correct type of the expression for us. You can
find the type of an expression prefixing it with ‘:type’ at the prompt. For
example

Prelude> :type ’a’
’a’ :: Char

In haskell the a type of a value is asserted by using :: (two colons). The

interpreter just told us that ’a’ is an expression of type Char.

Some basic types in Haskell are given in the table below

2.2 Lists and Strings.

A list is one of the most important data structure in Haskell. A list is denoted
by enclosing its components inside a square bracket.

Prelude> :type [’a’,’b’]

[’a’,’b’] :: [Char]
Prelude> :type "abcde"
"abcde" :: [Charl]

A string in Haskell is just a list of characters. The syntax of a string is exactly
as in say C with escapes etc. For example "Hello world" is a string.

Unlike in other languages like python or scheme, a list in Haskell can have only
one type of element, i.e. [1, ’a’] is not a valid expression in haskell. A list of
type t is denoted by [t] in haskell. Example the type String and [Char] are
same and denote strings in Haskell.

2.3 Functions.

In haskell functions are first class citizens. They are like any other values.
Functions can take functions as arguments and return functions as values. A
function type is denoted using the arrow notation, i.e. A function that takes an
integer and returns a character is denoted by Integer -> Char.

2.3. FUNCTIONS. 3

Prelude> :type length
length :: [a] -> Int

Notice that the interpreter tells us that length is a function that takes the list of
a and returns an Int (its length). The type a in this context is a type variable,
i.e. as far as length is concerned it does not care what is the type of its list, it
returns the length of it. In Haskell one can write such generic functions. This
feature is called polymorphism. The compiler/interpreter will appropriately
infer the type depending on its arguments

Prelude> length [1,2,3]
3
Prelude> length "Hello"
5

Polymorphism is one of the greatest strengths of Haskell. We will see more of
this in time to come.

Let us now define a simple haskell function.

fac O
fac n

1
n *x fac (n - 1)

Save this in a file, say fac.hs and load it in the interpreter

$ ghci fac.hs
GHCi, version 7.0.3: http://www.haskell.org/ghc/ :7 for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

[1 of 1] Compiling Main (fac.hs, interpreted)

Ok, modules loaded: Main.
Main> fac O

1

Main> fac 4

24

A haskell function is defined by giving a set of equations. A function equation
looks like

f pat_1_1 pat_1_.2 ... pat_1_.n = expr_1
1 pat_2_2 ... pat_2_n expr_2

f pat_m_1 pat_2_2 ... pat_m_n = expr_m

4 LECTURE 2. WARMING UP

The formal parameters can be patterns. We will define what patterns in detail
latter on but a constant like O or a variable like n is a pattern. When a function
is evaluated, its actual arguments are matched with each of the equations in
turn. We cannot explain what matching means in full detail here because we
have not explained patterns yet. However, for constant patterns like O or a
variable it is easy. An actual argument can match a constant if and only if
the argument evaluates to that constant. On the other hand a variable pattern
matches any argument. If a function f is defined using n equations, then while
evaluating the function on a set of arguments each equation is tried out in order.
The first equation of £ whose formal parameters match the actual argument is
used for evaluation.

To illustrate we consider the function fac that we defined. The expression
fac 0 evaluates to 1 because the actual parameter matches with the formal
parameter 0 in the first equation. On the other hand, in the expression fac 2
the actual argument 2 cannot match the formal argument 0 in the first equation
of fac. Therefore the next equation is tried namely fac n = n * fac (n-1).
Here the formal parameter n matches 2 (recall a variable pattern can match any
argument). Therefore, fac 2 evaluates to 2 * fac (2 - 1) which by recursion
evaluates to 2.

We give two alternate defintions of the factorial function, the first using guards
and the next using if then else.

facln | n == =1
| otherwise n * facl (n -1)

fac2 n if n == 0 then 1 else n * fac2 (n -1)

To summarise

1. Haskell functions are polymorphic
2. They can be recursive.

3. One can use pattern matching in their definition.

2.3. FUNCTIONS.

Haskell type

What they are

Bool
Int
Char

Integer

Boolean type
Fixed precision integer
Character

Multi-precision integer

	Warming up
	Types
	Lists and Strings.
	Functions.

