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Abstract

The aim of this article is to introduce the theory of quantum error correction
codes. Starting with classical codes we build the necessary mathematical machinery
to construct and analyse quantum codes. We will look at codes over the Hilbert
space L2(A) for some additive abelian group A and use the Weyl operators Ua and
Vb to describe errors. We quickly specialise to special codes called stabiliser codes
and look at stabiliser codes over finite fields. We also give quantum algorithm for
error correction in the case of stabiliser codes.
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1 Introduction

The basic problem of communication is the following: There are two entities, the sender
and the receiver. From time to time the sender wishes to send information to the
receiver. For this they are provided with a noisy channel. To set up reliable commu-
nication over this inherently noisy channel, we incorporate enough redundancy so that
even if few errors occur during transmission, the receiver is able to detect and sometimes
correct these errors. The goal of classical error correction is to design efficient encoding
and decoding methods. For an introduction the reader may consult [4].

The aim of this article is to introduce the subject of quantum error correcting codes.
Here the sender and receiver are quantum entities and the channel is a quantum channel.
It may appear that classical techniques will not help in this situation because of some of
the strange properties of quantum system like the non-cloning theorem. However this is
not the case. Starting with classical codes we build up the mathematical machinery for
constructing and analysing quantum codes, in the process show how remarkably similar
their theory is. We quickly specialise to the beautiful theory of stabiliser codes. We
also give a description of error correcting algorithm for stabiliser codes.

∗The author was a Ph.D student at the Institute of Mathematical Sciences when this tutorial lecture
was given as part of QICC 2005, IIT Kharagpur
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2 Classical Error correction

We begin with a brief overview of classical error correcting codes. An alphabet is a
finite set Σ of letters. A word of length n over an alphabet Σ is an element of Σn. Any
channel comes with an underlying alphabet. Letters of the alphabet are the smallest
unit of information that can be sent across the channel. Due to noise, during the
transmission some of the letters get corrupted.

Assume that we have a sender who, from time to time, sends one of the messages
M1, . . . ,Mk to a receiver through a channel C. There is an encoding procedure which
is agreed upon by both the sender and receiver — a set of words w1, . . . ,wk over the
underlying alphabet of the channel, all of which we assume are of length n, are chosen
such that the sender sends wi whenever he wishes to send Mi. However, since the
channel is not ideal, errors creep in. Our task is to find a subset C ⊆ Σn of size k such
that for certain number of errors the receiver can detect (or sometimes correct) it. Such
a set C is called a code and n is the length of the code.

We now make some simplifying assumptions. We will assume, without loss of gener-
ality, that Σ is an additive abelian group (A,+, 0). Words of length n are now elements
of the additive abelian group An. Errors now become additive errors — suppose a word
u is sent and a word v is received then we can think of the channel adding an error of
e = v −w. We now define a metric structure on An.

Definition 2.1 (Hamming Distance). Given words u = u1 . . . un and v = v1 . . . vn in
An the Hamming distance, d (u,v), is the number of positions i such that ui 6= vi. For
an element u = u1 . . . un, the weight w (u) is #{ui : ui 6= 0}.

Note that d (u,v) = w (u− v).
An error that effects t positions is nothing but an additive error of weight t. We

are interested in codes C ⊂ An that can tolerate t-errors. For a code C we define the
distance d(C) to be min{d (u,v) : u,v ∈ C and u 6= v} One has the following theorem.

Theorem 2.2. A code of minimal distance d can detect d−1 errors and correct
⌊

d−1
2

⌋
errors.

Proof sketch. An additive error of weight less than d will not take a valid code word to
another codeword. So one can detect an error that corrupts at most d− 1 positions.

Decoding is done using nearest neighbour algorithm: Given a word output the near-
est code word. This will work provided at most

⌊
d−1
2

⌋
positions are corrupted. This is

because if we consider balls of radius less than
⌊

d−1
2

⌋
then none of the balls intersect.

3 Quantum error correcting code

We saw that for classical channels there is an underlying alphabet, elements of which
are the smallest units of information that can be sent. In the case of quantum channel
the analogous entity is a finite dimensional Hilbert space H. Again with out loss of
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generality we assume that the Hilbert space H is L2(A), the space of functions from an
additive abelian group (A,+, 0) to C. This space is nothing but a finite dimensional
Hilbert space with orthonormal basis |a〉, a ∈ A. Vectors in L2(A) are analogous to
letters in the classical setting. Naturally “quantum word” of length n should be elements
of the tensor product L2(A)⊗

n
. For a word w = w1 . . . wn in An we will use |w〉 to denote

the vector |w1〉⊗ . . .⊗|wn〉. Thus {|w〉 : w ∈ A} gives a orthonormal basis for L2 (A)⊗
n

.
A quantum code is a subspace C of L2 (A)⊗

n

.
The sender and receiver are quantum entities and the channel is a quantum channel.

The messages that the sender wishes to send come from a finite dimensional Hilbert
space HM with orthonormal basis |0〉 , . . . , |k〉. As before the sender and receiver agrees
upon a code C with orthonormal basis say |ψ0〉 , . . . , |ψk〉. To send |i〉 the sender trans-
mits |ψi〉. What if the sender wishes to send an arbitrary unit vector |φ〉 in HM ? He
just extend the encoding process linearly. In other words if |φ〉 =

∑
αi |i〉 then the

sender transmits
∑
αi |ψi〉.

4 Quantum errors and Weyl Operators

In the classical setting the only errors were the so called position errors. Errors were
elements of An that acted additively on words. In the quantum setting we have to
worry about two types of error, position errors and phase errors. These errors are best
explained using Weyl Operators.

First position errors. Consider the unitary operator Ux, x ∈ A, defined by Ux |a〉 =
|a+ x〉 for all a ∈ A. These operators corresponds to position errors. To understand
phase errors we have to look at characters of A.

Given an abelian group (A,+, 0) we consider its group of characters (Â, ., 1). Let χ1

and χ2 be two homomorphisms from A to the unit circle S1 = {z : z ∈ C and |z| = 1}.
Define the product χ1.χ2 to be the homomorphism that maps a ∈ A to χ1(a)χ2(a).
The set of all such homomorphisms together with the product forms an abelian group
(Â, ., 1) which is called the group of characters of A.

The character group Â is isomorphic to A. We now define an explicit isomorphism
between A and Â. Let A be an additive abelian group. By the fundamental theorem
of finite abelian group there exists h1, . . . , hk ∈ A of orders r1, . . . , rk respectively such
that every element of a of A can be expressed as a sum x1h1 + . . .+ xkhk, 0 ≤ xi < ri.
Fix a basis h1, . . . , hk for A. For any positive integer n let ζn = e

2πι
n be the primitive

nth root of unity. Consider an element a =
∑
xihi of A. We define the element χa ∈ Â

as follows:

χa

(
k∑

i=1

yihi

)
=

k∏
i=1

ζxi.yi
ri

.

The map a 7→ χa is an isomorphism from the additive group A to the multiplicative
group Â. There is nothing canonical about the isomorphism a 7→ χa. It depends on the
basis we have chosen for A. From now on when we talk about χa we take for granted
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that an isomorphism from A to Â has been fixed and χa is the image of a under this
isomorphism.

An important property of characters is the so called Schur’s orthogonality property.

Lemma 4.1 (Schur’s Orthogonality).∑
x∈A

χx(a) =
{

0 if a 6= 0
#A otherwise

(1)

∑
x∈A

χa(x) =
{

0 if a 6= 0
#A otherwise

(2)

Here are some properties of characters that will be useful

Proposition 4.2. 1. χa · χb = χa+b,

2. χa(b) = χb(a),

3. χ−1
a = χa = χ−a.

We now define the unitary operator Va as follows : Va |b〉 = χa(b) |b〉. The opera-
tors Ua and Vb are called Weyl operators and satisfies the Weyl commutation relation:
χa(b)UaVb = VbUa. We extend the Weyl operators to L2 (A)⊗

n

as follows. For any word
a = a1 . . . an, Ua is the tensor product Ua1⊗ . . .⊗Uan . Similarly Va is the tensor product
Va1 ⊗ . . .⊗ Van .

Fourier transforms and Phase errors

To make phase errors Vb look less mysterious, we show that there is a natural inter-
pretation of phase errors as position errors in the Fourier basis. Consider a character
χ ∈ Â. Define the vector |χ〉 in L2(A) as follows: |χ〉 = 1√

#A

∑
a∈A χ(a) |a〉. Using

Schur’s orthogonality we can show that {|χa〉 : a ∈ A} also forms a orthonormal basis
for L2(A). It is also easy to verify the following proposition Va |χb〉 = |χa+b〉. This
shows that Va is nothing but position errors in the Fourier basis.

The unitary map F that performs the basis change |a〉 7→ |χa〉 is called the Fourier
transform which we denote by F . It is easy to see that F †VaF = Ua. If the abelian
group A is the field F2 then the Fourier transform is the so called Hadamard matrix.

We denote the unitary matrix

n︷ ︸︸ ︷
F ⊗ . . .⊗ F , the Fourier transform on L2 (A)⊗

n

, by Fn.
It is easy to see that F †nVaFn = Ua.

5 The Error Group

Consider the Hilbert spaceH = L2(A). Let B (H) denote the space of linear operators on
H. The set B (H) is itself a Hilbert space with inner product 〈A,B〉 defined as Tr(A†B).
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Together with operator composition, which will be the multiplication, B (H) forms a
ring (or in mathematical jargon a C∗-algebra). Unitary operators form a multiplicative
subgroup of B (H). The subgroup of unitary operators generated by the Weyl operators
{UaVb : a, b ∈ A} is called the error group of the Hilbert space H. The importance of
the error group comes form the following proposition.

Proposition 5.1. The error group E(H) forms an orthonormal basis for B (H)

The error group of L2 (A)⊗
n

is the group generated by {UaVb : a,b ∈ An}.
Let E be the error group of L2 (A)⊗

n

. Our model of quantum communication is as
follows. The sender sends a message |φ〉. The noise is modelled as an unknown U ∈ E
that gets applied to |φ〉. Recall that a quantum code C is a subspace of L2 (A)⊗

n

. Given
a subset A ⊆ E an A-error correcting code is a quantum code that corrects errors arising
from the set A, i.e. there should be a unitary operator U acting on L2 (A)⊗

n

⊗ C2⊗m

,
for sufficiently large m, such that for any vector |ψ〉 in C and UaVb ∈ A we have

U(UaVb |ψ〉)⊗ |0m〉 = |ψ〉 ⊗ |φa,b〉 .

The following criteria know as the Knill-Laflamme criteria can be used to check
when a code C is a A-error correcting code [3].

Theorem 5.2 (Knill-Laflamme theorem). Let C be a code with an orthonormal basis
|ψ0〉 , . . . , |ψk〉. Let A be a subset of the error group then C is an A-error correcting code
if and only if for all 0 ≤ i, j ≤ k and U, V ∈ A we have

〈ψi|U †V |ψj〉 =
{

0 if i 6= j
Γ(U †V ) otherwise

where Γ(UV ) is a function of UV independent of i and j.

Proof sketch. Let |ψi〉, 1 ≤ i ≤ n be a basis for C. Let A = {U1, . . . UM}. Let Hi be
the subspace spanned by Ur |ψi〉, 1 ≤ r ≤M . Let |ψij〉, 1 ≤ j ≤ ni, be an orthonormal
basis for Hi.

To prove that the condition is sufficient note that for i 6= j, Hi is orthogonal to Hj .
There exists a unitary operator acting on L2 (A)⊗

n

⊗ C2⊗m

, for some suitable m such
that U |ψij〉 ⊗ |0m〉 = |ψi〉 ⊗ |j〉. This is the error correction operator.

To prove that the condition is necessary we assume that there is a error correction
operator U acting on L2 (A)⊗

n

⊗C2⊗m

such that for each |ψ〉 ∈ C and Ur ∈ A we have

U(Ur |ψ〉)⊗ |0m〉 = |ψ〉 ⊗ |φr〉 .

We want to compute 〈ψi|U †rUs |ψj〉. Note that

〈ψi|U †rUs |ψj〉 = (〈0m| ⊗ 〈ψi|U †r )(Us |ψj〉 ⊗ |0m〉).
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Since unitary operators preserve inner products we have

〈ψi|U †rUs |ψj〉 = (〈φr| ⊗ 〈ψi|)(|ψj〉 ⊗ |φs〉) = 〈ψi|ψj〉 〈φr|φs〉 .

This above expression is 0 if i 6= j and is independent of i (is equal to 〈φr|φs〉) if
i = j.

Intuitively two different basis |ψi〉 and |ψj〉 under errors U and V should continue
to remain orthogonal for error correction to be possible.
Remark. Let C be a code that can correct errors arising from the subsetA = {U1, . . . , UM}.
From the proof the Knill-Laflamme theorem we can assume a stronger condition on the
error correcting algorithm (unitary operator). We can assume that there is a unitary
operator U acting on L2 (A)⊗

n

⊗C2⊗m

such that U(Ur |ψ〉)⊗|0m〉 = |ψ〉⊗ |r〉 for all |ψ〉
in C. From now on we will assume this stronger definition of error correcting operator.

To complete the analogy between classical error correction we also define error de-
tection.

Definition 5.3. Let C be a quantum code with basis |ψ0〉 , . . . , |ψk〉. We say that C can
detect error U ∈ E if for all 0 ≤ i, j ≤ k we have

〈ψi|U |ψj〉 =
{

0 if i 6= j
Γ(U) otherwise

The intuition behind the definition is similar to that of the classical case. We
want U |ψ〉 be orthogonal to all ψi for the error to be detected. It is easy to see from
Theorem 5.2 that C is a A-error correcting code if and only if it is a A†A-error detecting
code.

We now want to rephrase the Knill-Laflamme criteria in terms of the projection
operator. Since any code is a subspace there is an associated projection operator P .
The Knill-Laflamme criteria becomes

Theorem 5.4 (Knill-Laflamme). Let C be a code with P as its associated projection
operator. The C is a A-error correcting code if for all U and V in A we have PU †V P =
Γ(U †V )P .

Let C be a quantum code. The set of error operators detected by C, denoted by
D(C), is the set

D(C) = {U ∈ E|PUP = Γ(U)P}.
Note that C is a A-correcting quantum code if and only if A†A ⊆ D(C).

Let (a,b) ∈ An × An. We define the combined weight (which we will abbreviate as
weight) as

w (a,b) = #{i|(ai, bi) 6= (0, 0)}
For t ≤ n define At to be the subset {UaVb|w (a,b) ≤ t}. A t-error correcting code
is an At-error correcting code. Given a quantum code C with projection operator P .
By distance of C, written d(C) we mean the largest integer d such that D(C) ⊇ Ad−1.
Analogous to Theorem 2.2 in the classical setting we have the following theorem.
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Theorem 5.5. A quantum code C of distance d can detect d − 1 errors and correct⌊
d−1
2

⌋
errors.

Sometimes it is more natural to use the projection operators while talking about a
quantum code. Consider a quantum code C. Let P be the corresponding projection
operator. Often when P is more natural to the discussion we will use P instead of C.
For example we may use D(P ) to denote the set of errors detected by C (i.e. the set
D(C)). Similarly we may use d(P ) to denote the distance of C.

6 The Calderbank-Shor-Stean code

We now give an example of a quantum error correcting code. This family is the so
called Calderbank-Shor-Stean code or the CSS code for short. We pick two classical
linear codes C1 and C2 such that C2 ⊆ C1.1

We first describe what linear codes. Fix a finite field F say F2. A linear code C
of length n is a subspace of Fn. A linear code C is a [n, k, d] code if C is a subspace
of Fn of dimension k and distance d. The minimal distance of a code is given by
d(C) = min{w (w) : w ∈ C}.

For a code C let C⊥ denote the orthogonal complement of Fn. Let P be the projec-
tion operator into the vector space C⊥. Then P usually called the parity check matrix
for C. Note that Pu = 0 for all code words u ∈ C.

The nearest neighbour decoding procedure of linear codes is quite elegant. On
receiving a word m we want to decode it to the nearest code word. Let u be the nearest
code word and let e = m − u. Since P annihilates u we have e = Pm. We output
the code word u by going over all words in C an outputting the nearest codeword to e.
For a message m the word e = Pm is called the syndrome. Often there are much more
elegant algorithm to find the nearest codeword to the syndrome than the boring brute
force algorithm. A challenging task is to come up with efficient codes where the brute
force algorithm can be avoided.

We are now ready to describe the CSS construction for classical codes C1 and C2

over Fq such that C2 ⊆ C1. If C1 is an [n, k1]q code and C2 is an [n, k2]q code then the
constructed quantum code will be a qk1−k2 dimensional code. Also if C1 and C⊥2 can
correct t errors then the constructed code can also correct t quantum errors.

Consider the coset group C1/C2. For a coset x+ C2 of C2 in C1 define |x+ C2〉 as
follows

|x + C2〉 =
1√
#C2

∑
y∈C2

|x + y〉 .

Consider an error E = UaVb such that w (a) and w (b) are less than t. The error E
on |x + C2〉 will give the following vector

1The CSS construction can be carried out for groups codes C1 and C2 over the alphabet. We leave
this as an exercise for the reader.
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E |x + C2〉 =
1√
#C2

∑
y∈C2

χb(x + y) |x + y + a〉

The error correction is done in two stages. First the position errors are corrected
and then the phase errors. Let H1 and H2 be the parity check matrix of C1 and C⊥2
respectively. Let z ∈ Fn be any vector. We define the following unitary matrix

Up |z〉 ⊗ |w〉 = |z〉 |w +H1z〉

The unitary matrix Up writes down the syndrome in the ancilla register which can
now be used to correct error. The classical algorithm for the code C1 can be used to
correct the position error by measuring the ancilla. This gives the vector

1√
#C2

∑
y∈C2

χb(x + y) |x + y〉

Now to correct the phase errors we can use the error correcting properties of C⊥2 .
We will use the fact that phase errors are position errors in Fourier domain. Applying
the Fourier transform we get (I neglect the normalising factor)∑

y∈C2

χb(x + y)
∑
z

χz(x + y) |z〉 .

This can be rewritten as

∑
w

∑
y∈C2

χy(w)

χx(w) |w − b〉 . (3)

Now
(∑

y∈C2
χy(w)

)
is 0 unless w ∈ C⊥2 in which case it is #C2. The state is

Equation 3 becomes ∑
w∈C⊥2

χx(w) |w − b〉 .

This is as if a position error of −b has occurred. Using the error correcting properties
of C2 we can correct the error b just like the previous case. Applying the inverse Fourier
transform we get be error corrected state.

7 Error correction in the general setting

A more general model of error correction is given through the density matrix formalism
for quantum computation. For a quantum channel there is an underlying Hilbert space
H. We assume that the sender send a state ρ. On sending a state ρ the receiver gets a
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state
∑
L†iρLi where Li’s come from the some subspace A of B (H) such that

∑
L†iLi

is identity.
Consider n-fold tensor product H⊗n

. A n sized code is a subspace of H⊗n
. We say

that C is a A-error correcting code if there exists a set of operators M1, . . . ,Mn such
that for any collection L1, . . . , Lr of operators in A with the property that

∑
L†iLi = I,

we have ∑
i,j

M †
i L

†
jρLjMi = ρ

for any state ρ with support in C.
We now formalise t-error correcting codes in this model. We define the subspace At

of B
(
H⊗n)

to be the span of operators L which are of the form L1⊗ . . .⊗Ln, Li ∈ B (H)
where all but t of the Li’s are identity operator.

How does this model of error compare with whatever we have been talking about in
the previous sections ? Is it sufficient to concentrate only on errors of the form UaVb

? We show that indeed this is the case.Without loss of generality we will assume that
the Hilbert space H is L2(A) for some additive abelian group A. We make use of the
following theorem for Weyl operators.

Theorem 7.1. The collection of operators {UaVb : a, b ∈ A} forms an orthonormal basis
for the space B

(
L2(A)

)
. Moreover an orthonormal basis for B

(
L2 (A)⊗

n
)

is given by
{UaVb : a,b ∈ An}.

It follows from Theorem 7.1 that the space At of t-errors is spanned by UaVb for
a,b ∈ An of weight w (a,b) ≤ t. Consider a t-error correcting code A as defined in
Subsection 5. There is an error correcting algorithm that we modelled as a unitary
operator U . Consider a collection of errors Li coming form At. Each Li can be written
as a combination of UaVb. Since U corrects each of the error UaVb, it can correct any
linear combination of these errors. Hence it is sufficient to concentrate on the Weyl
operators while designing codes. General errors, which are just linear combinations of
these operators, will automatically be corrected by linearity.

There is an alternate way of looking at the above mentioned error model. The sender
sends a state ρ. Since the channel is not completely isolated from the environment, which
we model as a Hilbert space Henv, an unknown unitary operator U acts on the combined
system H⊗Henv. However the receiver has access only to the H portion of the combined
system and as a result the state he receives is that which is obtained by tracing out the
Henv portion of the state. It can be shown that these formalisms are equivalent. Also
if H is of dimension d, it is sufficient to consider environments of dimension at most d2.
This model, in some sense, is more satisfying from the physics point of view and turns
out to be equivalent to the operator formalism.

In view of the discussion we had is this section, we will consider only errors of
the type UaVb while designing codes. This simplifies the process of constructing and
analysing quantum codes.
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8 Stabiliser codes

There are certain quantum codes called stabiliser codes that have a neat description.
As before the underlying Hilbert space is L2(A) for some additive abelian group A.
Codes of length n are subspaces of L2 (A)⊗

n

. We will use E to denote the error group
associated with the L2 (A)⊗

n

.
Consider a subset A ⊆ E . Let C be the subset of vectors of L2 (A)⊗

n

that are
stabilised by A, i.e. set of all |ψ〉 in L2 (A)⊗

n

such that U |ψ〉 = |ψ〉 for all U ∈ A. It
can be easily verified that C forms a subspace of L2 (A)⊗

n

. Moreover C is stabilised by
all the elements in the subgroup of E generated by A. Codes that arise as subspaces
stabilised by a subgroup S of E are called stabiliser codes (or sometimes additive codes).
Let S be a subgroup of E . We will use CS to denote the stabilised subspace of S.
Elements of S are of the form ζUaVb for some root of unity ζ. Not all subgroups of E
lead to nontrivial codes. We now look at conditions that S should satisfy so that CS is
nontrivial.

Theorem 8.1. Let S be a subgroup of the error group S and let CS be the stabiliser code
corresponding to it. For CS to be nontrivial S should satisfy the following conditions:

1. For any nontrivial root of unity ζ, ζI 6∈ S.

2. For any two roots of unity ζ and µ if both ζUaVb and µUaVb belong to S then
ζ = µ.

3. The subgroup S should be abelian.

Proof sketch.

1. Let ζI ∈ S. For any vector |ψ〉, ζI |ψ〉 = ζ |ψ〉 and hence for CS to be nontrivial
ζ = 1.

2. If ζUaVb and µUaVb belong to S then then ζµI ∈ S and hence ζ = µ.

3. For any two U and V in E the commutator [U, V ] = ζI for some root of unity ζ.
Again from part 1 of the theorem we have the commutator subgroup [S,S] = {I}.

The above theorem gives the necessary conditions for S to give a nontrivial stabiliser
subgroup. By a Gottesman subgroup of the error group we mean a subgroup S such
that ζI 6∈ S for all nontrivial root of unity ζ. From the proof of Theorem 8.1 it is clear
that a Gottesman subgroup S satisfies all the properties of Theorem 8.1. We now show
that any Gottesman subgroup leads to a nontrivial stabiliser code and derive a formula
for the dimension of the code CS .
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Let S be a Gottesman subgroup of the error group and let Ŝ denote its character
group. Consider any nontrivial character χ ∈ Ŝ. Define the operator Pχ as follows

Pχ =
1

#S
∑
s∈S

χ(s)s.

Lemma 8.2.

Pχ1Pχ2 =
{
Pχ1 if χ1 = χ2,
0 otherwise.

Proof sketch. Use Schur’s orthogonality (Lemma 4.1).

The above lemma, in particular, shows that Pχ is a projection operator. The fol-
lowing lemma gives the dimension of the subspace Img(Pχ).

Lemma 8.3. The dimension of Img(Pχ) is #An

#S .

Proof. The dimension of Img(Pχ) is given by Tr(Pχ). Note that if a and b are elements
of An such that (a,b) 6= (0, 0) we have Tr(UaVb) = 0. As a result Tr(χ(s)s) = 0 for all
s 6= I in S. This shows that TrPχ is 1

#STrI = #An

#S .

.
The Lemmas 8.2 and 8.3 implies that the projections Pχ “partition” the Hilbert space

L2 (A)⊗
n

into orthogonal subspace, i.e.
∑

χ∈Ŝ Pχ = I. We can derive the dimension
formula now.

Theorem 8.4. For a Gottesman subgroup S of E the stabiliser subspace C(S) is the
image of the projection P (S) given by

P (S) = P1 =
1

#S
∑
s∈S

s.

Hence CS is of dimension #An

#S .

Proof sketch. Consider any s ∈ S. We have sPχ = χ(s)Pχ. Hence the subspace Img(P1)
is a subspace of CS . To prove Img(P1) is indeed CS note that for any operator s ∈ S,
Img(Pχ) is the eigen space corresponding to the eigen value χ(s). As a result there is
no vector |ψ〉 orthogonal to Img(P1) such that s |ψ〉 = |ψ〉 for all s ∈ S.

Consider the homomorphism φ from E to An × An that maps ζUaVb to (a,b). It
follows from Theorem 8.1 that φ restricted to S is an injection. Let S denote subgroup
φ(S). For S to be abelian, it requires that for all a, b, c and d such that (a,b) and
(c,d) lies in S, χa(d) = χb(c) holds. Together with Theorem 8.1 we have the following
characterisation of stabiliser codes.
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Theorem 8.5. Any Gottesman subgroup S of E is given by

S = {ρ(a,b)UaVb|(a,b) ∈ S}

where S is a subgroup of An×An and ρ is a function from S to the unit circle in C with
the property that for all a, b, c and d such that (a,b) and (c,d) is in S the following
condition should hold:

1. χa(d) = χb(d) and

2. ρ(a,b)ρ(c,d)χb(c) = ρ(a + c,b + d).

For a subgroup S of E by C (S) we denote the centraliser of S, i.e. the subgroup of
elements of E that commute with every elements of S. For a Gottesman group S we
have C (S) ⊇ S. The Knill-Laflamme criteria for stabiliser codes becomes a statement
about the centraliser of S.

Theorem 8.6. Let S be a Gottesman subgroup of the error group E. The set of errors
that CS cannot detect is C (S) \ S.

Proof sketch. Let P = 1
#S

∑
s∈S s be the projection operator corresponding to CS . Let

g be any element of E . The code CS can detect g if and only if PgP = cP for some
scalar c. It can be easily seen that if g ∈ S then PgP = P and if g ∈ E \ C (S) then
PgP = 0 = 0P . It can also be seen that PgP for g in C (S) \ S cannot be written as
cP for any scalar c. This is because PgP = gP 2 = gP and since g ∈ C (S) \ S, the
operators gP and P have disjoint support. This proves our theorem.

The above theorem leads to the following useful lemma.

Lemma 8.7. Let S be a Gottesman subgroup of the error group and let CS be the
corresponding stabiliser code. The distance of the code CS is given by the minimum of
w (a,b) over all a and b such that ζUaVb ∈ C (S) \ S.

9 Stabiliser codes over finite fields

In this section we deal with stabiliser codes over finite fields, i.e. quantum codes where
the underlying Hilbert space is L2(Fq). One hopes that the rich algebraic properties of
finite fields can be used to give succinct description of codes and would lead to efficient
encoding and decoding algorithms.

We introduce some notations. For q = pl, p a prime, by Fq we mean the unique
finite field of cardinality q. We will be interested in quantum codes over L2 (Fq)

⊗n

.
By ((n, r, d))q we mean a quantum code over L2 (Fq)

⊗n

with distance d and dimension
r. For codes with dimension a power of q, we use the notation [[n, k, d]]q to denote a
((n, qk, d))q code over L2 (Fq)

⊗n

. The notation [[n, k, d]]q is analogous to the notation
[n, k, d]q used to denote a n length linear code of dimension k and distance d over Fq.
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Consider a nontrivial character ω of Fq. For an element a ∈ Fq define the character
ωa which maps x ∈ Fq to ω(ax). The mapping a 7→ ωa is an isomorphism from Fq

to its character group. Consider the group Fn
q . For a in Fn

q , let ωa denote the map
x 7→ ω(aTx). Again the mapping a 7→ ωa is an isomorphism from Fn

q to its character
group. To study stabiliser codes over finite fields, we fix a finite field Fq and a nontrivial
character ω of it. Let E be the error group associated with L2 (Fq)

⊗n

.
We can think of elements of Fn

q × Fn
q as vectors in F2n

q . Any element u ∈ F2n
q is of

the form (a,b) for a and b in Fn
q . By Uu we mean the operator UaVb. We define the

symplectic inner product 〈〈 , 〉〉 from Fn
q × Fn

q to Fq as follows: Given u = (a,b) and
v = (c,d) in Fn

q × Fn
q , 〈〈u,v〉〉 = aTd− bTc

Theorem 8.5 takes the following form

Theorem 9.1. Any Gottesman subgroup S of the error group E is of the form

S = {ω(ρ(u))Uu : u ∈ S}.

where S is a additive subgroup of Fn
q ×Fn

q satisfying the symplectic condition 〈〈u, v〉〉 = 0
for all u and v in S and ρ is a function from S to Fq such that for u = (a,b) and
v = (c,d) in S we have ρ(u) + ρ(v) + bTc = ρ(u + v).

Consider a subgroup S of Fn
q ×Fn

q . Define the subgroup S to be the set of vectors x
such that 〈〈x,u〉〉 is zero for all u in S. The subgroup S is the “orthogonal complement”
of S under the symplectic inner product. Let S be a subgroup which together with a
function ρ gives a Gottesman subgroup S as in Theorem 9.1. We have the following
lemma on the distance of CS .

Lemma 9.2. The subgroup S contains S and the distance of CS is the minimum of
w (x), x in S \ S.

Proof sketch. The result follows from the fact that the centraliser of S consists of ele-
ments of the form ζUx for x ∈ S.

The task of constructing stabiliser codes involves constructing subgroups S and ρ
with the above mentioned properties. For a detailed account on how such an S and ρ
can be constructed we refer the reader to [2] and [1]. Here we give two examples.

CSS code as stabiliser code

We show that the codes constructed by the CSS construction in Section 6 can be seen as
a stabiliser code. Let C1 and C2 be linear codes over Fq of length n such that C1 ⊇ C2.
Recall that we have to construct a subgroup S of Fn

q ×Fn
q and a function ρ satisfying the

conditions of Theorem 9.1. It can be readily checked that if ρ is the constant function
that takes value 1 and S is the set of all (a,b) such that a ∈ C2 and b ∈ C⊥1 , the
conditions are met. Define S defined as

S = {UaVb|a ∈ C2 and b ∈ C⊥1 }.
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The stabiliser code CS is the required CSS code. Here we took S to be C2 × C⊥1 and ρ
to be the constant function that takes zero at all points.

Let C1 and C⊥2 be [n, k1, d]q and [n, n− k2, d] code respectively (i.e. C2 is a [n, k2]q
code). Note that #S is qk2 .qn−k1 . As a result the dimension of CS is qk1−k2 code. Also
note that S is nothing but C1×C⊥2 . Hence S \S consist of elements of weight at least d.
In fact a stronger property holds, namely all the non-zero elements of S have weight at
least d. Such codes are called pure codes. A Gottesman subgroup S is called a d-pure
subgroup if the centre C (S) does not contain any element of weight less than d. It is
clear that a d-pure Gottesman subgroup yields a distance d stabiliser code CS .

Laflamme code

We give the description of a [[5, 1, 3]]q stabiliser code over Fq which is known as the
Laflamme code. The smallest classical code that can correct one error requires at least
3 bit. In the case of quantum code the smallest code that can correct 1 qbit error requires
at least 5 qbits (see [2]). For the case when q = 2 the Laflamme code is optimal.

Our base field is Fq. Let C be the subspace of F5
q consisting of vectors (a1, . . . , a5)

such that
∑
ai = 0. Let L be the matrix

L =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

 .

The matrix L is a so called circulant matrix. If σ denotes the cyclic shift then the rows
of L are obtained by applying σ to the row vector (0, 0, 1, 1, 0). Let D be any matrix
such that L = D + DT , for example D is the upper triangular matrix whose upper
triangle coincides with that of L. It can be easily verified that the subgroup S defined
by

S = {ω(aTDa)UaVLa : a ∈ C}
is a Gottesman subgroup of the error group. We have chosen the set S to be {(a, Lb) :
a ∈ C} and the function ρ to be aTDa. The dimension of the code is given by q5

q4 = q.
To check that distance of CS is 3 we have to verify that S \ S had distance 3. The

elements of S consists of (x,y) such that aT (y − Lx) = 0, i.e. y − Lx belongs to C⊥.
One can show that for (x,y) of combined weight 2 this cannot happen.

For the code to be a distance 3 code it was sufficient for S\S not to contain elements
of weight 2 or less. Also note that the Laflamme code is a 3-pure code.

10 Error correction algorithms for stabiliser codes

In this section we describe error correcting algorithm for quantum stabiliser codes. We
will describe the error correcting algorithm for the case when the underlying abelian
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group is Fq. For codes over L2(A) for abelian groups A, a similar algorithm can be
devised. For the purpose of this section we assume that a Gottesman subgroup S
is given. Let S = {ω(ρ(u))Uu : u ∈ S}. where S and ρ satisfies the conditions of
Theorem 9.1. Recall that S is “orthogonal complement” of S under the symplectic
inner product 〈〈 , 〉〉. Although the construction of S involves choosing S and ρ with
the desired properties, from the error correction point of view it is the subgroups S and
S that really matters. To simplify things, we assume that S is indeed a subspace of
Fn

q × Fn
q .

Let d be the distance d(CS) of the code CS . This means that for all v ∈ S \ S,
w (v) > d. Let u1, . . . ,uk be a basis for S. The unitary operators ω(ρ(ui))Uui generate
the Gottesman subgroup S. We have the following lemma

Lemma 10.1. For any vectors v1 and v2, Uv1 Uv2 are in the same coset of C (S) if
and only if for all 1 ≤ i ≤ k, 〈〈v1,ui〉〉 is equal to 〈〈v2,ui〉〉

Proof. Since ui’s form a basis for S, if 〈〈v1,ui〉〉 equals 〈〈v2,ui〉〉 for all i then 〈〈v1,u〉〉
equals 〈〈v2,u〉〉 for all u in S. This implies that 〈〈v1 − v2,u〉〉 = 0 for all u in S. As a
result v1 − v2 is in S which proves our lemma.

Assume that the sender sends |ψ〉 and an unknown error Ux = Ux1Vx2 occurred. We
will give a quantum algorithm for error correction that can correct errors Ux for x of
weight less than or equal to t =

⌊
d−1
2

⌋
.

The received state is given by |φ〉 = Ux |ψ〉. For (a,b) in S, it is easy to see that
|φ〉 is an eigen vector of UaVb with eigen value 〈〈(a,b), (x,y)〉〉. We now give the error
correction algorithm.

1. For each basis element ui = (ai,bi) of S compute the eigen value of the operator
UaiVbi

corresponding to the vector |φ〉 using Kitev’s phase estimation method.
This gives us a sequence of k linear equations one for each basis element.

2. We solve this equation and find a solution of weight less than or equal to t.

3. Let the solution vector be v. The error corrected state is given by U †v |φ〉.

To prove the correctness of the algorithm note that Ux and Uv are in the same coset
of C (S) (by Lemma 10.1). Also since x and v are of weight less or equal to t we have
w (x− v) ≤ d and as a result x−v ∈ S (because S \S contains vectors of weight greater
than d). This proves that U †v |φ〉 = (U †vUx) |ψ〉 is nothing but ζ |ψ〉. The correctness of
the algorithm follows as the overall phase ζ can be neglected.

References

[1] V. Arvind and K. R. Parthasarathy. A family of stabilizer codes based on Weyl
commutation relation over a finite field. Volume in honor of C.S. Seshadri’s 70th
birthday, pages 133–153, 2003. Preprint quant-ph/0206174.



16 Quantum Error Correcting Codes: An introduction

[2] Calderbank, Rains, Shor, and Sloane. Quantum Error Correction Via Codes Over
GF(4). IEEETIT: IEEE Transactions on Information Theory, 44, 1998.

[3] Emanuel Knill and Raymond Laflamme. A theory of quantum error correcting codes.
Physical Review letters, 84:2525–2528, 2000. Preprint quant-ph/9604034.

[4] J. H. van Lint. Introduction to Coding Theory, volume 86 of Graduate Texts in
Mathematics. Springer-Verlag, New York Inc, 3rd edition, 1998.


