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Abstract

We present an attention-based ranking framework for learn-
ing to order sentences given a paragraph. Our framework is
built on a bidirectional sentence encoder and a self-attention
based transformer network to obtain an input order invari-
ant representation of paragraphs. Moreover, it allows seam-
less training using a variety of ranking based loss functions,
such as pointwise, pairwise, and listwise ranking. We apply
our framework on two tasks: Sentence Ordering and Order
Discrimination. Our framework outperforms various state-of-
the-art methods on these tasks on a variety of evaluation met-
rics. We also show that it achieves better results when using
pairwise and listwise ranking losses, rather than the pointwise
ranking loss, which suggests that incorporating relative posi-
tions of two or more sentences in the loss function contributes
to better learning.

Introduction
Coherence is a fundamental aspect of natural language dis-
course and text. In a coherent discourse, normally, sentences
should respect the chronological order of events. Correct
logical ordering of parts of the discourse can facilitate under-
standing. Ordering of sentences in a discourse determines lo-
cal coherence, so it is an essential aspect of natural language
processing. The sentence ordering task tries to organize ran-
domly shuffled sentences of a paragraph into a coherent text.
Table 1 shows an Example of this task. (Barzilay and Lapata
2008) proposed the sentence ordering problem on the Acci-
dents and Earthquakes datasets.

Two of the most successful recent sentence representation
models, Quick Thought (Logeswaran and Lee 2018) and
BERT (Bidirectional Encoder Representations from Trans-
formers) (Devlin et al. 2018) use next sentence classifica-
tion for learning the sentence representation. Next sentence
classification is a special case of the sentence ordering task,
which shows how vital the sentence ordering task is. Re-
cently sentence ordering has been used in many applications
like concept-to-text (Konstas and Lapata 2012), question an-
swering (Yu et al. 2018; Verberne 2011), multi-document
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Unordered Paragraph Ordered Paragraph

3 Then a nice thing happened. 1 Mario had lost his watch.
2 He sent a mail to Lost & Found. 2 He sent a mail to Lost & Found.
4 Somebody found his watch. 3 Then a nice thing happened.
1 Mario had lost his watch. 4 Somebody found his watch.

Table 1: Example of unordered sentences in a paragraph
(left) and ordered sentences in the same paragraph (right).

summarization (Barzilay and Elhadad 2002; Nallapati, Zhai,
and Zhou 2017).

Existing state-of-the-art for sentence ordering methods,
such as (Wang and Wan 2019), rely on sentence encoding
with Transformer and Long Short-Term Memory (Hochre-
iter and Schmidhuber 1997) (LSTM) with pre-trained GloVe
(Pennington, Socher, and Manning 2014) word vectors.
These methods usually require sentence-by-sentence decod-
ing to producing the reordered sentences.

We propose a novel architecture for sentence ordering and
reframe the problem in a ranking framework. Our frame-
work has several appealing properties. Firstly, while most
existing works (Li and Hovy 2014; Gong et al. 2016; Chen,
Qiu, and Huang 2016; Logeswaran, Lee, and Radev 2018;
Cui et al. 2018; Wang and Wan 2019) use pre-trained word
representations, we leverage Transformer based BERT sen-
tence representations, allowing our model to use improved
sentence encoding. The sentence encoder uses only Trans-
former (no LSTMs used). Following previous works we use
order invariant Transformer based paragraph encoder for
paragraph encoding. Secondly, while many recent works use
a Pointer Network based decoder for decoding the sentence
order from the encoded sentences, one sentence at a time,
we propose a simple and efficient feed-forward neural net-
work decoder. It computes a relevance score for each sen-
tence, in parallel. These scores can be simply sorted to pre-
dict the correct sentence ordering (without expensive beam
search). Thirdly, predicting scores for every sentence in this
fashion allows us to reframe the sentence ordering prob-
lem as a ranking problem. Our sentence ordering model can,
thus, leverage extensive prior work on the Learning to Rank
framework (Burges et al. 2005).

We conduct an extensive evaluation of our model on six



benchmark datasets for the sentence ordering task. We eval-
uate our model on two standard metrics: (1) Kendall’s tau
(τ ), (2) Perfect Match Ratio (PMR). We surpass the state-of-
the-art models in terms of τ on all benchmark datasets. We
also give our model’s performance in terms of PMR on all
the datasets. Our model excels in making accurate first and
last sentence predictions, achieving better performance than
previous state-of-the-art approaches. We also provide visu-
alizations of sentence representation and sentence level at-
tention. On the order discrimination task, we show improve-
ments over current state-of-the-art on Accidents dataset and
give competitive results on Earthquakes dataset.

RankTxNet: Deep Attentive Ranking
Networks for Learning to Order Sentences

This section starts with the sentence ordering problem set-
up. Then we describe the proposed model RankTxNet,
which as building blocks uses BERT for sentence encoding
and a Transformer for paragraph encoding. We also give the
details of training the model for various ranking loss func-
tions.

Problem Set-up
The problem of sentence ordering deals with finding the
correct order of sentences given a randomly ordered para-
graph. In other words, the aim is to find the most coher-
ent permutation of sentences among all possible orders in
a paragraph. Given a paragraph p = [so1 , so2 , · · · , som ]
with m sentences and order o = [o1, o2, · · · , om], para-
graph p∗ = [so∗1 , so∗2 , · · · , so∗m ] is correctly ordered if o∗ =
[o∗1, o

∗
2, · · · , o∗m] is the order of the most coherent permu-

tation of sentences. For example in Table 1, the unordered
paragraph is p = [so1 , so2 , so3 , so4 ] = [s3, s2, s4, s1] and
the correct order is o∗ = [1, 2, 3, 4].

Model Overview and Intuition
The proposed model has three components: a sentence en-
coder, a paragraph encoder and a decoder. The sentence
encoder is a Transformer (Vaswani et al. 2017) based pre-
trained BERT (Devlin et al. 2018). The paragraph encoder
is a randomly initialized Transformer network. The decoder
is a simple feed forward neural network. A detailed diagram
of the architecture is shown in Fig. 1.

BERT as the sentence encoder allows us to use the lan-
guage modeling knowledge obtained by pre-training on
freely available, large, un-annotated text data. The Trans-
former in the paragraph encoder ensures order invariant in-
teraction between the input set of sentences, which is a ran-
dom permutation of the desired paragraph. The order invari-
ant representation is a result of not adding positional encod-
ing as well as the self-attention mechanism, which attends
to every sentence encoding in the set with a direct connec-
tion. While in an LSTM encoder, sentences interact through
recurrent connections, which limits the flow of information
between sentences occurring farther in the sequence.

FFNN decoder provides a score corresponding to each
sentence in the sentence set. These scores are used for rank-
ing the sentences to produce the correct ordering. We train

our model to compute the scores for all sentences, which
gives us the flexibility to use the learning to rank frame-
work. Sorting these scores provides the correct ordering in
the paragraph. A variety of ranking loss functions available
in the literature can be used for studying the trade-offs be-
tween different evaluation metrics.

We mention the details of the different components in our
model below.

Transformer Mechanism
We briefly describe the transformer mechanism proposed
by (Vaswani et al. 2017), used in the sentence encoder as
well as the paragraph encoder. Both of them use multi-
ple self-attention layers. Each layer has a multi-head self-
attention sub-layer and a position wise feed-forward sub-
layer. These sub-layers use residual connections (He et al.
2016), which allows easy passage of information through a
deep stack of layers. Layer normalization (Lei Ba, Kiros,
and Hinton 2016), LayerNorm(x+ Sublayer(x)), is also
used after each sub-layer, where Sublayer(x) denotes the
sub-layer function.

The attention mechanism is defined on queries, keys and
values packed together in matrices Q, K and V, respectively.

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (1)

A multi-head attention for query matrix Q, key matrix K and
value matrix V is given by

MultiHead(Q,K,V) = Concat(H1, ...,Hh)WO (2)

where Hi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

Here, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈

Rdmodel×dv and WO ∈ Rhdv×dmodel are parameter matrices.
Every layer in the model outputs a vector of dmodel dimen-
sions. dk and dv are dimensions of key and value, respec-
tively, in a single head and there are h such heads in total.
In self-attention, Q, K and V all are from the same layer. In
the sentence encoder each key, query and value is a vector
corresponding to a word whereas in the paragraph encoder
each such vector corresponds to a sentence.

Sentence Encoder
We use BERT for encoding each sentence in the paragraph.
BERT is trained on an unsupervised Language Modeling
(LM) task on English Wikipedia and BookCorpus (Zhu et
al. 2015) datasets. It is jointly optimized for two LM tasks,
Masked LM and Next Sentence Prediction. For Masked LM,
some random words in a sentence are replaced with either a
mask word [MASK] or a random word or kept unchanged.
Masked LM task aims to predict the masked word correctly.
Next Sentence Prediction determines whether two sentences
in the input appear next to each other. In the process of learn-
ing these simple tasks on a large text corpus, BERT learns to
represent sentences. Pre-trained BERT can be further fine-
tuned for other NLP tasks. We use pre-trained BERT for
sentence encoding and its parameters are also fine-tuned in
an end-to-end manner for the sentence ordering task. BERT
can be viewed as a multi-layer Transformer network with the
layers as described in the sections above.
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Figure 1: The proposed model architecture

Paragraph Encoder
To encode a paragraph, we again use a Transformer Net-
work with self-attention layers. But the positional embed-
ding layer in a standard Transformer is removed to handle
the unordered nature of the sentences in the input paragraph.
The paragraph encoder outputs a dmodel dimensional vector
for every sentence. The encoded paragraph can be consid-
ered as a variable length vector of size mn × dmodel, where
mn is number of sentences in the nth paragraph. Every node
in the self-attention layer interacts with each node, including
itself via length one connections. This ensures direct sharing
of information among all the sentences in a paragraph.

Decoder
We use a position wise FFNN decoder that converts a sen-
tence representation into a score, one score for each sen-
tence. Unlike in many previous works where decoding has
to be done one sentence at a time, our model computes a
score for each sentence in parallel. Finally, the order of the
paragraph is predicted by sorting these scores.

Training and Ranking Losses
Given a corpus with N paragraphs, the nth paragraph
with mn unordered sentences is denoted by pn =
[s1, s2, · · · , smn

]. We denote the score of sentence sk by
zk, i.e., zk = f(sk), where f is the function denoting the
model. To train our model, we have used three types of loss

functions. The general form of the loss function is:

Loss =
1

N

N∑
n=1

L(pn) (4)

where L(.) can be one of the following losses.
Pointwise Ranking Loss: In pointwise ranking approach,

we view sentence ordering as a regression problem. Each
sentence in an ordered paragraph is mapped onto a real-
valued gold score yk ∈ [0, 1], for sentence sk (increasing
order). For example, if a paragraph has 5 sentences then
[y1, y2, y3, y4, y5] = [0, 0.25, 0.50, 0.75, 1.0]. A similar ap-
proach for target values has been adopted by (McClure,
O’Brien, and Roy 2018). The training optimizes the MSE
loss:

Lpoint(pn) =
1

mn

mn∑
k=1

(yk − zk)2 (5)

Pairwise Ranking Loss: For pairwise ranking approach,
we take the pairwise margin ranking loss (Joachims 2002)
between two consecutive sentences while training. This does
not require target value as in pointwise approach. We adopt
the pairwise margin ranking loss in our approach as follows:

Lpair(pn) =
1

mn − 1

mn−1∑
k=1

lp(sk, sk+1) (6)

lp(sk, sk+1) = max(0, t.(zk − zk+1) + γ) (7)



where t = 1 if sentence sk is placed in a higher position
than sentence sk+1 and t = −1 if sentence sk+1 is in a
higher position than sk. γ is the margin hyperparameter.

Listwise Ranking Loss: The listwise ranking loss con-
siders all the sentences in a paragraph together. We have ex-
perimented with two different listwise losses: ListNet (Cao
et al. 2007) and ListMLE (Xia et al. 2008).

• ListNet: This approach (Cao et al. 2007) uses a loss based
on the probability of a sentence being ranked on the top,
given the scores of all the sentences in the paragraph. The
top-one probability of sentence sk in the nth paragraph
using gold target values and predicted scores are denoted
by Pn(sk) and P̂n(sk), respectively, which are given as:

Pn(sk) =
exp(yk)∑mn

i=1 exp(yi)
(8)

P̂n(sk) =
exp(zk)∑mn

i=1 exp(zi)
(9)

LNet(pn) = −
mn∑
k=1

Pn(sk) log P̂n(sk) (10)

where yk ∈ [0, 1] is the gold score for sentence sk.
• ListMLE: In this method, the likelihood loss function is

minimized, which is a surrogate loss to the perfect order
based 0-1 loss function (Xia et al. 2008). Let the correct
order of paragraph n be o = [o1, o2, · · · , omn ].

LMLE(pn) = − logPM (o|pn) (11)

PM (o|pn) =

mn∏
k=1

exp(zok)∑mn

i=k exp(zoi)
(12)

Since, ListMLE gives higher scores to sentences occur-
ring in the starting positions (contrary to our other ap-
proaches), we reverse the order to make final predictions.

Related work
Traditional Approaches: (Morris and Hirst 1991) use the-
saurus for identifying lexical chains. (Lapata 2003) calcu-
lates transition probabilities between sentences and decode
the sentence order greedily. (Barzilay and Lee 2004) uses
topic and topic transition modeling with Hidden Markov
Model (HMM). (Barzilay and Lapata 2008) extracts enti-
ties and learns entity transition probabilities. A limitation
of these approaches is their reliance on linguistic domain
knowledge.
Deep learning approaches: The recent trend has been to-
wards using data-driven, end-to-end deep learning models
for sentence ordering. (Chen, Qiu, and Huang 2016) pre-
dicts pairwise ordering (Pairwise Ranking Model) of sen-
tences in the text and uses the predicted orderings in Win-
dow Network (Li and Hovy 2014). It should be noticed that
our method RankTxNet with pairwise loss differs from this
model in the sense that we use entire context rather than
pairs of sentences, independently.

Hierarchical deep learning models have dominated recent
progress in the sentence ordering task. These models have

three key components: a Sentence Encoder, a Paragraph En-
coder and a Decoder. The sentence encoder processes words
to get sentence vectors, then the paragraph encoder uses sen-
tence vectors for computing a paragraph or context vector.
Further, these sentence and paragraph vectors are used by
the decoder for computing the conditional probability of an
ordering. The network is trained for maximizing conditional
probability of the correct ordering.

The hierarchical recurrent neural network (RNN) model
of (Gong et al. 2016; Logeswaran, Lee, and Radev 2018)
has both sentence encoder and paragraph encoder based on
LSTM. The decoder is an LSTM based Pointer network,
which, at every time step, predicts the next sentence prob-
ability for each candidate sentence. At test time these proba-
bilities are used in beam search for predicting the output or-
der. The LSTM paragraph encoder processes sentences in a
given order, which makes it vulnerable to the order in which
sentences are provided, which is a random permutation of
the correct ordering. So (Cui et al. 2018) replaced the LSTM
based paragraph encoder with a Transformer (Vaswani et al.
2017) (without positional encoding) based encoder, to make
it order insensitive. Recently, (Wang and Wan 2019) added
a Transformer along with an LSTM in the sentence encoder
to further improve the model. It is important to note that in
this model, the Transformer in the sentence encoder cannot
be initialized with a pre-trained BERT as it uses the output
of LSTM layers rather than tokens from the input sentence.
Most of the recent works use pre-trained word vectors for
using linguistic knowledge from language models.

Ranking problems have been extensively studied in
Learning to Rank framework (Burges et al. 2005) in many
domains like information retrieval, machine translation,
computational biology (Duh and Kirchhoff 2008), recom-
mender systems (Lv et al. 2011) and software engineer-
ing (Xuan and Monperrus 2014). Properties of ranking loss
functions have been well studied. They can be used for di-
rectly optimizing different properties of the sentence order-
ing task. We use various ranking loss functions, which are
capable of utilizing the relevance score of a single sentence
for the global ranking of sentences, to optimize the network.

Experiments
We conduct a comprehensive analysis of our approach on
various benchmark datasets and compare our model with
other state-of-the-art approaches. We also demonstrate the
effectiveness of different components of our models by per-
forming ablation analysis.

Datasets
Following (Cui et al. 2018) and previous works we run
our sentence ordering experiments on NIPS abstracts,
AAN/ACL abstracts and NSF abstracts datasets from (Lo-
geswaran, Lee, and Radev 2018); arXiv abstracts and
SIND/VIST captions datasets from (Gong et al. 2016;
Agrawal et al. 2016; Huang et al. 2016); and ROCStory
dataset from (Wang and Wan 2019; Mostafazadeh et al.
2016). Table 3 provides the statistics for each dataset. For
order discrimination experiments, we use Accidents and
Earthquakes datasets from (Barzilay and Lapata 2008).



Methods NIPS abstracts AAN abstracts NSF abstracts arXiv abstracts SIND captions ROCStory
τ PMR τ PMR τ PMR τ PMR τ PMR τ PMR

Entity Grid 0.09 - 0.10 - - - - - - - - -
Seq2seq 0.27 - 0.40 - 0.10 - - - - - - -

Window Network 0.59 - 0.65 - 0.28 - - - - - - -
Pairwise Ranking Model - - - - - - 0.66 33.43 - - - -

RNN Decoder 0.67 - 0.66 - 0.48 - - - - - - -
Variant-LSTM+PtrNet 0.72 - 0.73 - 0.51 - - - - - - -

CNN+PtrNet 0.66 - 0.69 - 0.51 - 0.71 39.28 0.48 12.32 - -
LSTM+PtrNet 0.67 - 0.69 - 0.52 - 0.72 40.44 0.48 12.34 0.7214 36.25
ATTOrderNet 0.72 - 0.73 - 0.55 - 0.73 42.19 0.49 14.01 - -

HierarchicalATTNet 0.6671 14.06 0.6903 31.29 0.5073 8.12 0.7536 44.55 0.5021 15.01 0.7322 39.62
RankTxNet Regression 0.7324 18.91 0.7472 35.61 0.5607 9.03 0.7449 39.85 0.5510 14.03 0.7357 30.59

RankTxNet Pairwise 0.7509 23.63 0.7704 38.86 0.5614 9.66 0.7516 41.28 0.5609 15.59 0.7523 35.30
RankTxNet ListNet 0.7463 23.88 0.7644 37.51 0.5772 9.48 0.7449 39.26 0.5507 14.18 0.7483 33.08

RankTxNet ListMLE 0.7462 24.13 0.7748 39.18 0.5798 9.78 0.7666 43.44 0.5652 15.48 0.7602 38.02

Table 2: Kendall’s tau (τ ) and perfect match ratio (PMR) on test set for various benchmark datasets. Note that Kendall’s tau
metric, on which our method consistently outperforms other baselines, correlates with human judgements.

Datasets Max Avg Dataset Split

Train Val Test

Accidents 19 11.5 100 - 100
Earthquakes 32 10.4 100 - 99
NIPS abstracts 15 6 2448 409 402
AAN abstracts 20 5 8569 962 2626
NSF abstracts 40 8.9 96070 10185 21580
arXiv abstracts 35 5.38 884912 110614 110615
SIND captions 5 5 40155 4990 5055
ROCStory 5 5 78529 9816 9817

Table 3: Train, test and validation splits along with maxi-
mum and average paragraph lengths.

Hyperparameters
For sentence encoder, we use the pre-trained BERTBASE
model with 12 Transformer blocks, the hidden size as 768,
and 12 self-attention heads. The feed-forward intermediate
layer size is 4 × 768, i.e., 3072. The paragraph encoder is
a Transformer Network having 2 Transformer blocks, with
hidden size 768 and a feed-forward intermediate layer size
of 4× 768, i.e., 3072. We experiment with 2, 4 and 8 Trans-
former blocks for ROCStory dataset; and 2 and 8 for arXiv
dataset and report the best results. The 768-dimensional sen-
tence representation obtained from Transformer is pooled by
the decoder which is a five layer feed-forward network with
ReLU non-linearity in each layer with hidden size of 200,
and a 1-dimensional output layer for the score. We train the
model with Adam optimizer (Kingma and Ba 2014) with ini-
tial learning rate, 5 × 10−5 for sentence encoder and para-
graph encoder and 5 × 10−3 for decoder; β1 = 0.9, β2 =
0.999; and batch size of 400. For pairwise ranking loss, the
value of the margin hyperparameter, γ, is set to 1.

Sentence Ordering
Evaluation Following previous studies we use the follow-
ing metrics for evaluating the sentence ordering task:

Kendall’s Tau (τ ): For a sequence of length n, Kendall’s

tau (τ ) is defined as τ = 1 − 2 × (# inversions) /
(
n
k

)
.

(Lapata 2006) suggests that Kendall’s tau score for sentence
ordering correlates with human judgements.

Perfect Match Ratio (PMR): PMR is the fraction of
number of exactly correct orderings over all the paragraphs.
This is the toughest evaluation metric as it does not con-
sider any partial match. Mathematically, it can be written
as PMR = 1

N

∑N
n=1 I{ô(n) = o∗(n)}, where ô(n) is the

predicted order and o∗(n) is the actual correct order for nth
paragraph.

Baselines We compare our methods with Entity
Grid (Barzilay and Lapata 2008), Seq2seq (Li and
Hovy 2014), Window Network (Li and Hovy 2014),
Pairwise Ranking Model (Chen, Qiu, and Huang 2016),
RNN Decoder, Variant-LSTM+PtrNet (Logeswaran, Lee,
and Radev 2018), CNN+PtrNet, LSTM+PtrNet (Gong et al.
2016), ATTOrderNet (Cui et al. 2018) and HierarchicalAT-
TNet (Wang and Wan 2019). Our methods are denoted by
RankTxNet Regression, RankTxNet Pairwise, RankTxNet
ListNet and RankTxNet ListMLE.

Results Table 2 provides the results of the sentence order-
ing experiments on six benchmark datasets. Most of the re-
sults of prior approaches have been taken from (Cui et al.
2018). We consistently achieve better results than the state-
of-the-art methods on τ on all the datasets. We reiterate that
τ score correlates with human judgements. RankTxNet im-
proves the previous state-of-the-art in terms of τ scores by
the absolute percentage of 3.09% in NIPS abstracts, 4.48%
in AAN abstracts, 2.98% in NSF abstracts, 1.3% in arXiv
abstracts, 6.31% in SIND captions and 2.8% in ROCStory
dataset. On SIND captions, we also get an improvement on
PMR from 15.01% to 15.59%. On all other datasets, we
show competitive PMR score. Among our approaches, pair-
wise and listwise methods always outperform the pointwise
method. Specifically, ListMLE performs better than all other
methods in most of the cases.

SIND contains descriptions of natural images and absence
of visual information makes the ordering task more difficult
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Figure 2: t-SNE embeddings of sentence representations for AAN abstracts and SIND captions datasets on sentence ordering
task. Colors correspond to position of the sentences in the original paragraph. Untrained: Sentence embeddings before fine-
tuning (same as pre-trained BERT). Trained: Sentence embeddings after fine-tuning.

compared to other datasets. Higher maximum (40) and aver-
age (8.9) size of paragraphs make NSF a harder dataset than
others, leading to lower performance.

More details about hyperparameters are provided in the
supplementary material.

Methods SIND arXiv

First Last First Last

Pairwise Ranking Model - - 84.85 62.37
CNN+PtrNet 73.53 53.26 89.43 65.36
LSTM+PtrNet 74.66 53.30 90.47 66.49
ATTOrderNet 76.00 54.42 91.00 68.08

RankTxNet Regression 78.52 57.37 92.59 68.51
RankTxNet Pairwise 79.09 58.69 92.87 69.33
RankTxNet ListMLE 80.32 59.68 92.97 69.13
RankTxNet Listnet 78.00 58.18 92.46 68.64

Table 4: Accuracy of predicting first and last sentences in
SIND and arXiv datasets.

As discussed by (Gong et al. 2016; Chen, Qiu, and Huang
2016; Cui et al. 2018), it is more significant to identify the
first and the last sentences in a paragraph. We provide the ac-
curacies of our approach and compare it with the results re-
ported in (Cui et al. 2018) in Table 4 for SIND captions and
arXiv abstracts datasets. All our approaches perform bet-
ter than the state-of-the-art models. In particular, on SIND
dataset, our model achieves absolute improvement of 4.32%
and 5.26% respectively, for first and last positions over the
current state-of-the-art model.

To visualize the effect of training on the sentence repre-
sentation, we use t-SNE embeddings. We show the t-SNE
embeddings for AAN abstracts and SIND captions datasets
before and after training in Fig. 2. It is important to note
that before training, sentence representation is same as that
of pre-trained BERT. The sentences are taken from the test
set. Clearly, our model is learning to separate sentences in
different positions and generalizes well on the unseen test
set. This also shows that simply using the BERT represen-
tations is not enough as the t-SNE embeddings do not show
any pattern before training the model on sentence ordering
task. Figure 3 shows the visualization for paragraph encoder
self-attentions.

Methods Accidents Earthquakes

Graph 84.6 63.5
HMM+Entity 84.2 91.1
HMM 82.2 93.8
Entity Grid 90.4 87.2
Recurrent 84.0 95.1
Recursive 86.4 97.6
Discriminative Model 93.0 99.2
Variant-LSTM+PtrNet 94.4 99.7
LSTM+PtrNet 93.7 99.5
ATTOrderNet 96.2 99.8
RankTxNet 96.79 98.65

Table 5: Performance of different models for order discrim-
ination task on Accidents and Earthquakes datasets.

Order Discrimination
We present evaluation of our model on the Order Discrim-
ination task defined in (Barzilay and Lapata 2008; Elsner
and Charniak 2008; 2011), in this section. For a given para-
graph and its randomly permuted sentences, the objective of
the order discrimination task is to discriminate between the
original and permuted paragraphs. We analyze the models
using percentage accuracy on this binary classification task.

For order discrimination we use the best sentence order-
ing model, found by validation on heldout data, to predict or-
dering for both original and permuted paragraphs. We com-
pute Kendall’s Tau (higher if the number of inverted pairs is
lower) for both predicted ordering, with respect to ordering
o = [0, 1, 2, . . . ,m], where m is the number of sentences
in the paragraph. The paragraph with higher Kendall’s Tau
value is classified as an original or more coherent paragraph.

Following (Bertolino, Marchetti, and Muccini 2005; Lo-
geswaran, Lee, and Radev 2018; Cui et al. 2018), we eval-
uate our models on Accidents and Earthquakes datasets for
order discrimination so that we can compare their perfor-
mance with the current state-of-the-art models. We use 1986
and 1956 test pairs on Accidents and Earthquakes, respec-
tively, with the same setup as in (Barzilay and Lapata 2008).

Results We compare our models with Graph (Guinaudeau
and Strube 2013), HMM and HMM+Entity (Louis and
Nenkova 2012), Entity Grid (Barzilay and Lapata 2008), Re-
current and Recursive (Li and Hovy 2014), Discriminative



Figure 3: Self-attention scores of last layer of paragraph encoder: Attention score for all heads are shown in different colors.
Higher Intensity represent higher values. First and last sentences can be differentiated, clearly. Sentences with positive and
negative sentiments have different patterns in attention values.

model (Li and Jurafsky 2016), Variant-LSTM+PtrNet (Lo-
geswaran, Lee, and Radev 2018), CNN+PtrNet and
LSTM+PtrNet (Gong et al. 2016) and ATTOrderNet (Cui
et al. 2018). Order discrimination results are reported in Ta-
ble 5.

On Accidents, we outperform the current state-of-the-art
and on Earthquakes, our model gives competitive results. We
report our best performing method ListMLE on this task.

Ablation Analysis
In this section, we conduct various ablation studies to assess
our model and understand the roles played by different com-
ponents in our model.
Finetune vs. No Finetune BERT: To analyze how BERT is
contributing as a sentence encoder without further training
on the sentence ordering dataset, we make the parameters
of BERT sentence encoder non-trainable. We conduct these
experiments on AAN abstracts and SIND captions for all of
our approaches. Fig. 4 shows that not fine-tuning BERT on
the sentence ordering dataset reduces the performance dras-
tically. This suggests that fine-tuning BERT/sentence en-
coder in an end-to-end fashion for this particular task con-
tributes to significantly better learning.
Pretrained vs. Random Transformer: To observe the ef-
fect of using BERT pre-trained model for sentence encoder,
we run experiments on AAN abstracts and SIND captions
using a randomly initialized Transformer and BERT ini-
tialized Transformer (our model). All weights in both the
models are fine-tuned for the sentence ordering task. Fig. 4
shows that the performance reduces substantially for random
Transformer. This indicates that our model is able to utilize
the language modeling knowledge from pre-trained BERT
for sentence ordering.

We observe similar ablations results for NIPS and ROC.

Conclusion and Future work
We propose a novel ranking loss and Transformer based
RankTxNet for sentence ordering and order discrimination
task. RankTxNet uses pre-trained BERT for sentence repre-
sentation and a Transformer for paragraph representation. It
uses a simpler feed forward network for decoding, compared
to previous work. The model can be trained on extensively
studied ranking loss functions, opening a new direction for
exploiting advances in the ranking literature. Our experi-
ments demonstrate ability of the model to learn sentence or-
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Figure 4: Comparison of Kendall’s tau (τ ) for our different
models on AAN abstracts and SIND captions datasets with
variants: i. Without fine-tuning BERT/sentence encoder, ii.
Using randomly initialized BERT/sentence encoder.

dering. RankTxNet has improved the state-of-the-art results
in sentence ordering and order discrimination tasks on vari-
ous benchmark datasets. We report Kendall’s tau and perfect
match ratio on six datasets for the sentence ordering task.
The simple feed forward network in the decoder can be eas-
ily replaced by any complex network. In a learning to rank
setting different metrics have been optimized, directly. Fu-
ture work on sentence ordering can explore these methods.
Our model can be extended for other ordering problems.
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Supplementary Material: Deep Attentive Ranking Networks for Learning to
Order Sentences

Detailed Hyperparameters
In this section, we provide more details about the hyperpa-
rameters. For sentence encoder, the pre-trained BERTBASE
model with 12 Transformer blocks, the hidden size as
768, and 12 self-attention heads has been used. The feed-
forward intermediate layer size is 4 × 768, i.e., 3072. All
the layers in the sentence encoder and the paragraph en-
coder use dropouts with probability 0.1 and gelu activa-
tion (Hendrycks and Gimpel 2016). We use Adam optimizer
with β1 = 0.9, β2 = 0.999. However, we take initial learn-
ing rates of 5e−5 for both the BERT based sentence encoder
and the Transformer based paragraph encoder, and 5e − 3
for the feed-forward neural network decoder. The paragraph
encoder is a Transformer Network having 2 Transformer
blocks, with hidden size 768 and a feed-forward interme-
diate layer size of 4×768, i.e., 3072. We experimented with
2, 4 and 8 Transformer blocks on ROCStory, and we found
that our model was performing well on ROCStory dataset
with 4 Transformer blocks. For arXiv dataset we experiment
with 2 and 8 Transformer blocks. The Transformer gives
768-dimensional sentence representation. The decoder is a
five layer feed-forward network with ReLU non-linearity in
each layer with hidden size of 200, and a 1-dimensional out-
put layer for the score. We experimented with various batch
sizes and found 400 to be a reasonable number.

t-SNE Embeddings Visualization
Fig. 1 shows the t-SNE embeddings visualtions of sentence
representations obtained from pre-trained BERT (Devlin et
al. 2018)/sentence encoder (before training) and trained sen-
tence encoder for arXiv abstracts and NSF abstracts datasets.
Clearly, we can see that the representations of sentences in
first and last positions in the ordered paragraph are clustered
together, respectively. All the visualizations are shown for
sentences from the unseen test set, showing better generaliz-
ability of our model. These visualizations correspond to the
model (among our approaches) showing the best results in
terms of Kendall’s tau score.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Visualization of Word Attention
To visualize the word level interaction, we show the self at-
tention among words for a sentence in a paragraph belonging
to the test set from ROCStory dataset (Mostafazadeh et al.
2016) in Fig. 2 and Fig. 3. Our model’s sentence encoder is
able to focus on the first and last tokens in a sentence as can
be seen in Fig. 2. Since, ROCStory corpus paragraphs have
some clear sentiment attached to them, we can see in Fig. 3
that one of the attention heads tries to focus on a word with
a strong sentiment.



(a) arXiv: Untrained (b) arXiv: Trained (c) NSF: Untrained

Last
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First
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Figure 1: t-SNE embeddings of sentence representations arXiv abstracts and NIPS abstracts datasetss on sentence ordering task.
Colors correspond to position of the sentences in the original paragraph. Untrained: Sentence embeddings before fine-tuning
(same as pre-trained BERT). Trained: Sentence embeddings after fine-tuning.

Figure 2: Visualization of the all neuron values for query and key for computing self-attention among words in the sentence
encoder layer. We can see that this particular attention head is focusing on the first and last tokens in the sentence.

Figure 3: Visualization of the all neuron values for query and key for computing self-attention among words in the sentence
encoder layer. This attention head is focusing on the word dread indicating that it is detecting the word corresponding to a
strong sentiment.
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