Gaussian Processes (Contd)

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 30, 2019
Announcement

- Quiz 1 tomorrow - Jan 31, 7pm-8pm
- Y14, Y15, Y18: RM-101
- Y16, Y17: KD-101
- Bring a pencil and eraser (answers to be written on the question paper itself)
- Do not bring anything else
Recap: Bayesian Modeling of Nonlinear Functions

- Goal: Learn a nonlinear function f for discriminative models of the form $p(y|x)$, e.g.,

 $$
 p(y|f, x) = \mathcal{N}(y|f(x), \beta^{-1})
 $$

 $$
 p(y|f, x) = [\sigma(f(x))]^y[1 - \sigma(f(x))]^{1-y}
 $$

 $$
 p(y|f, x) = \text{ExpFam}(f(x))
 $$

- Not just interested in a point estimate but the full posterior over f

- Usually done in one of the following ways
 - Ad-hoc: Define nonlinear features $\phi(x) +$ train Bayesian linear model ($f(x) = w^T \phi(x)$))
 - Ad-hoc: Train a neural net to extract features $\phi(x) +$ train Bayesian linear model
 - Bayesian Neural Networks (infer posterior over NN weights; compute posterior predictive)
 - Gaussian Processes (Bayesian modeling + kernels)
Recap: Gaussian Process

- A Gaussian Process is a distribution over functions
- Denoted as $\mathcal{GP}(\mu, \kappa)$; parametrized by a mean function μ and covariance/kernel function κ

![Graph showing Gaussian Process](image)

- Mean function μ models the “average” function f from $\mathcal{GP}(\mu, \kappa)$: $\mu(x) = \mathbb{E}_{f \sim \mathcal{GP}(\mu, \kappa)}[f(x)]$
- Cov. function κ models “shape/smoothness” of functions from this GP
 - $\kappa(.,.)$ is a function that computes similarity between two inputs
Recap: Gaussian Process

- For $f \sim \mathcal{GP} (\mu, \kappa)$, f's values at any finite set of input x_1, \ldots, x_N are jointly Gaussian

$$
\begin{bmatrix}
 f(x_1) \\
 f(x_2) \\
 \vdots \\
 f(x_N)
\end{bmatrix}
\sim \mathcal{N}
\begin{bmatrix}
 \mu(x_1) \\
 \mu(x_2) \\
 \vdots \\
 \mu(x_N)
\end{bmatrix}
,
\begin{bmatrix}
 \kappa(x_1, x_1) & \cdots & \kappa(x_1, x_N) \\
 \kappa(x_2, x_1) & \cdots & \kappa(x_2, x_N) \\
 \vdots & \ddots & \vdots \\
 \kappa(x_N, x_1) & \cdots & \kappa(x_N, x_N)
\end{bmatrix}
$$

- In a more compact notation, $p(f) = \mathcal{N}(\mu, K)$, where f and μ are $N \times 1$ and K is $N \times N$
- Can use it to easily compute $f_\ast = f(x_\ast)$ for a new input x_\ast. To see this, note that for $\mu = 0$

$$
p\left(\begin{bmatrix} f \\ f_\ast \end{bmatrix} \right) = \mathcal{N}\left(\begin{bmatrix} f \\ f_\ast \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K & k_\ast \\ k_\ast^\top & \kappa(x_\ast, x_\ast) \end{bmatrix} \right)
$$

where $k_\ast = [\kappa(x_\ast, x_1), \ldots, \kappa(x_\ast, x_N)]^\top$

- Can now apply the Gaussian conditioning to get $p(f_\ast | f) = \mathcal{N}(\mu_\ast, \sigma_\ast^2)$ where

$$
\begin{align*}
\mu_\ast &= k_\ast^\top K^{-1} f = \sum_{n=1}^{N} w_n f_n = \sum_{n=1}^{N} \alpha_n k(x_n, x_\ast) \\
\sigma_\ast^2 &= \kappa(x_\ast, x_\ast) - k_\ast^\top K^{-1} k_\ast
\end{align*}
$$

Prob. Mod. & Inference - CS698X (Piyush Rai, IITK) Gaussian Processes (Contd)
Some functions drawn from a **GP prior**
(note: Blue dots are values of a randomly drawn function at a small number of inputs; the solid curves are generated by evaluating the functions at a large # of inputs)

Some functions drawn from the **GP posterior**
after observing 5 \((x,f(x))\) pairs
GP: Noiseless to Noisy Setting

- In many cases, we are modeling outputs y_n that are “noisy” versions of $f_n = f(x_n)$, e.g.,

$$p(y_n | f_n) = \mathcal{N}(y_n | f_n, \beta^{-1})$$
$$p(y_n | f_n) = [\sigma(f_n)]^{y_n} [1 - \sigma(f_n)]^{1-y_n}$$
$$p(y_n | f_n) = \text{ExpFam}(f_n)$$

- Here making predictions for a new input x_* requires not $p(f_* | f)$ but $p(y_* | y)$

$$p(y_* | y) = \int p(y_* | f_*) p(f_* | y) df_* = \int p(y_* | f_*) p(f_*) p(f | y) df df_*$$

- For the above, $p(y_* | f_*)$ and $p(f | y) \propto p(f) p(y | f)$ will depend on likelihood model $p(y_n | f_n)$

- However $p(f_* | f)$ will be the same as in the noiseless setting (i.e., a Gaussian as we saw) :-)

- Note: For GP Regression (with Gaussian noise), $p(y_* | y)$ is very easily computable!
The likelihood model: \(p(y|f) = \mathcal{N}(y|f, \sigma^2 I_N) \). The prior distribution: \(p(f) = \mathcal{N}(f|0, K) \)

The posterior predictive \(p(y_*|x_*, y, X) \) or \(p(y_*|y) \) (skipping \(X, x_* \) from the notation) will be

\[
p(y_*|y) = \int p(y_*|f_*) p(f_*|y) df_* = \int p(y_*|f_*) p(f_*|f) p(f|y) df df_*
\]

where all the 3 distributions in the integrand are Gaussians in case of GP regression!

Therefore it is an easy to compute integral!

However, we can compute \(p(y_*|y) \) even without using the above method

Reason: The *marginal distribution* of the training data responses \(y \)

\[
p(y) = \int p(y|f)p(f)df = \mathcal{N}(y|0, K + \sigma^2 I_N) = \mathcal{N}(y|0, C_N)
\]

Using the same result, the marginal distribution \(p(y_*) = \mathcal{N}(y_*|0, \kappa(x_*, x_*) + \sigma^2) \)
GP Regression: Making Predictions

- Let's consider the joint distr. of N training responses y and test response y^*

$$p\begin{pmatrix} y \\ y^* \end{pmatrix} = \mathcal{N}\begin{pmatrix} y \\ y^* \end{pmatrix} \bigg| \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{c}_N & \mathbf{k}_*^\top \\ \mathbf{k}_* & c \end{pmatrix}$$

where $\mathbf{k}_* = [\kappa(x^*, x_1), \ldots, \kappa(x^*, x_N)]^\top$, $c = \kappa(x^*, x^*) + \sigma^2$

- The desired predictive posterior will be (using conditional from joint property of Gaussian)

$$p(y^* | y) = \mathcal{N}(y^* | \mu^*, \sigma^2_{*})$$

$$\mu^* = \mathbf{k}_*^\top \mathbf{C}_N^{-1} y$$

$$\sigma^2_{*} = \kappa(x^*, x^*) + \sigma^2 - \mathbf{k}_*^\top \mathbf{C}_N^{-1} \mathbf{k}_*$$

- Note that this is almost identical to the noiseless case (with σ^2 added to the predictive variance)

- Can interpret predictive mean μ^* as kernelized SVM or nearest neighbor based prediction
GP Regression: An Illustration

Red curve: True function
Red points: Noisy training examples
Black curve: Predictive mean
Shaded part: Predictive variance
GP Regression: Learning Hyperparameters

- There are two hyperparameters in the GP regression model
 - Variance of the Gaussian noise σ^2
 - Assuming $\mu = 0$, the hyperparameters θ of the covariance/kernel function κ, e.g.,
 \[
 \kappa(x_n, x_m) = \exp\left(-\frac{|x_n - x_m|^2}{\gamma}\right) \quad \text{(RBF kernel)}
 \]
 \[
 \kappa(x_n, x_m) = \exp\left(-\sum_{d=1}^{D} \frac{(x_{nd} - x_{md})^2}{\gamma_d}\right) \quad \text{(ARD kernel)}
 \]
 \[
 \kappa(x_n, x_m) = \kappa_{\theta_1}(x_n, x_m) + \kappa_{\theta_2}(x_n, x_m) + \ldots + \kappa_{\theta_M}(x_n, x_m) \quad \text{(flexible composition of multiple kernels)}
 \]

- Type-II MLE is a popular choice for learning these hyperparams, by maximizing marginal likelihood
 \[
p(y|\sigma^2, \theta) = \mathcal{N}(y|0, \sigma^2 I_N + K_\theta)
 \]

- MLE-II for GP regression maximizes the log marginal likelihood w.r.t. the hyperparameters
 \[
 \log p(y|\sigma^2, \theta) = -\frac{1}{2} \log |\sigma^2 I_N + K_\theta| - \frac{1}{2} y^\top (\sigma^2 I_N + K_\theta)^{-1} y + \text{const}
 \]
Binary classification: Now the likelihood $p(y|f)$ will be Bernoulli: $p(y_n|f_n) = \text{Bernoulli}(\sigma(f_n))$

For multiclass GP ($K > 2$ classes), $p(y_n|f_n)$ will be multinoulli (note: f_n will be a $K \times 1$ vector)

For GP GLM, $p(y_n|f_n)$ will be some exp-family distribution

The prior is still GP, therefore $p(f) = \mathcal{N}(0, K)$

The posterior predictive $p(y_*|y)$ can again be written as

$$p(y_*|y) = \int p(y_*|f_*)p(f_*|y)df_* = \int p(y_*|f_*)p(f_*|f)p(f|y)df df_*$$

This in general is not as easy to compute as in case of GP regression

- $p(f_*|f)$ is still not a problem (will be Gaussian)
- $p(f|y) \propto p(f)p(y|f)$ will require approximation (e.g., Laplace, MCMC, variational, etc.)
- The overall integral will require approximation as well
Scalability Aspects of GP

- Computational costs in some steps of GP based models scale in the size of training data
 - E.g., test time prediction in GP regression takes $O(N)$ time

$$p(y_*|y) = \mathcal{N}(y_*|\mu_*, \sigma_*^2)$$

$$\mu_* = k_*^\top C_N^{-1} y$$ \hspace{1cm} (O(N) cost assuming C_N^{-1} is pre-computed)

$$\sigma_*^2 = k(x_*, x_*) + \sigma^2 - k_*^\top C_N^{-1} k_*$$

- GP models often require matrix inversions - takes $O(N^3)$ time. Storage also requires $O(N^2)$ space

- A lot of work on speeding up GPs\(^1\). Some approaches for speeding up GPs
 - Inducing Point Methods (condition the predictions only on a small set of “learnable” points)
 - Divide-and-Conquer methods (learn GP on small subsets of data and aggregate predictions)
 - Kernel approximations

- Note that nearest neighbor methods and kernel methods also face similar issues w.r.t. scalability
 - Many tricks to speed up kernel methods can be used for speeding up GPs too

\(^1\) When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018
GP: A few comments

- GP is a nonparametric model. Why called “nonparametric”?
 Complexity (representation size) of the function \(f \) grows in the size of training data
 To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

\[
\mu_* = f(x_*) = k_*^\top C_N^{-1} y = k_*^\top \alpha = \sum_{n=1}^{N} \alpha_n k(x_*, x_n)
\]

- It implies that \(f(\cdot) = \sum_{n=1}^{N} \alpha_n k(\cdot, x_n) \), which means \(f \) is written in terms of all training examples
- Thus the representation size of \(f \) depends on the number of training examples

- In contrast, a parametric model has a size that doesn’t grow with training data
 E.g., a linear model learns a fixed-sized weight vector \(w \in \mathbb{R}^D \) (\(D \) parameters, size independent of \(N \))

- Nonparametric models therefore are more flexible since their complexity is not limited beforehand
 Note: Methods such as nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)

- GPs equivalent to infinitely-wide single hidden-layer neural net (under some technical conditions)
Neural Networks and Gaussian Processes

- An infinitely-wide single hidden layer NN with i.i.d. priors on weights = a Gaussian Process
- Shown formally by (Radford Neal, 1994)2. Based on a simple application of central limit theorem

A useful result for several reasons

- Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)
- With GPs, inference is easy (at least for regression and with known hyperparams)
- A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)

Connection recently generalized to infinitely wide multiple hidden layer NN (Lee et al, 2018)3

2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)
GP: A few other comments

- Can be thought of as Bayesian analogues of kernel methods
 - Can get estimate in the uncertainty in the function and its predictions

- Can learn the kernel (by learning the hyperparameters of the kernels)

- Not limited to supervised learning problems
 - The function f could even be a mapping of an unknown quantity to an observed quantity

\[x_n = f(z_n) + \text{“noise”} \]

where z_n is a latent representation of x_n ("GP latent variable models" for nonlin. dim. red.)

- Many mature implementations of GP exist. You may check out
 - GPML (MATLAB), GPsuff (MATLAB/Octave), GPy (Python), GPyTorch (PyTorch)
Other Recent Advances on Gaussian Processes

- Deep Gaussian Processes (DGP)
 - Akin to a deep neural network where each hidden node is modeled by a GP

- A nice alternative to linear transform + nonlinearity based neural nets, e.g., $h = \tanh(Wx)$

- GPs with deep kernels defined by neural nets

- Neural Processes and Conditional Neural Processes (GP + neural nets): Most recent development
GPs are very versatile!

- GPs enable us to learn nonlinear functions while also capturing the uncertainty.

- Uncertainty can tell us where to acquire more training data to improve the function’s estimate.
 - Especially useful if we can’t get too many training examples (e.g., expensive inputs and/or labels).

- This is very useful in a wide range of applications involving sequential decision-making.
 - **Active Learning**: Learning a function by gathering the most informative training examples.
 - **Bayesian Optimization**: Optimizing an expensive to evaluate functions (and maybe we don’t even know it form) – boils down to simultaneous function learning and optimization.
Bayesian Optimization: The Basic Formulation

- Consider finding the optima x_* (say minima) of a function $f(x)$

- Caveat: We don’t know the form of the function; can’t get its gradient, Hessian, etc
- Suppose we can only query the function’s values at certain points (i.e., only black-box access)
- Thus we have to learn the function as well as find its optima
- Can learn the function using GP and use the uncertainty to decide which $f(x)$ value to query next
- Will look at it in more detail later this semester