Gradient-based and Online Sampling Methods, Recent Advances in Sampling Methods

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

March 11, 2019
Using Gradients in MCMC: Langevin Dynamics

- MCMC uses a random-walk based proposal to generate the next sample. For example,

\[\theta(t) \sim \mathcal{N}(\theta(t-1), \eta_t) \]

.. and then we accept/reject the generated sample
Using Gradients in MCMC: Langevin Dynamics

- MCMC uses a random-walk based proposal to generate the next sample. For example,
 \[\theta(t) \sim \mathcal{N}(\theta(t-1), \eta_t) \]
 .. and then we accept/reject the generated sample
- Langevin dynamics: Use posterior’s gradient info in the proposal as follows
 \[
 \text{do } \theta(t) \sim \mathcal{N}(\theta^*, \eta_t) + \text{ MH accept/reject}
 \]
 where
 \[
 \theta^* = \theta(t-1) + \eta_t \nabla_{\theta} \left[\log p(D|\theta) + \log p(\theta) \right]_{\theta(t-1)}
 \]
 Note that the above is equivalent to
 \[
 \theta(t) = \theta(t-1) + \eta_t \nabla_{\theta} \left[\log p(D|\theta) + \log p(\theta) \right]_{\theta(t-1)} + \epsilon_t
 \]
 which is same as gradient based optimization for MAP + injected noise
 \[\epsilon_t \sim \mathcal{N}(0, \eta_t) \]
 Incorporating gradients in proposals takes us to high-prob regions faster
 After some waiting period \(T_0 \), the iterates \(\{ \theta(t) \}_{T_0+1} \) are MCMC samples from the target \(p(\theta|D) \)
Using Gradients in MCMC: Langevin Dynamics

- MCMC uses a random-walk based proposal to generate the next sample. For example,

 \[\theta(t) \sim \mathcal{N}(\theta(t-1), \eta_t) \]

 .. and then we accept/reject the generated sample

- Langevin dynamics: Use posterior’s gradient info in the proposal as follows

 \[
 \text{do } \theta(t) \sim \mathcal{N}(\theta^*, \eta_t) + \text{MH accept/reject}
 \]

 where \[\theta^* = \theta(t-1) + \frac{\eta_t}{2} \nabla_{\theta} \left[\log p(D|\theta) + \log p(\theta) \right]_{\theta(t-1)} \]
Using Gradients in MCMC: Langevin Dynamics

- MCMC uses a random-walk based proposal to generate the next sample. For example,

\[\theta^{(t)} \sim \mathcal{N}(\theta^{(t-1)}, \eta_t) \]

.. and then we accept/reject the generated sample

- Langevin dynamics: Use posterior’s gradient info in the proposal as follows

\[
\begin{align*}
\text{do} & \quad \theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) + \text{MH accept/reject} \\
\text{where} & \quad \theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_\theta [\log p(D|\theta) + \log p(\theta)] \big|_{\theta^{(t-1)}}
\end{align*}
\]

- Note that the above is equivalent to

\[\theta^{(t)} = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_\theta [\log p(D|\theta) + \log p(\theta)] \big|_{\theta^{(t-1)}} + \epsilon_t + \text{MH accept/reject} \]
Using Gradients in MCMC: Langevin Dynamics

- MCMC uses a random-walk based proposal to generate the next sample. For example,
 \[\theta^{(t)} \sim \mathcal{N}(\theta^{(t-1)}, \eta_t) \]
 \[.. \text{ and then we accept/reject the generated sample} \]

- Langevin dynamics: Use posterior’s gradient info in the proposal as follows

 \[
 \text{do } \theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) + \text{MH accept/reject} \\
 \text{where } \theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_\theta \left[\log p(D|\theta) + \log p(\theta) \right]_{\theta^{(t-1)}}
 \]

- Note that the above is equivalent to
 \[
 \theta^{(t)} = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_\theta \left[\log p(D|\theta) + \log p(\theta) \right]_{\theta^{(t-1)}} + \epsilon_t + \text{MH accept/reject}
 \]
 \[.. \text{ which is same as gradient based optimization for MAP + injected noise } \epsilon_t \sim \mathcal{N}(0, \eta_t) \]
Using Gradients in MCMC: Langevin Dynamics

- MCMC uses a random-walk based proposal to generate the next sample. For example,
 \[\theta^{(t)} \sim \mathcal{N}(\theta^{(t-1)}, \eta_t) \]
 .. and then we accept/reject the generated sample

- Langevin dynamics: Use posterior’s gradient info in the proposal as follows

 \[
 \text{do } \quad \theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) + \text{MH accept/reject}
 \]

 where \(\theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla \theta \left[\log \mathcal{L}(\mathcal{D}|\theta) + \log p(\theta) \right] \big|_{\theta^{(t-1)}} \)

- Note that the above is equivalent to

 \[
 \theta^{(t)} = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla \theta \left[\log \mathcal{L}(\mathcal{D}|\theta) + \log p(\theta) \right] \big|_{\theta^{(t-1)}} + \epsilon_t + \text{MH accept/reject}
 \]

 .. which is same as gradient based optimization for MAP + injected noise \(\epsilon_t \sim \mathcal{N}(0, \eta_t) \)

- Incorporating gradients in proposals takes us to high-prob regions faster
Using Gradients in MCMC: Langevin Dynamics

- MCMC uses a random-walk based proposal to generate the next sample. For example,
 \[\theta(t) \sim \mathcal{N}(\theta(t-1), \eta_t) \]
 .. and then we accept/reject the generated sample

- Langevin dynamics: Use posterior’s gradient info in the proposal as follows

 \[
 \text{do } \theta(t) \sim \mathcal{N}(\theta^*, \eta_t) + \text{MH accept/reject}
 \]
 where \(\theta^* = \theta(t-1) + \frac{\eta_t}{2} \nabla_{\theta} \left[\log p(D|\theta) + \log p(\theta) \right] \big|_{\theta(t-1)} \)

- Note that the above is equivalent to
 \[\theta(t) = \theta(t-1) + \frac{\eta_t}{2} \nabla_{\theta} \left[\log p(D|\theta) + \log p(\theta) \right] \big|_{\theta(t-1)} + \epsilon_t \]
 .. which is same as gradient based optimization for MAP + injected noise \(\epsilon_t \sim \mathcal{N}(0, \eta_t) \)

- Incorporating gradients in proposals takes us to high-prob regions faster

- After some waiting period \(T_0 \), the iterates \(\{\theta(t)\}_{T_0+1}^{T_0+S} \) are MCMC samples from the target \(p(\theta|D) \)
Using Gradients in MCMC: Langevin Dynamics

![Diagram illustrating Langevin and Gibbs dynamics in MCMC](image)
Langevin Dynamics: A Closer Look

• LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

Recall the form of LD updates

\[\theta(t) = \theta(t-1) + \eta t^2 \nabla \theta \left[\log p(D|\theta) + \log p(\theta) \right] \bigg| \theta(t-1) + \epsilon t \]

Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr

\[d\theta_t = -\nabla L(\theta_t) \, dt + \sqrt{2} \, dB_t \]

.. where \(L(\theta_t) = -\log p(D,\theta_t) \) and \((B_t)_{t \geq 0}\) is Brownian motion s.t. \(\Delta B_t \) are i.i.d. Gaussian r.v.s

Discretization introduces some error which is corrected by MH accept/reject step

Note: As learning rate \(\eta_t \) decreases, discretization error also decreases (and rejection rate \(\to 0 \))

Note: Gradient computations require all the data (thus slow)

Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)
Langevin Dynamics: A Closer Look

- LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?
- Recall the form of LD updates

\[
\theta^{(t)} = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla \theta [\log p(D|\theta) + \log p(\theta)]|_{\theta^{(t-1)}} + \epsilon_t + \text{MH accept/reject}
\]

Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr \[\propto \exp(\log p(D,\theta))\]

\[d\theta_t = -\nabla L(\theta_t) dt + \sqrt{2} dB_t\]

.. where \[L(\theta_t) = -\log p(D,\theta_t)\] and \[(B_t)_{t \geq 0}\] is Brownian motion s.t. \[\Delta B_t\] are i.i.d. Gaussian r.v.s

Discretization introduces some error which is corrected by MH accept/reject step

- Note: As learning rate \[\eta_t\] decreases, discretization error also decreases (and rejection rate \[\to 0\])
- Note: Gradient computations require all the data (thus slow)

Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)
Langevin Dynamics: A Closer Look

- LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?
- Recall the form of LD updates

\[
\theta(t) = \theta(t-1) + \frac{\eta t}{2} \nabla_\theta [\log p(D|\theta) + \log p(\theta)]|_{\theta(t-1) + \epsilon_t} + \text{MH accept/reject}
\]

- Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr \(\propto \exp(\log p(D, \theta)) \)

\[
d\theta_t = -\nabla L(\theta_t) dt + \sqrt{2} dB_t
\]

.. where \(L(\theta_t) = -\log p(D, \theta_t) \) and \((B_t)_{t \geq 0} \) is Brownian motion s.t. \(\Delta B_t \) are i.i.d. Gaussian r.v.s
Langevin Dynamics: A Closer Look

LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

Recall the form of LD updates

\[
\theta(t) = \theta(t-1) + \frac{\eta t}{2} \nabla_\theta [\log p(D|\theta) + \log p(\theta)]|_{\theta(t-1) + \epsilon_t} + \text{MH accept/reject}
\]

Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr \(\propto \exp(\log p(D, \theta)) \)

\[
d\theta_t = -\nabla L(\theta_t) dt + \sqrt{2}dB_t
\]

.. where \(L(\theta_t) = -\log p(D, \theta_t) \) and \((B_t)_{t \geq 0} \) is Brownian motion s.t. \(\Delta B_t \) are i.i.d. Gaussian r.v.s

Discretization introduces some error which is corrected by MH accept/reject step
Langevin Dynamics: A Closer Look

- LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?
- Recall the form of LD updates

\[
\theta(t) = \theta(t-1) + \frac{\eta_t}{2} \nabla_{\theta} [\log p(D|\theta) + \log p(\theta)]|_{\theta(t-1)} + \epsilon_t + \text{MH accept/reject}
\]

- Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr \(\propto \exp(\log p(D, \theta)) \)

\[
d\theta_t = -\nabla L(\theta_t) dt + \sqrt{2} dB_t
\]

- where \(L(\theta_t) = -\log p(D, \theta_t) \) and \((B_t)_{t \geq 0}\) is Brownian motion s.t. \(\Delta B_t \) are i.i.d. Gaussian r.v.s
- Discretization introduces some error which is corrected by MH accept/reject step
- Note: As learning rate \(\eta_t \) decreases, discretization error also decreases (and rejection rate \(\rightarrow 0 \))
Langevin Dynamics: A Closer Look

- LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?
- Recall the form of LD updates

\[
\theta^{(t)} = \theta^{(t-1)} + \eta_t \frac{1}{2} \nabla_{\theta} \left[\log p(D|\theta) + \log p(\theta) \right] |_{\theta^{(t-1)}} + \epsilon_t + \text{MH accept/reject}
\]

- Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr \(\propto \exp(\log p(D, \theta)) \)

\[
d\theta_t = -\nabla L(\theta_t) dt + \sqrt{2} d\mathcal{B}_t
\]

.. where \(L(\theta_t) = -\log p(D, \theta_t) \) and \((\mathcal{B}_t)_{t \geq 0} \) is Brownian motion s.t. \(\Delta \mathcal{B}_t \) are i.i.d. Gaussian r.v.s
- Discretization introduces some error which is corrected by MH accept/reject step
- Note: As learning rate \(\eta_t \) decreases, discretization error also decreases (and rejection rate \(\rightarrow 0 \))
- Note: Gradient computations require all the data (thus slow)
Langevin Dynamics: A Closer Look

- LD still seems like magic! Is generating MCMC samples really as easy as computing MAP?

- Recall the form of LD updates

\[\theta^{(t)} = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_{\theta} \left[\log p(D|\theta) + \log p(\theta) \right] \bigg|_{\theta^{(t-1)}} + \epsilon_t + \text{MH accept/reject} \]

- Equivalent to a discretization of a stochastic diff. eqn. with equilib. distr \(\propto \exp(\log p(D, \theta)) \)

\[d\theta_t = -\nabla L(\theta_t) dt + \sqrt{2} dB_t \]

.. where \(L(\theta_t) = -\log p(D, \theta_t) \) and \((B_t)_{t \geq 0} \) is Brownian motion s.t. \(\Delta B_t \) are i.i.d. Gaussian r.v.s

- Discretization introduces some error which is corrected by MH accept/reject step

- Note: As learning rate \(\eta_t \) decreases, discretization error also decreases (and rejection rate \(\to 0 \))

- Note: Gradient computations require all the data (thus slow)

- Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)
Stochastic Gradient Langevin Dynamics (SGLD)

- An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

Given minibatch $D_t = \{x_{t1}, \ldots, x_{tN}\}$. Then the (stochastic) Langevin dynamics update is

$$\theta^* = \theta(t-1) + \eta_t \nabla_{\theta} \left[\frac{1}{|D_t|} \sum_{n=1}^{N} \log p(x_{tn}|\theta) + \log p(\theta) \right],$$

$$\theta(t) \sim N(\theta^*, \eta_t).$$

Choice of the learning rate is important. For convergence, $\eta_t = a(b+t)^{-\kappa}$.

In practice however, switching to constant learning rates (after a few iterations) also helps convergence.

When the learning rate becomes very very small, acceptance prob. becomes close to 1 (so no more need to do MH accept/reject test; can accept every sample).

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011) and follow-up works).
Stochastic Gradient Langevin Dynamics (SGLD)

- An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients
- Given minibatch $\mathcal{D}_t = \{x_{t1}, \ldots, x_{tN_t}\}$. Then the (stochastic) Langevin dynamics update is

$$\theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_{\theta} \left[\frac{N}{|\mathcal{D}_t|} \sum_{n=1}^{N_t} \log p(x_{tn} | \theta) + \log p(\theta) \right],$$

where $\theta^{(t-1)} \sim N(\theta^*, \eta_t)$.
Stochastic Gradient Langevin Dynamics (SGLD)

- An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

- Given minibatch $\mathcal{D}_t = \{x_{t1}, \ldots, x_{tN_t}\}$. Then the (stochastic) Langevin dynamics update is

$$
\theta^* = \theta^{(t-1)} + \eta_t \frac{1}{2} \nabla_{\theta} \left[\frac{N}{|\mathcal{D}_t|} \sum_{n=1}^{N_t} \log p(x_{tn}|\theta) + \log p(\theta) \right],
$$

$$
\theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t)
$$

Choice of the learning rate is important. For convergence, $\eta_t = a(b + t) - \kappa$. In practice however, switching to constant learning rates (after a few iterations) also helps convergence. When the learning rate becomes very very small, acceptance prob. becomes close to 1 (so no more need to do MH accept/reject test; can accept every sample).

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011) and follow-up works).
Stochastic Gradient Langevin Dynamics (SGLD)

- An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients
- Given minibatch $D_t = \{x_{t1}, \ldots, x_{tN_t}\}$. Then the (stochastic) Langevin dynamics update is

$$\theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_{\theta} \left[\frac{N}{|D_t|} \sum_{n=1}^{N_t} \log p(x_{tn}|\theta) + \log p(\theta) \right],$$

$$\theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) \quad \text{then} \quad \text{MH accept/reject}$$

Choice of the learning rate is important. For convergence, $\eta_t = a(b + t)^{-\kappa}$

In practice however, switching to constant learning rates (after a few iterations) also helps convergence.

When the learning rate becomes very very small, acceptance probability becomes close to 1 (so no more need to do MH accept/reject test; can accept every sample).

Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011) and follow-up works).
Stochastic Gradient Langevin Dynamics (SGLD)

- An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients
- Given minibatch $\mathcal{D}_t = \{x_{t1}, \ldots, x_{tN_t}\}$. Then the (stochastic) Langevin dynamics update is

$$
\theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_{\theta} \left(\frac{N}{|\mathcal{D}_t|} \sum_{n=1}^{N_t} \log p(x_{tn}|\theta) + \log p(\theta) \right),
$$

$$
\theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) \quad \text{then} \quad \text{MH accept/reject}
$$

- Choice of the learning rate is important. For convergence, $\eta_t = a(b + t)^{-\kappa}$
Stochastic Gradient Langevin Dynamics (SGLD)

- An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients
- Given minibatch \(\mathcal{D}_t = \{x_{t1}, \ldots, x_{tN_t}\} \). Then the (stochastic) Langevin dynamics update is
 \[
 \theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_{\theta} \left[\frac{N}{|\mathcal{D}_t|} \sum_{n=1}^{N_t} \log p(x_{tn} | \theta) + \log p(\theta) \right],
 \]
 \[
 \theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) \quad \text{then} \quad \text{MH accept/reject}
 \]
- Choice of the learning rate is important. For convergence, \(\eta_t = a(b + t)^{-\kappa} \)
 - In practice however, switching to constant learning rates (after a few iterations) also helps convergence
Stochastic Gradient Langevin Dynamics (SGLD)

- An "online" MCMC method: Langevin Dynamics with minibatches to compute gradients

- Given minibatch $\mathcal{D}_t = \{x_{t1}, \ldots, x_{tN_t}\}$. Then the (stochastic) Langevin dynamics update is

$$\theta^* = \theta^{(t-1)} + \eta_t \nabla_{\theta} \left[\frac{N}{|\mathcal{D}_t|} \sum_{n=1}^{N_t} \log p(x_{tn}|\theta) + \log p(\theta) \right],$$

$$\theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) \text{ then } \text{MH accept/reject}$$

- Choice of the learning rate is important. For convergence, $\eta_t = a(b + t)^{-\kappa}$
 - In practice however, switching to constant learning rates (after a few iterations) also helps convergence

- When the learning rate becomes very very small, acceptance prob. becomes close to 1 (so no more need to do MH accept/reject test; can accept every
Stochastic Gradient Langevin Dynamics (SGLD)

- An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

- Given minibatch \(D_t = \{x_{t1}, \ldots, x_{tN_t} \} \). Then the (stochastic) Langevin dynamics update is

\[
\theta^* = \theta^{(t-1)} + \frac{\eta_t}{2} \nabla_\theta \left[\frac{N}{|D_t|} \sum_{n=1}^{N_t} \log p(x_{tn}|\theta) + \log p(\theta) \right],
\]

\[
\theta^{(t)} \sim \mathcal{N}(\theta^*, \eta_t) \quad \text{then} \quad \text{MH accept/reject}
\]

- Choice of the learning rate is important. For convergence, \(\eta_t = a(b + t)^{-\kappa} \)
 - In practice however, switching to constant learning rates (after a few iterations) also helps convergence

- When the learning rate becomes very very small, acceptance prob. becomes close to 1 (so no more need to do MH accept/reject test; can accept every sample)

- Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011) and follow-up works)
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations:
 - Exhibits slow convergence and mixing.
 - Uses the same learning rate η_t in all dimensions of θ.
 - Doesn't apply to models where θ is constrained (e.g., non-negative or probability vector).
 - Assumes that the model is differentiable.

A lot of recent work on improving the basic SGLD to handle such limitations. Some examples are:
- Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al., 2012),
- Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al., 2016),
- Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013),
 - SLGD in Riemannian to handle constrained variables.
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations, e.g.
 - Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations, e.g.
 - Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
 - Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations, e.g.
 - Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
 - Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
 - Assumes that the model is differentiable

A lot of recent work on improving the basic SGLD to handle such limitations. Some examples:

- Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

Uses a preconditioner matrix in the learning rate to improve convergence

Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)

SLGD in Riemannian to handle constrained variables
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations, e.g.
 - Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
 - Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
 - Assumes that the model is differentiable

- A lot of recent work on improving the basic SGLD to handle such limitations
Improvements to SLGD

The basic SGLD, although fairly simple, has many limitations, e.g.

- Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
- Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
- Assumes that the model is differentiable

A lot of recent work on improving the basic SGLD to handle such limitations. Some examples

- Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
- Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations, e.g.
 - Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
 - Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
 - Assumes that the model is differentiable

- A lot of recent work on improving the basic SGLD to handle such limitations. Some examples
 - Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
 Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)
 - Uses a \textit{preconditioner matrix} in the learning rate to improve convergence
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations, e.g.
 - Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
 - Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
 - Assumes that the model is differentiable

- A lot of recent work on improving the basic SGLD to handle such limitations. Some examples
 - Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
 Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)
 - Uses a **preconditioner matrix** in the learning rate to improve convergence
 - This allows different amounts of updates in different dimensions
The basic SGLD, although fairly simple, has many limitations, e.g.

- Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
- Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
- Assumes that the model is differentiable

A lot of recent work on improving the basic SGLD to handle such limitations. Some examples

- Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)
 - Uses a preconditioner matrix in the learning rate to improve convergence
 - This allows different amounts of updates in different dimensions
- Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)
Improvements to SLGD

- The basic SGLD, although fairly simple, has many limitations, e.g.
 - Exhibits slow convergence and mixing. Uses same learning rate η_t in all dimensions of θ
 - Doesn’t apply to models where θ is constrained (e.g., non-neg or prob. vector)
 - Assumes that the model is differentiable

- A lot of recent work on improving the basic SGLD to handle such limitations. Some examples
 - Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
 Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)
 - Uses a preconditioner matrix in the learning rate to improve convergence
 - This allows different amounts of updates in different dimensions
 - Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)
 - SLGD in Riemannian to handle constrained variables
Applications of SLGD

- Has become very popular recently for Bayesian neural networks and other complex Bayesian models
- Reason: We know how to do backprop, SLGD = backprop based updates + Gaussian noise

(Figure: Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016))
Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation.
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation
- Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)

\[\bar{\theta}_{\text{SWA}} = \frac{1}{T} \sum_{t=1}^{T} \theta_t \]

Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)

Why does this work? Reason: SGD is asymptotically Normal under certain conditions

For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

Such algos are now becoming popular for getting fast posterior approximations for complex models

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation
- Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)
- If we want a Gaussian approximation with diagonal covariance, this is very easy

\[\bar{\theta}^{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t \]

\[\Sigma_{diag} = \text{diag}(\bar{\theta}^2 - \theta_{SWA}^2) \]

\[\mathcal{P}(\theta | D) \approx \mathcal{N}(\bar{\theta}^{SWA}, \Sigma_{diag}) \]

Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)

Why does this work? Reason: SGD is asymptotically Normal under certain conditions

For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

Such algos are now becoming popular for getting fast posterior approximations for complex models

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation.
- If we want a Gaussian approximation with diagonal covariance, this is very easy.

$$\theta_{\text{SWA}} = \frac{1}{T} \sum_{t=1}^{T} \theta_t$$

Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details).

Why does this work? Reason: SGD is asymptotically Normal under certain conditions.

For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017).

Such algos are now becoming popular for getting fast posterior approximations for complex models.

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation
- Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)
- If we want a Gaussian approximation with diagonal covariance, this is very easy

$$\theta_{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t$$

$$\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta_t^2$$

Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)

Why does this work?
Reason: SGD is asymptotically Normal under certain conditions

For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

Such algos are now becoming popular for getting fast posterior approximations for complex models

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation
- Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)
- If we want a Gaussian approximation with diagonal covariance, this is very easy

\[
\theta_{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t \\
\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta_t^2, \quad \Sigma_{\text{diag}} = \text{diag}(\bar{\theta}^2 - \theta_{SWA}^2)
\]

Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)

Why does this work?

Reason: SGD is asymptotically Normal under certain conditions

For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

Such algos are now becoming popular for getting fast posterior approximations for complex models

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation.
- If we want a Gaussian approximation with diagonal covariance, this is very easy.

\[
\theta_{\text{SWA}} = \frac{1}{T} \sum_{t=1}^{T} \theta_t
\]

\[
\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta_t^2, \quad \Sigma_{\text{diag}} = \text{diag}(\bar{\theta}^2 - \theta_{\text{SWA}}^2)
\]

\[
p(\theta|D) \approx \mathcal{N}(\theta_{\text{SWA}}, \Sigma_{\text{diag}})
\]

Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details).

Why does this work?

Reason: SGD is asymptotically Normal under certain conditions.

For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017).

Such algos are now becoming popular for getting fast posterior approximations for complex models.

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation.
- If we want a Gaussian approximation with diagonal covariance, this is very easy.

$$\theta_{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t$$

$$\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta_t^2, \quad \Sigma_{diag} = \text{diag}(\bar{\theta}^2 - \theta_{SWA}^2)$$

$$p(\theta|D) \approx \mathcal{N}(\theta_{SWA}, \Sigma_{diag})$$

- Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details).
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation
- Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)
- If we want a Gaussian approximation with diagonal covariance, this is very easy

$$\theta_{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t$$

$$\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta_t^2, \quad \Sigma_{\text{diag}} = \text{diag}(\bar{\theta}^2 - \theta_{SWA}^2)$$

$$p(\theta|D) \approx \mathcal{N}(\theta_{SWA}, \Sigma_{\text{diag}})$$

- Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)
- Why does this work?

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation.
- If we want a Gaussian approximation with diagonal covariance, this is very easy:

$$
\theta_{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t
$$

$$
\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta_t^2, \quad \Sigma_{\text{diag}} = \text{diag}(\bar{\theta}^2 - \theta_{SWA}^2)
$$

$$
p(\theta|D) \approx N(\theta_{SWA}, \Sigma_{\text{diag}})
$$

- Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details).
- Why does this work? Reason: SGD is asymptotically Normal under certain conditions.

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation
- Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)
- If we want a Gaussian approximation with diagonal covariance, this is very easy

$$\theta_{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t$$

$$\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta_t^2, \quad \Sigma_{\text{diag}} = \text{diag}(\bar{\theta}^2 - \theta_{SWA}^2)$$

$$p(\theta|D) \approx \mathcal{N}(\theta_{SWA}, \Sigma_{\text{diag}})$$

- Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)
- Why does this work? Reason: SGD is asymptotically Normal under certain conditions
- For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Other Recent “SGD-inspired” Sampling Algorithms

- Can run SGD and use the SGD iterates $\theta_1, \theta_2, \ldots, \theta_T$ to construct a Gaussian approximation
- Recently Maddox et al (2019) proposed an idea based on stochastic weight averaging (SWA)
- If we want a Gaussian approximation with diagonal covariance, this is very easy

$$\theta_{SWA} = \frac{1}{T} \sum_{t=1}^{T} \theta_t$$

$$\bar{\theta}^2 = \frac{1}{T} \sum_{t=1}^{T} \theta^2_t, \quad \Sigma_{\text{diag}} = \text{diag}(\bar{\theta}^2 - \theta^2_{SWA})$$

$$p(\theta|D) \approx \mathcal{N}(\theta_{SWA}, \Sigma_{\text{diag}})$$

- Note: If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)
- Why does this work? Reason: SGD is asymptotically Normal under certain conditions
- For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)
- Such algos are now becoming popular for getting fast posterior approximations for complex models

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info.

Consider the target posterior $p(\theta|D) \propto \exp(-U(\theta))$.

Think of θ as the position and $U(\theta) = -\log[p(D|\theta)p(\theta)]$ is like “potential energy”.

Let’s introduce an auxiliary variable — the momentum r of the system.

We can now define a joint distribution over the position and momentum as $p(\theta, r) \propto \exp(-U(\theta) - \frac{1}{2}r^\top M^{-1}r) = p(\theta|D)p(r)$.

$H(\theta, r) = U(\theta) + \frac{1}{2}r^\top M^{-1}r$ is the total energy (potential + kinetic) of the system.

$H(\theta, r)$ is also known as the Hamiltonian and is constant w.r.t. time.

Given samples (θ, r) from joint $p(\theta, r)$, we can ignore r and θ will be a sample from $p(\theta|D)$.

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
- Uses the idea of simulating a Hamiltonian Dynamics of a physical system

Consider the target posterior
\[p(\theta | D) \propto \exp(-U(\theta)) \]

Think of \(\theta \) as the position and \(U(\theta) = -\log[p(D|\theta)p(\theta)] \) is like "potential energy"

Let's introduce an auxiliary variable - the momentum \(r \) of the system

Can now define a joint distribution over the position and momentum as
\[p(\theta, r) \propto \exp(-U(\theta) - \frac{1}{2} r^\top M^{-1} r) = p(\theta | D)p(r) \]

\[H(\theta, r) = U(\theta) + \frac{1}{2} r^\top M^{-1} r \]

\(H(\theta, r) \) is also known as the Hamiltonian and constant w.r.t. time

Given samples \((\theta, r)\) from joint \(p(\theta, r)\), we can ignore \(r \) and \(\theta \) will be a sample from \(p(\theta | D)\)
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info.
- Uses the idea of simulating a Hamiltonian Dynamics of a physical system.
- Consider the target posterior \(p(\theta|D) \propto \exp(-U(\theta)) \)

Think of \(\theta \) as the position and \(U(\theta) = -\log[p(D|\theta)p(\theta)] \) is like “potential energy.”

Let’s introduce an auxiliary variable - the momentum \(r \) of the system.

Now define a joint distribution over the position and momentum as:
\[
p(\theta, r) \propto \exp(-U(\theta) - \frac{1}{2}r^\top M^{-1}r) = p(\theta|D)p(r)
\]

\(H(\theta, r) = U(\theta) + \frac{1}{2}r^\top M^{-1}r \) is the total energy (potential + kinetic) of the system.

\(H(\theta, r) \) is also known as the Hamiltonian and constant w.r.t. time.

Given samples \((\theta, r)\) from joint \(p(\theta, r)\), we can ignore \(r \) and \(\theta \) will be a sample from \(p(\theta|D) \).
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
- Uses the idea of simulating a Hamiltonian Dynamics of a physical system
- Consider the target posterior \(p(\theta|D) \propto \exp(-U(\theta)) \)
- Think of \(\theta \) as the position and \(U(\theta) = -\log[p(D|\theta)p(\theta)] \) is like “potential energy”
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
- Uses the idea of simulating a Hamiltonian Dynamics of a physical system
- Consider the target posterior \(p(\theta|D) \propto \exp(-U(\theta)) \)
- Think of \(\theta \) as the position and \(U(\theta) = -\log[p(D|\theta)p(\theta)] \) is like “potential energy”
- Let’s introduce an auxiliary variable - the momentum \(r \) of the system
HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info

Uses the idea of simulating a Hamiltonian Dynamics of a physical system

Consider the target posterior $p(\theta|\mathcal{D}) \propto \exp(-U(\theta))$

Think of θ as the position and $U(\theta) = -\log[p(\mathcal{D}|\theta)p(\theta)]$ is like “potential energy”

Let’s introduce an auxiliary variable - the momentum r of the system

Can now define a joint distribution over the position and momentum as

$$p(\theta, r) \propto \exp\left(-U(\theta) - \frac{1}{2}r^\top M^{-1}r\right) = p(\theta|\mathcal{D})p(r)$$
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info.
- Uses the idea of simulating a Hamiltonian Dynamics of a physical system.
- Consider the target posterior $p(\theta|D) \propto \exp(-U(\theta))$.
- Think of θ as the position and $U(\theta) = -\log[p(D|\theta)p(\theta)]$ is like “potential energy”.
- Let’s introduce an auxiliary variable - the momentum r of the system.
- Can now define a joint distribution over the position and momentum as

 $$p(\theta, r) \propto \exp\left(-U(\theta) - \frac{1}{2} r^\top M^{-1} r\right) = p(\theta|D)p(r)$$

- $H(\theta, r) = U(\theta) + \frac{1}{2} r^\top M^{-1} r = U(\theta) + K(r)$ is the total energy (potential + kinetic) of the system.
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info
- Uses the idea of simulating a Hamiltonian Dynamics of a physical system
- Consider the target posterior \(p(\theta|D) \propto \exp(-U(\theta)) \)
- Think of \(\theta \) as the position and \(U(\theta) = -\log[p(D|\theta)p(\theta)] \) is like “potential energy”
- Let’s introduce an auxiliary variable - the momentum \(r \) of the system
- Can now define a joint distribution over the position and momentum as
 \[
p(\theta, r) \propto \exp \left(-U(\theta) - \frac{1}{2} r^\top M^{-1} r \right) = p(\theta|D)p(r)
 \]
- \(H(\theta, r) = U(\theta) + \frac{1}{2} r^\top M^{-1} r = U(\theta) + K(r) \) is the total energy (potential + kinetic) of the system
- \(H(\theta, r) \) is also known as the Hamiltonian and constant w.r.t. time
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC (Neal, 1996) is an example of “auxiliary variable sampler” and incorporates gradient info.
- Uses the idea of simulating a Hamiltonian Dynamics of a physical system.
- Consider the target posterior $p(\theta|D) \propto \exp(-U(\theta))$.
- Think of θ as the position and $U(\theta) = -\log[p(D|\theta)p(\theta)]$ is like “potential energy”.
- Let’s introduce an auxiliary variable - the momentum r of the system.
- Can now define a joint distribution over the position and momentum as
 \[
p(\theta, r) \propto \exp \left(-U(\theta) - \frac{1}{2} r^\top M^{-1} r\right) = p(\theta|D)p(r)
 \]
- $H(\theta, r) = U(\theta) + \frac{1}{2} r^\top M^{-1} r = U(\theta) + K(r)$ is the total energy (potential + kinetic) of the system.
- $H(\theta, r)$ is also known as the Hamiltonian and constant w.r.t. time.
- Given samples (θ, r) from joint $p(\theta, r)$, we can ignore r and θ will be a sample from $p(\theta|D)$.

\[\text{Prob. Modeling & Inference - CS698X (Piyush Rai, IITK)}\]
How do we generate samples (θ, r) in HMC?

Hamiltonian Dynamics defines how (θ, r) changes w.r.t. continuous time t

$$\frac{\partial \theta}{\partial t} = \frac{\partial H}{\partial r}$$

$$\frac{\partial r}{\partial t} = -\frac{\partial H}{\partial \theta}$$

We can use these equations to update (θ, r) → (θ^*, r^*) by discretizing time s

For $s = 1$:

1. Initialize $\theta_0 = \theta(s-1)$, $r^* \sim \mathcal{N}(0, I)$ and $r_0 = r^* - \rho \frac{2}{\partial U/\partial \theta |_{\theta_0}}$

2. Do L “leapfrog” steps with learning rates $\rho_\ell = \rho$ for $\ell < L$, and $\rho_L = \rho/2$ for $\ell = 1$:
 - $\theta_\ell = \theta_{\ell-1} + \rho \frac{\partial K}{\partial r |_{r_{\ell-1}}}$
 - $r_\ell = r_{\ell-1} - \rho_\ell \frac{\partial U/\partial \theta |_{\theta_\ell}}$

3. Perform MH accept/reject test on (θ_L, r_L). If accepted, $\theta(s) = \theta_L$.

The momentum forces exploring different regions instead of getting driven to regions where MAP is...
How do we generate samples \((\theta, r)\) in HMC?

Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\frac{\partial \theta}{\partial t} = \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r}
\]
Hamiltonian/Hybrid Monte Carlo (HMC)

- How do we generate samples \((\theta, r)\) in HMC?
- Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\):

\[
\begin{align*}
\frac{\partial \theta}{\partial t} &= \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} &= -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\end{align*}
\]

We can use these equations to update \((\theta, r)\) \(\rightarrow (\theta^*, r^*)\) by discretizing time.
Hamiltonian/Hybrid Monte Carlo (HMC)

- How do we generate samples \((\theta, r)\) in HMC?
- Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\begin{align*}
\frac{\partial \theta}{\partial t} &= \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} &= -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\end{align*}
\]

- We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time
Hamiltonian/Hybrid Monte Carlo (HMC)

- How do we generate samples \((\theta, r)\) in HMC?
- Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\begin{align*}
\frac{\partial \theta}{\partial t} & = \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} & = -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\end{align*}
\]

- We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time
 - For \(s = 1 : S\), sample as follows
Hamiltonian/Hybrid Monte Carlo (HMC)

- How do we generate samples \((\theta, r)\) in HMC?
- Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\):
 \[
 \frac{\partial \theta}{\partial t} = \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
 \frac{\partial r}{\partial t} = -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
 \]
- We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time
 - For \(s = 1 : S\), sample as follows
 - Initialize \(\theta_0 = \theta^{(s-1)}\)
Hamiltonian/Hybrid Monte Carlo (HMC)

- How do we generate samples \((\theta, r)\) in HMC?
- Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\frac{\partial \theta}{\partial t} = \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} = -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\]

- We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time

 - For \(s = 1 : S\), sample as follows
 - Initialize \(\theta_0 = \theta^{(s-1)}, r_0 \sim \mathcal{N}(0, I)\)
Hamiltonian/Hybrid Monte Carlo (HMC)

- How do we generate samples \((\theta, r)\) in HMC?
- Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\begin{align*}
\frac{\partial \theta}{\partial t} &= \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} &= -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\end{align*}
\]

- We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time
 - For \(s = 1 : S\), sample as follows
 - Initialize \(\theta_0 = \theta^{(s-1)}\), \(r_* \sim \mathcal{N}(0, I)\) and \(r_0 = r_* - \frac{l}{2} \frac{\partial U}{\partial \theta}|_{\theta_0}\)
Hamiltonian/Hybrid Monte Carlo (HMC)

- How do we generate samples \((\theta, r)\) in HMC?
- Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\):

\[
\begin{align*}
\frac{\partial \theta}{\partial t} &= \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} &= -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\end{align*}
\]

- We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time:
 - For \(s = 1 : S\), sample as follows:
 - Initialize \(\theta_0 = \theta^{(s-1)}\), \(r^* \sim \mathcal{N}(0, I)\) and \(r_0 = r^* - \frac{\rho}{2} \frac{\partial U}{\partial \theta} |_{\theta_0}\)
 - Do \(L\) “leapfrog” steps with learning rates \(\rho_\ell = \rho\) for \(\ell < L\), and \(\rho_L = \rho/2\)
Hamiltonian/Hybrid Monte Carlo (HMC)

How do we generate samples \((\theta, r)\) in HMC?

Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\begin{align*}
\frac{\partial \theta}{\partial t} &= \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} &= -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\end{align*}
\]

We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time

- For \(s = 1 : S\), sample as follows
 - Initialize \(\theta_0 = \theta^{(s-1)}\), \(r_* \sim \mathcal{N}(0, I)\) and \(r_0 = r_* - \frac{\rho}{2} \frac{\partial U}{\partial \theta} \vert_{\theta_0}\)
 - Do \(L\) “leapfrog” steps with learning rates \(\rho_l = \rho\) for \(l < L\), and \(\rho_L = \rho/2\)
 - for \(l = 1 : L\), \(\theta_l = \theta_{l-1} + \rho \frac{\partial K}{\partial r} \vert_{r_{l-1}}, \ r_l = r_{l-1} - \rho l \frac{\partial U}{\partial \theta} \vert_{\theta_l}\)

Perform MH accept/reject test on \((\theta_L, r_L)\). If accepted, \(\theta^{(s)} = \theta_L\)

The momentum forces exploring different regions instead of getting driven to regions where MAP is
How do we generate samples \((\theta, r)\) in HMC?

Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\begin{align*}
\frac{\partial \theta}{\partial t} &= \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r} \\
\frac{\partial r}{\partial t} &= -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\end{align*}
\]

We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time

For \(s = 1 : S\), sample as follows

- Initialize \(\theta_0 = \theta^{(s-1)}\), \(r_* \sim \mathcal{N}(0, I)\) and \(r_0 = r_* - \frac{\rho}{2} \frac{\partial U}{\partial \theta}|_{\theta_0}\)
- Do \(L\) “leapfrog” steps with learning rates \(\rho_\ell = \rho\) for \(\ell < L\), and \(\rho_L = \rho/2\)

 for \(\ell = 1 : L\), \(\theta_\ell = \theta_{\ell-1} + \rho \frac{\partial K}{\partial r}|_{r_{\ell-1}}, \ r_\ell = r_{\ell-1} - \rho_\ell \frac{\partial U}{\partial \theta}|_{\theta_\ell}\)

- Perform MH accept/reject test on \((\theta_L, r_L)\). If accepted, \(\theta^{(s)} = \theta_L\)
How do we generate samples \((\theta, r)\) in HMC?

Given an initial \((\theta, r)\), Hamiltonian Dynamics defines how \((\theta, r)\) changes w.r.t. continuous time \(t\)

\[
\frac{\partial \theta}{\partial t} = \frac{\partial H}{\partial r} = \frac{\partial K}{\partial r}
\]

\[
\frac{\partial r}{\partial t} = -\frac{\partial H}{\partial \theta} = -\frac{\partial U}{\partial \theta}
\]

We can use these equations to update \((\theta, r) \rightarrow (\theta^*, r^*)\) by discretizing time

For \(s = 1 : S\), sample as follows

- Initialize \(\theta_0 = \theta^{(s-1)}\), \(r_* \sim N(0, I)\) and \(r_0 = r_* - \frac{\rho}{2} \frac{\partial U}{\partial \theta}|_{\theta_0}\)
- Do \(L\) “leapfrog” steps with learning rates \(\rho_l = \rho\) for \(\ell < L\), and \(\rho_L = \rho/2\)

\[
\text{for } \ell = 1 : L, \quad \theta_\ell = \theta_{\ell-1} + \rho \frac{\partial K}{\partial r}|_{r_{\ell-1}}, \quad r_\ell = r_{\ell-1} - \rho \ell \frac{\partial U}{\partial \theta}|_{\theta_{\ell}}
\]

- Perform MH accept/reject test on \((\theta_L, r_L)\). If accepted, \(\theta^{(s)} = \theta_L\)

The momentum forces exploring different regions instead of getting driven to regions where MAP is
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC typically has very low rejection rate (that too, primarily due to discretization error)

Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune.

A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)

Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC.

Can also do online HMC (Stochastic Gradient HMC - Chen et al, 2014)

An illustration: SGHMC vs some other methods on MNIST classification.

(Figure: Stochastic Gradient Hamiltonian Monte Carlo (Chen et al, 2014))
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC typically has very low rejection rate (that too, primarily due to discretization error)
- Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC typically has very low rejection rate (that too, primarily due to discretization error)
- Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
- A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)
Hamiltonian/Hybrid Monte Carlo (HMC)

• HMC typically has very low rejection rate (that too, primarily due to discretization error)
• Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
• A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)
 • Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC typically has very low rejection rate (that too, primarily due to discretization error)
- Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
- A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)
 - Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC
- Can also do online HMC (Stochastic Gradient HMC - Chen et al, 2014)
Hamiltonian/Hybrid Monte Carlo (HMC)

- HMC typically has very low rejection rate (that too, primarily due to discretization error)
- Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, so difficult to tune
- A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler)
 - Prob. Prog. packages e.g., Tensorflow Probability, Stan, etc, contain implementations of HMC
- Can also do online HMC (Stochastic Gradient HMC - Chen et al, 2014)
- An illustration: SGHMC vs some other methods on MNIST classification

(Figure: Stochastic Gradient Hamiltonian Monte Carlo (Chen et al, 2014))
Suppose our goal is to compute the posterior of $\theta \in \mathbb{R}^D$ (assuming N is very large)

$$p(\theta | X) \propto p(\theta) p(X | \theta) = p(\theta) \prod_{n=1}^{N} p(x_n | \theta)$$
Parallel/Distributed MCMC

- Suppose our goal is to compute the posterior of $\theta \in \mathbb{R}^D$ (assuming N is very large)

 $$p(\theta | X) \propto p(\theta) p(X | \theta) = p(\theta) \prod_{n=1}^{N} p(x_n | \theta)$$

- Suppose we have J machines with data partitioned as $X = \{X^{(j)}\}_{j=1}^{J}$
Parallel/Distributed MCMC

- Suppose our goal is to compute the posterior of $\theta \in \mathbb{R}^D$ (assuming N is very large)

$$p(\theta | X) \propto p(\theta)p(X | \theta) = p(\theta) \prod_{n=1}^{N} p(x_n | \theta)$$

- Suppose we have J machines with data partitioned as $X = \{X^{(j)}\}_{j=1}^{J}$

- Let’s assume that posterior $p(\theta | X)$ to be factorized as

$$p(\theta | X) = \prod_{j=1}^{J} p^{(j)}(\theta | X^{(j)})$$

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Parallel/Distributed MCMC

• Suppose our goal is to compute the posterior of \(\theta \in \mathbb{R}^D \) (assuming \(N \) is very large)

\[
p(\theta|X) \propto p(\theta)p(X|\theta) = p(\theta) \prod_{n=1}^{N} p(x_n|\theta)
\]

• Suppose we have \(J \) machines with data partitioned as \(X = \{X^{(j)}\}_{j=1}^{J} \)

• Let’s assume that posterior \(p(\theta|X) \) to be factorized as

\[
p(\theta|X) = \prod_{j=1}^{J} p^{(j)}(\theta|X^{(j)})
\]

where \(p^{(j)}(\theta|X^{(j)}) \propto p(\theta)^{1/J} \prod_{x_n \in X^{(j)}} p(x_n|\theta) \) is the “subset posterior”

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Parallel/Distributed MCMC

- Suppose our goal is to compute the posterior of $\theta \in \mathbb{R}^D$ (assuming N is very large)
 \[p(\theta|X) \propto p(\theta)p(X|\theta) = p(\theta) \prod_{n=1}^N p(x_n|\theta) \]

- Suppose we have J machines with data partitioned as $X = \{X^{(j)}\}_{j=1}^J$

- Let’s assume that posterior $p(\theta|X)$ to be factorized as
 \[p(\theta|X) = \prod_{j=1}^J p^{(j)}(\theta|X^{(j)}) \]

 where $p^{(j)}(\theta|X^{(j)}) \propto p(\theta)^{1/J} \prod_{x_n \in X^{(j)}} p(x_n|\theta)$ is the “subset posterior”

- Assume $\{\theta_{j,t}\}_{t=1}^T$ to be the set of T MCMC samples generated by the j^{th} machine

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Parallel/Distributed MCMC

- Suppose our goal is to compute the posterior of \(\theta \in \mathbb{R}^D \) (assuming \(N \) is very large)
 \[
p(\theta | X) \propto p(\theta) p(X | \theta) = p(\theta) \prod_{n=1}^{N} p(x_n | \theta)
 \]

- Suppose we have \(J \) machines with data partitioned as \(X = \{X^{(j)}\}_{j=1}^{J} \)

- Let’s assume that posterior \(p(\theta | X) \) to be factorized as
 \[
p(\theta | X) = \prod_{j=1}^{J} p^{(j)}(\theta | X^{(j)})
 \]
 where \(p^{(j)}(\theta | X^{(j)}) \propto p(\theta)^{1/J} \prod_{x_n \in X^{(j)}} p(x_n | \theta) \) is the “subset posterior”

- Assume \(\{\theta_{j,t}\}_{t=1}^{T} \) to be the set of \(T \) MCMC samples generated by the \(j^{th} \) machine

- We need a way to combine these subset posteriors using a “consensus”
 \[
 \hat{\theta}_1, \ldots, \hat{\theta}_T = \text{CONSENSUSSAMPLES}(\{\theta_{j,1}, \ldots, \theta_{j,T}\}_{j=1}^{J})
 \]
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.
 \[\tilde{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\} \]
Computing Consensus Samples: Some Methods

- **Weighted avg**: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.

\[
\bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\Sigma = (\Sigma_0^{-1} + \sum_{j=1}^{J} \bar{\Sigma}_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior's covariance})
\]

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.

\[
\Sigma_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\Sigma = (\Sigma_0^{-1} + \sum_{j=1}^{J} \Sigma_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior's covariance})
\]

\[
W_j = \Sigma(\Sigma_0^{-1}/J + \Sigma_j^{-1})
\]
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.

\[
\bar{\Sigma}_j = \text{sample covariance of } \{ \theta_{j,1}, \ldots, \theta_{j,T} \}
\]

\[
\Sigma = (\Sigma_0^{-1} + \sum_{j=1}^{J} \bar{\Sigma}_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior's covariance})
\]

\[
W_j = \Sigma(\Sigma_0^{-1}/J + \bar{\Sigma}_j^{-1})
\]

- Fit \(J \) Gaussians, one for each \(\{ \theta_{j,1}, \ldots, \theta_{j,T} \} \) and take their product

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Computing Consensus Samples: Some Methods

- Weighted avg: $\hat{\theta}_t = \sum_{j=1}^J W_j \theta_{j,t}$ where W_j can be learned. Assuming Gaussian prior and lik.

 $$\bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}$$

 $$\Sigma = (\Sigma_0^{-1} + \sum_{j=1}^J \bar{\Sigma}_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior’s covariance})$$

 $$W_j = \Sigma(\Sigma_0^{-1}/J + \bar{\Sigma}_j^{-1})$$

- Fit J Gaussians, one for each $\{\theta_{j,1}, \ldots, \theta_{j,T}\}$ and take their product

 $$\bar{\mu}_j = \text{sample mean of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}, \quad \bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}$$

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.

\[
\bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\Sigma = (\Sigma_0^{-1} + \sum_{j=1}^{J} \bar{\Sigma}_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior’s covariance})
\]

\[
W_j = \Sigma(\Sigma_0^{-1} / J + \bar{\Sigma}_j^{-1})
\]

- Fit \(J \) Gaussians, one for each \(\{\theta_{j,1}, \ldots, \theta_{j,T}\} \) and take their product

\[
\bar{\mu}_j = \text{sample mean of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}, \quad \bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\hat{\Sigma}_J = \left(\sum_{j=1}^{J} \bar{\Sigma}_j^{-1} \right)^{-1}
\]

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.

 \[
 \tilde{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
 \]

 \[
 \Sigma = (\Sigma_0^{-1} + \sum_{j=1}^{J} \tilde{\Sigma}_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior's covariance})
 \]

 \[
 W_j = \Sigma(\Sigma_0^{-1} / J + \tilde{\Sigma}_j^{-1})
 \]

- Fit \(J \) Gaussians, one for each \(\{\theta_{j,1}, \ldots, \theta_{j,T}\} \) and take their product

 \[
 \bar{\mu}_j = \text{sample mean of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}, \quad \tilde{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
 \]

 \[
 \hat{\Sigma}_J = (\sum_{j=1}^{J} \tilde{\Sigma}_j^{-1})^{-1}, \quad \hat{\mu}_J = \hat{\Sigma}_J(\sum_{j=1}^{J} \tilde{\Sigma}_j^{-1} \bar{\mu}_j) \quad (\text{cov and mean of prod. of Gaussians})
 \]

*Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.
 \[\bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T} \} \]
 \[\Sigma = (\Sigma_0^{-1} + \sum_{j=1}^{J} \bar{\Sigma}_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior’s covariance}) \]
 \[W_j = \Sigma(\Sigma_0^{-1}/J + \bar{\Sigma}_j^{-1}) \]

- Fit \(J \) Gaussians, one for each \(\{\theta_{j,1}, \ldots, \theta_{j,T} \} \) and take their product
 \[\bar{\mu}_j = \text{sample mean of } \{\theta_{j,1}, \ldots, \theta_{j,T} \}, \quad \bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T} \} \]
 \[\hat{\Sigma}_J = (\sum_{j=1}^{J} \bar{\Sigma}_j^{-1})^{-1}, \quad \hat{\mu}_J = \hat{\Sigma}_J(\sum_{j=1}^{J} \bar{\Sigma}_j^{-1} \bar{\mu}_j) \quad (\text{cov and mean of prod. of Gaussians}) \]
 \[\hat{\theta}_t \sim \mathcal{N}(\hat{\mu}_J, \hat{\Sigma}_J), \ t = 1, \ldots, T \quad (\text{the final consensus samples}) \]

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.

\[
\Sigma_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\Sigma = (\Sigma_0^{-1} + \sum_{j=1}^{J} \Sigma_j^{-1})^{-1} \quad (\Sigma_0 \text{ is the prior’s covariance})
\]

\[
W_j = \Sigma(\Sigma_0^{-1}/J + \Sigma_j^{-1})
\]

- Fit \(J \) Gaussians, one for each \(\{\theta_{j,1}, \ldots, \theta_{j,T}\} \) and take their product

\[
\tilde{\mu}_j = \text{sample mean of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}, \quad \tilde{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\hat{\Sigma}_J = (\sum_{j=1}^{J} \Sigma_j^{-1})^{-1}, \quad \hat{\mu}_J = \hat{\Sigma}_J (\sum_{j=1}^{J} \Sigma_j^{-1} \tilde{\mu}_j) \quad (\text{cov and mean of prod. of Gaussians})
\]

\[
\hat{\theta}_t \sim \mathcal{N}(\hat{\mu}_J, \hat{\Sigma}_J), \ t = 1, \ldots, T \quad (\text{the final consensus samples})
\]

- For detailed proof and other more sophisticated ways, please refer to the provided reading

* Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Computing Consensus Samples: Some Methods

- Weighted avg: \(\hat{\theta}_t = \sum_{j=1}^{J} W_j \theta_{j,t} \) where \(W_j \) can be learned. Assuming Gaussian prior and lik.

\[
\bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\Sigma = \left(\Sigma_0^{-1} + \sum_{j=1}^{J} \bar{\Sigma}_j^{-1} \right)^{-1} \quad (\Sigma_0 \text{ is the prior's covariance})
\]

\[
W_j = \Sigma \left(\Sigma_0^{-1} / J + \bar{\Sigma}_j^{-1} \right)
\]

- Fit \(J \) Gaussians, one for each \(\{\theta_{j,1}, \ldots, \theta_{j,T}\} \) and take their product

\[
\bar{\mu}_j = \text{sample mean of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}, \quad \bar{\Sigma}_j = \text{sample covariance of } \{\theta_{j,1}, \ldots, \theta_{j,T}\}
\]

\[
\hat{\Sigma}_J = \left(\sum_{j=1}^{J} \bar{\Sigma}_j^{-1} \right)^{-1}, \quad \hat{\mu}_J = \hat{\Sigma}_J \left(\sum_{j=1}^{J} \bar{\Sigma}_j^{-1} \bar{\mu}_j \right) \quad \text{(cov and mean of prod. of Gaussians)}
\]

\[
\hat{\theta}_t \sim \mathcal{N}(\hat{\mu}_J, \hat{\Sigma}_J), \ t = 1, \ldots, T \quad \text{(the final consensus samples)}
\]

- For detailed proof and other more sophisticated ways, please refer to the provided reading

Note: VI can also be parallelized using similar techniques

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)

Conjugate models with one "main" parameter: Straightforward posterior updates

MLE-II/MAP-II: Often useful for estimating the hyperparameters

EM: If we want to do MLE/MAP for models with latent variables

Very general algorithm, can also be made online

Used when we want point estimates for some unknowns and posterior over others

Can use it for hyperparameter estimation as well

Often better than using direct gradient methods

VI ans sampling methods can be used to get full posterior for complex models

Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

In other cases, we have general VI with Monte-Carlo gradients, MH sampling

MCMC can also make use of gradient info (LD/SGLD)

For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates

VI ans sampling methods can be used to get full posterior for complex models
- Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
- In other cases, we have general VI with Monte-Carlo gradients, MH sampling
- MCMC can also make use of gradient info (LD/SGLD)

For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters

EM: If we want to do MLE/MAP for models with latent variables

- Very general algorithm, can also be made online
- Used when we want point estimates for some unknowns and posterior over others
- Can use it for hyperparameter estimation as well
- Often better than using direct gradient methods

VI and sampling methods can be used to get full posterior for complex models

- Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
- In other cases, we have general VI with Monte-Carlo gradients, MH sampling
- MCMC can also make use of gradient info (LD/SGLD)

For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online

VI ans sampling methods can be used to get full posterior for complex models
Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
In other cases, we have general VI with Monte-Carlo gradients, MH sampling
MCMC can also make use of gradient info (LD/SGLD)
For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
- VI ans sampling methods can be used to get full posterior for complex models
 - Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
 - In other cases, we have general VI with Monte-Carlo gradients, MH sampling
- MCMC can also make use of gradient info (LD/SGLD)
- For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
 - Can use it for hyperparameter estimation as well

VI and sampling methods can be used to get full posterior for complex models
- Often better than using direct gradient methods
- VI ans sampling methods can be used to get full posterior for complex models
- Very easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
- In other cases, we have general VI with Monte-Carlo gradients, MH sampling
- MCMC can also make use of gradient info (LD/SGLD)
- For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
 - Can use it for hyperparameter estimation as well
 - Often better than using direct gradient methods

VI ans sampling methods can be used to get full posterior for complex models
- Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
- In other cases, we have general VI with Monte-Carlo gradients, MH sampling
- MCMC can also make use of gradient info (LD/SGLD)
- For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
 - Can use it for hyperparameter estimation as well
 - Often better than using direct gradient methods
- VI ans sampling methods can be used to get full posterior for complex models
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
 - Can use it for hyperparameter estimation as well
 - Often better than using direct gradient methods
- VI ans sampling methods can be used to get full posterior for complex models
 - Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
 - Can use it for hyperparameter estimation as well
 - Often better than using direct gradient methods
- VI ans sampling methods can be used to get full posterior for complex models
 - Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
 - In other cases, we have general VI with Monte-Carlo gradients, MH sampling
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
 - Can use it for hyperparameter estimation as well
 - Often better than using direct gradient methods
- VI ans sampling methods can be used to get full posterior for complex models
 - Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
 - In other cases, we have general VI with Monte-Carlo gradients, MH sampling
 - MCMC can also make use of gradient info (LD/SGLD)
Inference Methods: Summary

- MLE/MAP: Straightforward for differentiable models (can even use automatic differentiation)
- Conjugate models with one “main” parameter: Straightforward posterior updates
- MLE-II/MAP-II: Often useful for estimating the hyperparameters
- EM: If we want to do MLE/MAP for models with latent variables
 - Very general algorithm, can also be made online
 - Used when we want point estimates for some unknowns and posterior over others
 - Can use it for hyperparameter estimation as well
 - Often better than using direct gradient methods
- VI ans sampling methods can be used to get full posterior for complex models
 - Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)
 - In other cases, we have general VI with Monte-Carlo gradients, MH sampling
 - MCMC can also make use of gradient info (LD/SGLD)
- For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approximations