Variational Inference (Wrap-up), Inference via Sampling

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Feb 27, 2019
Recap: VI using Monte-Carlo based Gradients of ELBO

- VI = ELBO optimization. Requires ELBO gradients: $\nabla_\phi \mathcal{L}(\phi) = \nabla_\phi \mathbb{E}_q[\log p(X, Z) - \log q(Z|\phi)]$

- Black-box VI (a.k.a. score-function gradients): No model-specific gradient calculations required

- Reparametrization trick (a.k.a. pathwise gradients)
Recap: VI using Monte-Carlo based Gradients of ELBO

- VI = ELBO optimization. Requires ELBO gradients: \(\nabla_\phi L(\phi) = \nabla_\phi \mathbb{E}_q[\log p(X, Z) - \log q(Z|\phi)] \)

- Looked at two approaches that optimize ELBO using its Monte-Carlo based gradients
Recap: VI using Monte-Carlo based Gradients of ELBO

- VI = ELBO optimization. Requires ELBO gradients: \(\nabla_\phi \mathcal{L}(\phi) = \nabla_\phi \mathbb{E}_q[\log p(X, Z) - \log q(Z|\phi)] \)

- Looked at two approaches that optimize ELBO using its Monte-Carlo based gradients:

 - **Black-box VI (a.k.a. score-function gradients):** No model-specific gradient calculations required

 \[
 Z_s \sim q(Z|\phi) \quad s = 1, \ldots, S
 \]

 \[
 \nabla_\phi \mathcal{L}(q) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_\phi \log q(Z_s|\phi)[\log p(X, Z_s) - \log q(Z_s|\phi)]
 \]
Recap: VI using Monte-Carlo based Gradients of ELBO

- **VI** = ELBO optimization. Requires ELBO gradients: \(\nabla_\phi \mathcal{L}(\phi) = \nabla_\phi \mathbb{E}_q[\log p(X, Z) - \log q(Z|\phi)] \)

- Looked at two approaches that optimize ELBO using its Monte-Carlo based gradients:
 - **Black-box VI** (a.k.a. score-function gradients): No model-specific gradient calculations required
 \[
 Z_s \sim q(Z|\phi) \quad s = 1, \ldots, S
 \]
 \[
 \nabla_\phi \mathcal{L}(q) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_\phi \log q(Z_s|\phi)[\log p(X, Z_s) - \log q(Z_s|\phi)]
 \]
 - **Reparameterization trick** (a.k.a. pathwise gradients)
 \[
 Z = g(\epsilon, \phi)
 \]
 \[
 \epsilon_s \sim p(\epsilon) \quad s = 1, \ldots, S
 \]
 \[
 \nabla_\phi \mathcal{L}(q) \approx \frac{1}{S} \sum_{s=1}^{S} [\nabla_\phi \log p(X, g(\epsilon_s, \phi)) - \nabla_\phi \log q\phi(g(\epsilon_s, \phi))]\]
Recap: VI using Monte-Carlo based Gradients of ELBO

- **VI = ELBO optimization.** Requires ELBO gradients: \(\nabla_\phi \mathcal{L}(\phi) = \nabla_\phi \mathbb{E}_q[\log p(X, Z) - \log q(Z|\phi)] \)

- Looked at two approaches that optimize ELBO using its **Monte-Carlo based gradients**
 - Black-box VI (a.k.a. score-function gradients): No model-specific gradient calculations required
 \[
 Z_s \sim q(Z|\phi) \quad s = 1, \ldots, S
 \]
 \[
 \nabla_\phi \mathcal{L}(q) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_\phi \log q(Z_s|\phi)[\log p(X, Z_s) - \log q(Z_s|\phi)]
 \]
 - Reparametrization trick (a.k.a. pathwise gradients)
 \[
 Z = g(\epsilon, \phi)
 \]
 \[
 \epsilon_s \sim p(\epsilon) \quad s = 1, \ldots, S
 \]
 \[
 \nabla_\phi \mathcal{L}(q) \approx \frac{1}{S} \sum_{s=1}^{S} [\nabla_\phi \log p(X, g(\epsilon_s, \phi)) - \nabla_\phi \log q(\epsilon_s|\phi)]
 \]
 - Note: We can use minibatches of data (instead of all \(X \)) to compute the above gradients
Automatic Differentiation Variational Inference (ADVI)

- Auto. Diff. (AD): A way to automate differentiation of functions with *unconstrained variables*

Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
Automatic Differentiation Variational Inference (ADVI)

- Auto. Diff. (AD): A way to automate differentiation of functions with unconstrained variables
- VI is also optimization. However, often the variables are constrained, e.g.,
 - Gamma’s shape and scale can only be non-negative
 - Beta’s parameters can only be non-negative
 - Dirichlet’s probability parameter sums to one

Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
Automatic Differentiation Variational Inference (ADVI)

- **Auto. Diff. (AD):** A way to automate differentiation of functions with **unconstrained variables**
- **VI** is also optimization. However, often the variables are **constrained**, e.g.,
 - Gamma’s shape and scale can only be non-negative
 - Beta’s parameters can only be non-negative
 - Dirichlet’s probability parameter sums to one
- If we can somehow transform our distributions to unconstrained ones, we can use AD for VI

<figure>
<svg></svg>
<figcaption>(a) Latent variable space (b) Real coordinate space</figcaption>
</figure>

\[
\begin{align*}
T & : \text{supp}(p(\theta)) \rightarrow \mathbb{R}^K \\
\zeta & = T(\theta) \\
p(x, \zeta) & = p(x, T^{-1}(\zeta)) \left| \det J_{T^{-1}}(\zeta) \right|
\end{align*}
\]

- Transformed density
- Original density
- Jacobian of inverse of \(T \)

Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
Automatic Differentiation Variational Inference (ADVI)

- Auto. Diff. (AD): A way to automate differentiation of functions with **unconstrained variables**
- VI is also optimization. However, often the variables are **constrained**, e.g.,
 - Gamma’s shape and scale can only be non-negative
 - Beta’s parameters can only be non-negative
 - Dirichlet’s probability parameter sums to one
- If we can somehow transform our distributions to unconstrained ones, we can use AD for VI

\[
T : \text{supp}(p(\theta)) \rightarrow \mathbb{R}^K \\
\zeta = T(\theta) \\
p(x, \zeta) = p \left(x, T^{-1}(\zeta) \right) \left| \det J_{T^{-1}}(\zeta) \right|
\]

- ADVI transforms the variables to real-valued and then does VI with Gaussian variational approx.

Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
Amortized Variational Inference
Many latent variable models have one latent variable z_n for each data point x_n. Amortized Variational Inference finds the optimal ϕ_n for each $q(z_n|\phi_n)$. This can be expensive for large datasets (a similar issue which motivated SVI). Also slow at test time: Given a new x^*, finding ϕ^* requires iterative updates.

Update local ϕ^*, update global λ, and repeat until convergence.

Amortized VI: Learn an "inference network" or "recognition model" to directly get ϕ_n, e.g., a neural network to directly map x_n to ϕ_n.

$q(z_n|\phi_n) \approx q(z_n|\hat{\phi}_n)$ where $\hat{\phi}_n = \text{NN}_{\phi}(x_n)$.

The inference network params ϕ can be learned along with the other global vars.
Many latent variable models have one latent variable z_n for each data point x_n.

VI finds the optimal ϕ_n for each $q(z_n|\phi_n)$. This can be expensive for large datasets (a similar issue which motivated SVI).

Amortized VI: Learn an "inference network" or "recognition model" to directly get ϕ_n, e.g., a neural network to directly map x_n to ϕ_n.

$q(z_n|\phi_n) \approx q(z_n|\hat{\phi}_n)$ where $\hat{\phi}_n = NN_{\phi}(x_n)$.

The inference network parameters ϕ can be learned along with the other global variables. Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc.
Amortized Variational Inference

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(z_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
Amortized Variational Inference

- Many latent variable models have one latent variable \(z_n \) for each data point \(x_n \)
- VI finds the optimal \(\phi_n \) for each \(q(z_n | \phi_n) \)
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new \(x_* \), finding \(\phi_* \) requires iterative updates
Amortized Variational Inference

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(z_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_*, finding ϕ_* requires iterative updates
 - Update local ϕ_*, update global λ, and repeat until convergence
Amortized Variational Inference

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(z_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_*, finding ϕ_* requires iterative updates
 - Update local ϕ_*, update global λ, and repeat until convergence
- Amortized VI: Learn an “inference network” or “recognition model” to directly get ϕ_n
Amortized Variational Inference

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(z_n | \phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_*, finding ϕ_* requires iterative updates
 - Update local ϕ_*, update global λ, and repeat until convergence
- Amortized VI: Learn an “inference network” or “recognition model” to directly get ϕ_n, e.g.,
 - A neural network to directly map x_n to ϕ_n
 $q(z_n | \phi_n) \approx q(z_n | \hat{\phi}_n)$ where $\hat{\phi}_n = \text{NN}_\phi(x_n)$
Amortized Variational Inference

- Many latent variable models have one latent variable z_n for each data point x_n.
- VI finds the optimal ϕ_n for each $q(z_n | \phi_n)$.
- This can be expensive for large datasets (a similar issue which motivated SVI).
- Also slow at test time: Given a new x_*, finding ϕ_* requires iterative updates.
 - Update local ϕ_*, update global λ, and repeat until convergence.
- Amortized VI: Learn an “inference network” or “recognition model” to directly get ϕ_n, e.g.,
 - A neural network to directly map x_n to ϕ_n.
 \[q(z_n | \phi_n) \approx q(z_n | \hat{\phi}_n) \quad \text{where} \quad \hat{\phi}_n = \text{NN}_\phi(x_n) \]
- The inference network params ϕ can be learned along with the other global vars.
Amortized Variational Inference

- Many latent variable models have one latent variable z_n for each data point x_n
- VI finds the optimal ϕ_n for each $q(z_n|\phi_n)$
- This can be expensive for large datasets (a similar issue which motivated SVI)
- Also slow at test time: Given a new x_*, finding ϕ_* requires iterative updates
 - Update local ϕ_*, update global λ, and repeat until convergence
- Amortized VI: Learn an “inference network” or “recognition model” to directly get ϕ_n, e.g.,
 - A neural network to directly map x_n to ϕ_n
 \[q(z_n|\phi_n) \approx q(z_n|\hat{\phi}_n) \quad \text{where} \quad \hat{\phi}_n = \text{NN}_{\phi}(x_n) \]
- The inference network params ϕ can be learned along with the other global vars
- Popular in deep probabilistic models such as variational autoencoders, deep Gaussian Processes, etc
Structured Variational Inference
Structured Variational Inference

- Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions

To remove the mean-field assumption, various approaches exist, e.g.,

- Structured mean-field (Saul et al, 1996)
- Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M “tied” via a shared prior

$$q(z_1, \ldots, z_M | \theta) = \int \left[\prod_{m=1}^M q(z_m | \phi_m) \right] p(\phi | \theta) d\phi$$

To learn more expressive variational approximations, various approaches exist, e.g.,

- Boosting or mixture of simpler distributions, e.g.,
 $$q(z) = \sum_{c=1}^C \rho_c q_c(z | \phi_c)$$

- Normalizing flows: Turn a simple $q(z)$ into a complex one via series of invertible transformations
Structured Variational Inference

- Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions
- To remove the mean-field assumption, various approaches exist
Structured Variational Inference

- Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions

- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)

- Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M "tied" via a shared prior

$$q(z_1, \ldots, z_M | \theta) = \int \left[\prod_{m=1}^{M} q(z_m | \phi_m) \right] p(\phi | \theta) d\phi$$

- To learn more expressive variational approximations, various approaches exist, e.g.,
 - Boosting or mixture of simpler distributions, e.g., $q(z) = \sum_{c=1}^{C} \rho_c q_c(z | \phi_c)$
 - Normalizing flows: Turn a simple $q(z)$ into a complex one via series of invertible transformations
Structured Variational Inference

- Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions

- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M “tied” via a shared prior

$$q(z_1, \ldots, z_M|\theta) = \int \left[\prod_{m=1}^{M} q(z_m|\phi_m) \right] p(\phi|\theta) d\phi$$
Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,
- Removing the independence assumption of mean-field VI
- Learning more complex forms variational distributions

To remove the mean-field assumption, various approaches exist
- Structured mean-field (Saul et al, 1996)
- Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M “tied” via a shared prior

$$q(z_1, \ldots, z_M | \theta) = \int \left[\prod_{m=1}^{M} q(z_m | \phi_m) \right] p(\phi | \theta) d\phi$$

To learn more expressive variational approximations, various approaches exist
Structured Variational Inference

- Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions

- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M “tied” via a shared prior

$$q(z_1, \ldots, z_M|\theta) = \int \left[\prod_{m=1}^{M} q(z_m|\phi_m) \right] p(\phi|\theta) d\phi$$

- To learn more expressive variational approximations, various approaches exist, e.g.,
 - Boosting or mixture of simpler distributions, e.g., $q(z) = \sum_{c=1}^{C} \rho_c q_c(z|\phi_c)$
Structured Variational Inference

- Here “structured” may refer to anything that makes the VI approximation more expressive, e.g.,
 - Removing the independence assumption of mean-field VI
 - Learning more complex forms variational distributions

- To remove the mean-field assumption, various approaches exist
 - Structured mean-field (Saul et al, 1996)
 - Hierarchical VI (Ranganath et al, 2016): Variational params ϕ_1, \ldots, ϕ_M “tied” via a shared prior

\[
q(z_1, \ldots, z_M | \theta) = \int \left[\prod_{m=1}^{M} q(z_m | \phi_m) \right] p(\phi | \theta) d\phi
\]

- To learn more expressive variational approximations, various approaches exist, e.g.,
 - Boosting or mixture of simpler distributions, e.g., $q(z) = \sum_{c=1}^{C} \rho_c q_c(z | \phi_c)$
 - Normalizing flows: Turn a simple $q(z)$ into a complex one via series of invertible transformations
Other Divergence Measures
Other Divergence Measures

• VI minimizes $KL(q||p)$ but other divergences can be minimized as well

\[D_{\alpha}(p(x)||q(x)) = \frac{1}{\alpha - 1} \log \int p(x)^\alpha q(x)^{1-\alpha} \, dx \]

$KL(p||q)$ is a special case with $\alpha \to 1$ (can verify using L'Hopital rule of taking limits)

An even more general form of divergence is \(f \)-Divergence

\[D_f(p(x)||q(x)) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) \, dx \]
Other Divergence Measures

- VI minimizes $KL(q||p)$ but other divergences can be minimized as well
- A general form of divergence is Renyi’s α-divergence defined as

$$D^R_\alpha(p(x)||q(x)) = \frac{1}{\alpha - 1} \log \int p(x)^\alpha q(x)^{1-\alpha} \, dx$$

$KL(p||q)$ is a special case with $\alpha \to 1$ (can verify using L'Hopital rule of taking limits)

An even more general form of divergence is f-Divergence

$$D_f(p(x)||q(x)) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) \, dx$$

Many recent inference algorithms are based on minimizing such divergences.
Other Divergence Measures

- VI minimizes $KL(q\|p)$ but other divergences can be minimized as well.

- A general form of divergence is Renyi’s α-divergence defined as

$$D^R_\alpha(p(x)\|q(x)) = \frac{1}{\alpha - 1} \log \int p(x)\alpha q(x)^{1-\alpha} dx$$

- $KL(p\|q)$ is a special case with $\alpha \rightarrow 1$ (can verify using L’Hopital rule of taking limits).
Other Divergence Measures

- VI minimizes $KL(q\|p)$ but other divergences can be minimized as well
- A general form of divergence is Renyi’s α-divergence defined as

$$D^R_\alpha(p(x)||q(x)) = \frac{1}{\alpha - 1} \log \int p(x)^\alpha q(x)^{1-\alpha} \, dx$$

- $KL(p\|q)$ is a special case with $\alpha \to 1$ (can verify using L’Hopital rule of taking limits)
- An even more general form of divergence is f-Divergence

$$D_f(p(x)||q(x)) = \int q(x)f\left(\frac{p(x)}{q(x)}\right) \, dx$$
Other Divergence Measures

- VI minimizes $KL(q\|p)$ but other divergences can be minimized as well
- A general form of divergence is Renyi’s α-divergence defined as
 \[D_\alpha^R(p(x)\|q(x)) = \frac{1}{\alpha - 1} \log \int p(x)^\alpha q(x)^{1-\alpha} dx \]
- $KL(p\|q)$ is a special case with $\alpha \to 1$ (can verify using L’Hopital rule of taking limits)
- An even more general form of divergence is f-Divergence
 \[D_f(p(x)\|q(x)) = \int q(x) f \left(\frac{p(x)}{q(x)} \right) dx \]
- Many recent inference algorithms are based on minimizing such divergences
Variational Inference: Some Comments

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
Variational Inference: Some Comments

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference

- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability

- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

- Note: Most of these ideas apply also to Variational EM

- Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g., Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models

- Still a very active area of research, especially for doing VI in complex models

- Models with discrete latent variables

- Reducing the variance in Monte-Carlo estimate of ELBO gradients
Variational Inference: Some Comments

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success

Note: Most of these ideas apply also to Variational EM

Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g., Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models

Still a very active area of research, especially for doing VI in complex models

Models with discrete latent variables

Reducing the variance in Monte-Carlo estimate of ELBO gradients
Variational Inference: Some Comments

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success
- Note: Most of these ideas apply also to Variational EM
Variational Inference: Some Comments

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success
- Note: Most of these ideas apply also to Variational EM
- Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g., Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models
Variational Inference: Some Comments

- Many probabilistic models (deep/non-deep) nowadays rely on VI to do tractable inference
- Even mean-field for locally-conjugate models has many applications in lots of probabilistic models
 - This + SVI gives excellent scalability
- Stoch. opt., auto. diff., Monte-Carlo gradient of ELBO, contributed immensely to the success
- Note: Most of these ideas apply also to Variational EM
- Many VI and advanced VI algorithms are implemented in probabilistic programming packages (e.g., Stan, Tensorflow Probability, etc), making VI a painless exercise even for complex models
- Still a very active area of research, especially for doing VI in complex models
 - Models with discrete latent variables
 - Reducing the variance in Monte-Carlo estimate of ELBO gradients
Inference via Sampling

(Note that we have already seen Gibbs sampling)
Sampling for Approximate Inference

- Some typical inference tasks

\[p(\theta|D) = \int p(D|\theta) p(\theta) d\theta \]

\[p(D_{\text{new}}|D) = \mathbb{E}_{p(\theta|D)} [p(D_{\text{new}}|\theta)] \]

\[p(D|m) = \mathbb{E}_{p(\theta|m)} [p(D|\theta)] \]

\[\text{Exp-CLL} = \mathbb{E}_{p(z|\theta, x)} [p(x, z|\theta)] \]

\[L(q) = \mathbb{E}_{q}[\log p(x, z)] - \mathbb{E}_{q}[\log p(z)] \]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) posterior distribution:
 \[p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta} \]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) posterior distribution: \(p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta} \)
 - Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) posterior distribution: $p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$
 - Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,
 - The posterior predictive (an expectation w.r.t the posterior over θ)
 \[
p(D^{\text{new}}|D) = \int p(D^{\text{new}}|\theta)p(\theta|D)d\theta
 \]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) **posterior distribution**:
 \[p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \int \frac{p(D|\theta)p(\theta)}{p(D)} d\theta \]
 - Compute a difficult **expectation** of a random quantity w.r.t. a distribution (an integral), e.g.,
 - The **posterior predictive** (an expectation w.r.t the posterior over \(\theta \))
 \[p(D^{new}|D) = \int p(D^{new}|\theta)p(\theta|D)d\theta = \mathbb{E}_{p(\theta|D)}[p(D^{new}|\theta)] \]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) **posterior distribution**: \(p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta} \)
 - Compute a difficult **expectation** of a random quantity w.r.t. a distribution (an integral), e.g.,
 - The **posterior predictive** (an expectation w.r.t the posterior over \(\theta \))
 \[p(D^{\text{new}}|D) = \int p(D^{\text{new}}|\theta)p(\theta|D)d\theta = \mathbb{E}_{p(\theta|D)}[p(D^{\text{new}}|\theta)] \]
 - The **marginal likelihood** or “evidence” (an expectation over the prior)
 \[p(D|m) = \int p(D|\theta)p(\theta|m)d\theta \]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) posterior distribution: \(p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta} \)
 - Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,
 - The posterior predictive (an expectation w.r.t the posterior over \(\theta \))
 \[
p(D^{\text{new}}|D) = \int p(D^{\text{new}}|\theta)p(\theta|D)d\theta = \mathbb{E}_{p(\theta|D)}[p(D^{\text{new}}|\theta)]
\]
 - The marginal likelihood or “evidence” (an expectation over the prior)
 \[
p(D|m) = \int p(D|\theta)p(\theta|m)d\theta = \mathbb{E}_{p(\theta|m)}[p(D|\theta)]
\]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) posterior distribution: \(p(\theta | D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{\int p(D|\theta)p(\theta)d\theta}{p(D)} \)
 - Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,
 - The posterior predictive (an expectation w.r.t the posterior over \(\theta \))
 \[p(D^{\text{new}}|D) = \int p(D^{\text{new}}|\theta)p(\theta|D)d\theta = \mathbb{E}_{p(\theta|D)}[p(D^{\text{new}}|\theta)] \]
 - The marginal likelihood or "evidence" (an expectation over the prior)
 \[p(D|m) = \int p(D|\theta)p(\theta|m)d\theta = \mathbb{E}_{p(\theta|m)}[p(D|\theta)] \]
 - The expected complete data log-likelihood needed for doing MLE/MAP in LVMs (recall EM)
 \[\text{Exp-CLL} = \int p(z|\theta, x)p(x, z|\theta)dz \]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) posterior distribution: \(p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta} \)
 - Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,
 - The posterior predictive (an expectation w.r.t the posterior over \(\theta \))
 \[
p(D^{\text{new}}|D) = \int p(D^{\text{new}}|\theta)p(\theta|D)d\theta = \mathbb{E}_{p(\theta|D)}[p(D^{\text{new}}|\theta)]
\]
 - The marginal likelihood or “evidence” (an expectation over the prior)
 \[
p(D|m) = \int p(D|\theta)p(\theta|m)d\theta = \mathbb{E}_{p(\theta|m)}[p(D|\theta)]
\]
 - The expected complete data log-likelihood needed for doing MLE/MAP in LVMs (recall EM)
 \[
 \text{Exp-CLL} = \int p(z|\theta, x)p(x, z|\theta)dz = \mathbb{E}_{p(z|\theta, x)}[p(x, z|\theta)]
 \]
Sampling for Approximate Inference

- Some typical inference tasks
 - Compute a (possibly intractable) **posterior distribution**: \(p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta} \)
 - Compute a difficult **expectation** of a random quantity w.r.t. a distribution (an integral), e.g.,
 - The **posterior predictive** (an expectation w.r.t the posterior over \(\theta \))
 \[
p(D_{\text{new}}|D) = \int p(D_{\text{new}}|\theta)p(\theta|D)d\theta = \mathbb{E}_{p(\theta|D)}[p(D_{\text{new}}|\theta)]
\]
 - The **marginal likelihood** or “evidence” (an expectation over the prior)
 \[
p(D|m) = \int p(D|\theta)p(\theta|m)d\theta = \mathbb{E}_{p(\theta|m)}[p(D|\theta)]
\]
 - The **expected complete data log-likelihood** needed for doing MLE/MAP in LVMs (recall EM)
 \[
 \text{Exp-CLL} = \int p(z|\theta, x)p(x, z|\theta)dz = \mathbb{E}_{p(z|\theta, x)}[p(x, z|\theta)]
\]
 - The **ELBO** in variational inference
 \[
 \mathcal{L}(q) = \mathbb{E}_q[\log p(x, z)] - \mathbb{E}_q[\log p(z)]
 \]
Some typical inference tasks

- **Compute a (possibly intractable) posterior distribution:** \(p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta} \)

- **Compute a difficult expectation of a random quantity w.r.t. a distribution (an integral), e.g.,**
 - The **posterior predictive** (an expectation w.r.t the posterior over \(\theta \))
 \[
p(\mathcal{D}^{\text{new}}|\mathcal{D}) = \int p(\mathcal{D}^{\text{new}}|\theta)p(\theta|\mathcal{D})d\theta = E_{p(\theta|\mathcal{D})}[p(\mathcal{D}^{\text{new}}|\theta)]
 \]
 - The **marginal likelihood** or “evidence” (an expectation over the prior)
 \[
p(\mathcal{D}|m) = \int p(\mathcal{D}|\theta)p(\theta|m)d\theta = E_{p(\theta|m)}[p(\mathcal{D}|\theta)]
 \]
 - The **expected complete data log-likelihood** needed for doing MLE/MAP in LVMs (recall EM)
 \[
 \text{Exp-CLL} = \int p(z|\theta, x)p(x, z|\theta)dz = E_{p(z|\theta, x)}[p(x, z|\theta)]
 \]
 - The **ELBO** in variational inference
 \[
 \mathcal{L}(q) = E_q[\log p(x, z)] - E_q[\log p(z)]
 \]

- **Sampling methods** provide a general way to (approximately) solve these problems
The Basic Idea

- Can approximate any distribution using a set of *randomly drawn samples* from it
The Basic Idea

- Can approximate any distribution using a set of \textit{randomly drawn samples} from it.

- The samples can also be used for computing expectations (Monte-Carlo averaging).
The Basic Idea

- Can approximate any distribution using a set of *randomly drawn samples* from it

- The samples can also be used for computing expectations (Monte-Carlo averaging)

- Usually straightforward to generate samples if it is a simple/standard distribution
The Basic Idea

- Can approximate any distribution using a set of randomly drawn samples from it

- The samples can also be used for computing expectations (Monte-Carlo averaging)

- Usually straightforward to generate samples if it is a simple/standard distribution

- **The interesting bit:** Even if the distribution is “difficult” (e.g., an intractable posterior), it is often possible to generate random samples from such a distribution, as we will see..
Empirical Distribution

- Sampling based approximation of a distribution can be represented using an empirical distribution.
Sampling based approximation of a distribution can be represented using an empirical distribution. Given \(L \) “points” \(z^{(1)}, \ldots, z^{(L)} \), the empirical distribution of these points is defined as:

\[
p_L(A) = \frac{1}{L} \sum_{\ell=1}^{L} \delta(z^{(\ell)})(A)
\]

Here, \(\delta(z)(A) \) denotes the Dirac distribution defined as:

\[
\delta(z)(A) = \begin{cases} 0 & \text{if } z \not\in A \\ 1 & \text{if } z \in A \end{cases}
\]

\(p_L(A) \) is a discrete distribution with finite support.

(z(1), \ldots, z(L)) (can think of it as a histogram)
Empirical Distribution

- Sampling based approximation of a distribution can be represented using an empirical distribution.
- Given L “points” $z^{(1)}, \ldots, z^{(L)}$, the empirical distribution of these points is defined as

$$p_L(A) = \sum_{\ell=1}^{L} w_{\ell} \delta_{z^{(\ell)}}(A)$$

Here w_1, \ldots, w_L are weights that sum to 1, i.e., $\sum_{\ell=1}^{L} w_{\ell} = 1$ (for uniform weights, $w_{\ell} = 1/L$).

Here $\delta_{z^{(\ell)}}(A)$ denotes the Dirac distribution defined as

$$\delta_{z^{(\ell)}}(A) = \begin{cases} 0 & \text{if } z^{(\ell)} \notin A \\ 1 & \text{if } z^{(\ell)} \in A \end{cases}$$

$p_L(A)$ is a discrete distribution with finite support $z^{(1)}, \ldots, z^{(L)}$ (can think of it as a histogram).
Empirical Distribution

- Sampling based approximation of a distribution can be represented using an empirical distribution.
- Given L "points" $z^{(1)}, \ldots, z^{(L)}$, the empirical distribution of these points is defined as

$$p_L(A) = \sum_{\ell=1}^{L} w_\ell \delta_{z^{(\ell)}}(A)$$

Here w_1, \ldots, w_L are weights that sum to 1, i.e.,

$$\sum_{\ell=1}^{L} w_\ell = 1$$

(for uniform weights, $w_\ell = 1/L$)

Here $\delta_{z}(A)$ denotes the Dirac distribution defined as

$$\delta_{z}(A) = \begin{cases} 0 & \text{if } z \notin A \\ 1 & \text{if } z \in A \end{cases}$$

$p_L(A)$ is a discrete distribution with finite support $z^{(1)}, \ldots, z^{(L)}$ (can think of it as a histogram).
Empirical Distribution

- Sampling based approximation of a distribution can be represented using an empirical distribution

- Given L “points” $z^{(1)}, \ldots, z^{(L)}$, the empirical distribution of these points is defined as

$$p_L(A) = \sum_{\ell=1}^{L} w_\ell \delta_{z^{(\ell)}}(A)$$

- Here w_1, \ldots, w_L are weights that sum to 1, i.e., $\sum_{\ell=1}^{L} w_\ell = 1$ (for uniform weights, $w_\ell = 1/L$)
Empirical Distribution

- Sampling based approximation of a distribution can be represented using an empirical distribution.
- Given L “points” $z^{(1)}, \ldots, z^{(L)}$, the empirical distribution of these points is defined as

$$p_{L}(A) = \sum_{\ell=1}^{L} w_{\ell} \delta_{z^{(\ell)}}(A)$$

- Here w_{1}, \ldots, w_{L} are weights that sum to 1, i.e., $\sum_{\ell=1}^{L} w_{\ell} = 1$ (for uniform weights, $w_{\ell} = 1/L$).
- Here $\delta_{z}(A)$ denotes the Dirac distribution defined as

$$\delta_{z}(A) = \begin{cases}
0 & \text{if } z \notin A \\
1 & \text{if } z \in A
\end{cases}$$
Empirical Distribution

- Sampling based approximation of a distribution can be represented using an empirical distribution.
- Given L "points" $z^{(1)}, \ldots, z^{(L)}$, the empirical distribution of these points is defined as

$$p_L(A) = \sum_{\ell=1}^{L} w_\ell \delta_{z^{(\ell)}}(A)$$

Here w_1, \ldots, w_L are weights that sum to 1, i.e., $\sum_{\ell=1}^{L} w_\ell = 1$ (for uniform weights, $w_\ell = 1/L$).

- Here $\delta_z(A)$ denotes the Dirac distribution defined as

$$\delta_z(A) = \begin{cases}
0 & \text{if } z \notin A \\
1 & \text{if } z \in A
\end{cases}$$

- $p_L(A)$ is a discrete distribution with finite support $z^{(1)}, \ldots, z^{(L)}$ (can think of it as a histogram).
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^S$ to approximate $p(Z|X)$

- Convergence: VI only has local convergence, sampling (in theory) can give posterior (more on it later)
- Storage requirements: Sampling-based approximation requires more storage
- Prediction time cost (also related to storage requirement): Sampling always requires Monte-Carlo averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive

$$p(x^*|X) \approx \frac{1}{S} \sum_{s=1}^S p(x^*|\theta_s)p(\theta_s|X)$$

VI based posterior predictive:

$$p(x^*|X) \approx \int p(x^*|\theta)q(\theta|\phi)d\theta$$

There is some work on "compressing" sampling-based approximations (e.g., see "Compact approximations to Bayesian predictive distributions" by Snelson and Ghaharamani, 2005; and "Bayesian Dark Knowledge" by Korattikara et al, 2015)
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^S$ to approximate $p(Z|X)$
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^{S}$ to approximate $p(Z|X)$
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^{S}$ to approximate $p(Z|X)$
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
- In terms of “comparison” between VI and sampling, a few things to be noted

Sampling based posterior predictive:

$$p(x^*|X) \approx \frac{1}{S} \sum_{s=1}^{S} p(x^*|\theta_s) p(\theta_s|X)$$

VI based posterior predictive:

$$p(x^*|X) \approx \int p(x^*|\theta) q(\theta|\phi) d\theta$$
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution \(p(Z|X) \) by another distribution \(q(Z|\phi) \)
- Sampling uses \(S \) (typically large number) samples \(\{Z_s\}_{s=1}^S \) to approximate \(p(Z|X) \)
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
- In terms of “comparison” between VI and sampling, a few things to be noted
 - **Convergence**: VI only has local convergence, sampling (in theory) can give posterior (more on it later)

There is some work on “compressing” sampling-based approximations (e.g., see “Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015)
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^S$ to approximate $p(Z|X)$
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
- In terms of “comparison” between VI and sampling, a few things to be noted
 - **Convergence**: VI only has local convergence, sampling (in theory) can give posterior (more on it later)
 - **Storage requirements**: Sampling-based approximation requires more storage (why?)
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^S$ to approximate $p(Z|X)$
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
- In terms of "comparison" between VI and sampling, a few things to be noted
 - **Convergence:** VI only has local convergence, sampling (in theory) can give posterior (more on it later)
 - **Storage requirements:** Sampling-based approximation requires more storage (why?)
 - **Prediction time cost (also related to storage requirement):** Sampling always requires Monte-Carlo averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution \(p(Z|X) \) by another distribution \(q(Z|\phi) \)
- Sampling uses \(S \) (typically large number) samples \(\{Z_s\}_{s=1}^{S} \) to approximate \(p(Z|X) \)
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
- In terms of “comparison” between VI and sampling, a few things to be noted
 - **Convergence**: VI only has local convergence, sampling (in theory) can give posterior (more on it later)
 - **Storage requirements**: Sampling-based approximation requires more storage (why?)
 - **Prediction time cost (also related to storage requirement)**: Sampling always requires Monte-Carlo averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive
 - Sampling based posterior predictive: \(p(x^*|X) \approx \frac{1}{S} \sum_{s=1}^{S} p(x^*|\theta_s)p(\theta_s|X) \)

There is some work on “compressing” sampling-based approximations (e.g., see “Compact approximations to Bayesian predictive distributions” by Snelson and Ghahramani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015)
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^S$ to approximate $p(Z|X)$
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
- In terms of “comparison” between VI and sampling, a few things to be noted
 - Convergence: VI only has local convergence, sampling (in theory) can give posterior (more on it later)
 - Storage requirements: Sampling-based approximation requires more storage (why?)
 - Prediction time cost (also related to storage requirement): Sampling always requires Monte-Carlo averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive
 - Sampling based posterior predictive: $p(x_*|X) \approx \frac{1}{S} \sum_{s=1}^S p(x_*|\theta_s)p(\theta_s|X)$
 - VI based posterior predictive: $p(x_*|X) \approx \int p(x_*|\theta)q(\theta|\phi)d\theta$
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution $p(Z|X)$ by another distribution $q(Z|\phi)$
- Sampling uses S (typically large number) samples $\{Z_s\}_{s=1}^S$ to approximate $p(Z|X)$
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo)
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later)
- In terms of “comparison” between VI and sampling, a few things to be noted
 - **Convergence**: VI only has local convergence, sampling (in theory) can give posterior (more on it later)
 - **Storage requirements**: Sampling-based approximation requires more storage (why?)
 - **Prediction time cost (also related to storage requirement)**: Sampling always requires Monte-Carlo averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive
 - Sampling based posterior predictive: $p(x_*|X) \approx \frac{1}{S} \sum_{s=1}^S p(x_*|\theta_s)p(\theta_s|X)$
 - VI based posterior predictive: $p(x_*|X) \approx \int p(x_*|\theta)q(\theta|\phi)d\theta$
- There is some work on “compressing” sampling-based approximations
Approximate Inference: VI vs Sampling-based

- VI approximates a posterior distribution \(p(Z|X) \) by another distribution \(q(Z|\phi) \).
- Sampling uses \(S \) (typically large number) samples \(\{Z_s\}_{s=1}^S \) to approximate \(p(Z|X) \).
- Sampling can be used within VI (already saw ELBO approximations using Monte-Carlo).
- Also possible (though less common) to use VI in sampling algorithms (will talk about it later).
- In terms of “comparison” between VI and sampling, a few things to be noted:
 - **Convergence**: VI only has local convergence, sampling (in theory) can give posterior (more on it later).
 - **Storage requirements**: Sampling-based approximation requires more storage (why?).
 - **Prediction time cost (also related to storage requirement)**: Sampling always requires Monte-Carlo averaging for posterior predictive; with VI, sometimes we can get closed form posterior predictive.
 - Sampling based posterior predictive: \(p(x_*|X) \approx \frac{1}{S} \sum_{s=1}^S p(x_*|\theta_s)p(\theta_s|X) \).
 - VI based posterior predictive: \(p(x_*|X) \approx \int p(x_*|\theta)q(\theta|\phi)d\theta \).
 - There is some work on “compressing” sampling-based approximations (e.g., see “Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015).
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation

Some popular examples of transformation methods:

Inverse CDF method

\[x \sim \text{Unif}(0, 1) \Rightarrow z = \text{Inv-CDF}_p(z) \]

\[x \sim p(z) \]

Reparametrization method

\[x \sim \mathcal{N}(0, 1) \Rightarrow z = \mu + \sigma x \]

\[x \sim \mathcal{N}(\mu, \sigma^2) \]

Box-Muller method:

Given \((x_1, x_2)\) from \(\text{Unif}(-1, 1)\), generate \((z_1, z_2)\) from 2D Gaussian \(\mathcal{N}(0, I)\)

Transformation Methods are simple but have limitations:

- Mostly limited to standard distributions and/or distributions with very few variables.
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation
- Given a sample \(x \) from an “easy” distribution \(p(x) \), transform it into a random sample \(z \) from a “less easy” distribution \(p(z) \)

Some popular examples of transformation methods:

- Inverse CDF method:
 \[
 x \sim \text{Unif}(0, 1) \implies z = \text{Inv-CDF}_p(z)(x) \\
 x \sim p(z)
 \]

- Reparametrization method:
 \[
 x \sim \mathcal{N}(0, 1) \implies z = \mu + \sigma x \\
 x \sim \mathcal{N}(\mu, \sigma^2)
 \]

- Box-Muller method:
 Given \((x_1, x_2)\) from \(\text{Unif}(-1, +1)\), generate \((z_1, z_2)\) from 2D Gaussian \(\mathcal{N}(0, I)\)

Transformation Methods are simple but have limitations
- Most limited to standard distributions and/or distributions with very few variables
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation.
- Given a sample x from an “easy” distribution $p(x)$, transform it into a random sample z from a “less easy” distribution $p(z)$.
- Some popular examples of transformation methods.
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation.
- Given a sample x from an “easy” distribution $p(x)$, transform it into a random sample z from a “less easy” distribution $p(z)$.
- Some popular examples of transformation methods:
 - Inverse CDF method

 \[
 x \sim \text{Unif}(0, 1) \Rightarrow z = \text{Inv-CDF}_{p(z)}(x) \sim p(z)
 \]
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation.
- Given a sample x from an “easy” distribution $p(x)$, transform it into a random sample z from a “less easy” distribution $p(z)$.
- Some popular examples of transformation methods:
 - Inverse CDF method
 \[
 x \sim \text{Unif}(0, 1) \Rightarrow z = \text{Inv-CDF}_{p(z)}(x) \sim p(z)
 \]
 - Reparametrization method
 \[
 x \sim \mathcal{N}(0, 1) \Rightarrow z = \mu + \sigma x
 \]
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation
- Given a sample x from an “easy” distribution $p(x)$, transform it into a random sample z from a “less easy” distribution $p(z)$
- Some popular examples of transformation methods
 - Inverse CDF method
 \[x \sim \text{Unif}(0, 1) \Rightarrow z = \text{Inv-CDF}_{p(z)}(x) \sim p(z) \]
 - Reparametrization method
 \[x \sim \mathcal{N}(0, 1) \Rightarrow z = \mu + \sigma x \sim \mathcal{N}(\mu, \sigma^2) \]
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation
- Given a sample \(x \) from an “easy” distribution \(p(x) \), transform it into a random sample \(z \) from a “less easy” distribution \(p(z) \)
- Some popular examples of transformation methods
 - Inverse CDF method
 \[x \sim \text{Unif}(0, 1) \Rightarrow z = \text{Inv-CDF}_{p(z)}(x) \sim p(z) \]
 - Reparametrization method
 \[x \sim \mathcal{N}(0, 1) \Rightarrow z = \mu + \sigma x \sim \mathcal{N}(\mu, \sigma^2) \]
 - Box-Muller method: Given \((x_1, x_2)\) from Unif\([-1, +1)\), generate \((z_1, z_2)\) from 2D Gaussian \(\mathcal{N}(0, I) \)
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation.
- Given a sample x from an “easy” distribution $p(x)$, transform it into a random sample z from a “less easy” distribution $p(z)$.
- Some popular examples of transformation methods:
 - Inverse CDF method
 \[x \sim \text{Unif}(0, 1) \Rightarrow z = \text{Inv-CDF}_{p(z)}(x) \sim p(z) \]
 - Reparametrization method
 \[x \sim \mathcal{N}(0, 1) \Rightarrow z = \mu + \sigma x \sim \mathcal{N}(\mu, \sigma^2) \]
 - Box-Muller method: Given (x_1, x_2) from Unif($-1, +1$), generate (z_1, z_2) from 2D Gaussian $\mathcal{N}(0, I)$
- Transformation Methods are simple but have limitations.
Sampling: Some Basic Methods

- Most of these basic methods are based on the idea of transformation.
- Given a sample x from an “easy” distribution $p(x)$, transform it into a random sample z from a “less easy” distribution $p(z)$.
- Some popular examples of transformation methods:
 - Inverse CDF method
 \[x \sim \text{Unif}(0, 1) \Rightarrow z = \text{Inv-CDF}_p(z)(x) \sim p(z) \]
 - Reparametrization method
 \[x \sim \mathcal{N}(0, 1) \Rightarrow z = \mu + \sigma x \sim \mathcal{N}(\mu, \sigma^2) \]
 - Box-Muller method: Given (x_1, x_2) from Unif($-1, +1$), generate (z_1, z_2) from 2D Gaussian $\mathcal{N}(0, I)$.
- Transformation Methods are simple but have limitations:
 - Mostly limited to standard distributions and/or distributions with very few variables.
Rejection Sampling

- Want to sample from $p(z) = \frac{\tilde{p}(z)}{Z_p}$.
Rejection Sampling

Want to sample from \(p(z) = \frac{\tilde{p}(z)}{Z_p} \). Suppose we can only evaluate the numerator \(\tilde{p}(z) \) at any \(z \).
Rejection Sampling

- Want to **sample** from \(p(z) = \frac{\tilde{p}(z)}{Z_p} \). Suppose we can only **evaluate** the numerator \(\tilde{p}(z) \) at any \(z \).
- Suppose we have a **proposal distribution** \(q(z) \) that we can **generate samples from**, and

\[
Mq(z) \geq \tilde{p}(z) \quad \forall z \quad \text{(where } M > 0 \text{ is some const.)}
\]
Rejection Sampling

- Want to sample from \(p(z) = \frac{\tilde{p}(z)}{Z_p} \). Suppose we can only evaluate the numerator \(\tilde{p}(z) \) at any \(z \).

- Suppose we have a proposal distribution \(q(z) \) that we can generate samples from, and \(Mq(z) \geq \tilde{p}(z) \forall z \) (where \(M > 0 \) is some const.).

- Basic idea: Generate samples from the proposal \(q(z) \).
Rejection Sampling

- Want to **sample** from \(p(z) = \frac{\bar{p}(z)}{Z_p} \). Suppose we can only **evaluate** the numerator \(\bar{p}(z) \) at any \(z \)
- Suppose we have a **proposal distribution** \(q(z) \) that we can **generate samples from**, and
 \[
 Mq(z) \geq \bar{p}(z) \quad \forall z \quad \text{(where } M > 0 \text{ is some const.)}
 \]
- Basic idea: Generate samples from the proposal \(q(z) \) and **accept/reject** based on some condition
Rejection Sampling

- Want to sample from $p(z) = \frac{\tilde{p}(z)}{Z_p}$. Suppose we can only evaluate the numerator $\tilde{p}(z)$ at any z.
- Suppose we have a proposal distribution $q(z)$ that we can generate samples from, and $Mq(z) \geq \tilde{p}(z)$ for all z (where $M > 0$ is some constant).
- Basic idea: Generate samples from the proposal $q(z)$ and accept/reject based on some condition.
 - Sample an r.v. z^* from $q(z)$.
Rejection Sampling

- Want to sample from \(p(z) = \frac{\tilde{p}(z)}{Z_p} \). Suppose we can only evaluate the numerator \(\tilde{p}(z) \) at any \(z \)
- Suppose we have a proposal distribution \(q(z) \) that we can generate samples from, and
 \[
 Mq(z) \geq \tilde{p}(z) \quad \forall z \quad \text{(where } M > 0 \text{ is some const.)}
 \]
- Basic idea: Generate samples from the proposal \(q(z) \) and accept/reject based on some condition
 1. Sample an r.v. \(z_* \) from \(q(z) \)
 2. Sampling a uniform r.v. \(u \sim \text{Unif}[0, Mq(z_*)] \)
Rejection Sampling

- Want to sample from \(p(z) = \frac{\tilde{p}(z)}{Z_p} \). Suppose we can only evaluate the numerator \(\tilde{p}(z) \) at any \(z \).
- Suppose we have a proposal distribution \(q(z) \) that we can generate samples from, and
 \[
 Mq(z) \geq \tilde{p}(z) \quad \forall z \quad \text{(where } M > 0 \text{ is some const.)}
 \]
- Basic idea: Generate samples from the proposal \(q(z) \) and accept/reject based on some condition:
 1. Sample an r.v. \(z^* \) from \(q(z) \)
 2. Sampling a uniform r.v. \(u \sim \text{Unif}[0, Mq(z^*)] \)
 3. If \(u \leq \tilde{p}(z^*) \) then accept \(z^* \) else reject
Why $z \sim q(z) + \text{accept/reject rule}$ is equivalent to $z \sim p(z)$?
Why $z \sim q(z) + \text{accept/reject rule}$ is equivalent to $z \sim p(z)$?

Let’s look at the pdf of z’s that were accepted, i.e., $p(z|\text{accept})$.
Rejection Sampling

- Why $z \sim q(z) + \text{accept/reject rule}$ is equivalent to $z \sim p(z)$?
- Let’s look at the pdf of z’s that were accepted, i.e., $p(z|\text{accept})$

$$p(\text{accept}|z)$$
Why \(z \sim q(z) \) + accept/reject rule is equivalent to \(z \sim p(z) \)?

Let’s look at the pdf of \(z \)’s that were accepted, i.e., \(p(z|\text{accept}) \)

\[
p(\text{accept}|z) = \int_0^\tilde{p}(z) \frac{1}{Mq(z)} du = \frac{\tilde{p}(z)}{Mq(z)}
\]
Rejection Sampling

Why $z \sim q(z)$ + accept/reject rule is equivalent to $z \sim p(z)$?

Let’s look at the pdf of z’s that were accepted, i.e., $p(z|\text{accept})$

$$p(\text{accept}|z) = \int_0^{\tilde{p}(z)} \frac{1}{Mq(z)} du = \frac{\tilde{p}(z)}{Mq(z)}$$

$$p(z, \text{accept}) = q(z)p(\text{accept}|z) = \frac{\tilde{p}(z)}{M}$$
Rejection Sampling

Why $z \sim q(z) + \text{accept/reject rule}$ is equivalent to $z \sim p(z)$?

Let’s look at the pdf of z’s that were accepted, i.e., $p(z|\text{accept})$

\[
p(\text{accept}|z) = \int_0^{\bar{p}(z)} \frac{1}{Mq(z)} \, du = \frac{\bar{p}(z)}{Mq(z)}
\]

\[
p(z, \text{accept}) = q(z)p(\text{accept}|z) = \frac{\bar{p}(z)}{M}
\]

\[
p(\text{accept}) = \int \frac{\bar{p}(z)}{M} \, dz = \frac{Z_p}{M}
\]
Rejection Sampling

- Why \(z \sim q(z) + \text{accept/reject rule} \) is equivalent to \(z \sim p(z) \)?
- Let’s look at the pdf of \(z \)'s that were accepted, i.e., \(p(z|\text{accept}) \)

\[
\begin{align*}
p(\text{accept} | z) &= \int_0^\infty \frac{1}{Mq(z)} \, du = \frac{\tilde{p}(z)}{Mq(z)} \\
p(z, \text{accept}) &= q(z) p(\text{accept} | z) = \frac{\tilde{p}(z)}{M} \\
p(\text{accept}) &= \int \frac{\tilde{p}(z)}{M} \, dz = \frac{Z_p}{M} \\
p(z|\text{accept}) &= \frac{p(z, \text{accept})}{p(\text{accept})} = \frac{\tilde{p}(z)}{Z_p} = p(z)
\end{align*}
\]
Sampling for Approximating Expectations

Suppose $f(z)$ is a function of a random variable $z \sim p(z)$.

We wish to compute $E[f] = E[p(z)] = \int f(z) p(z) \, dz$.

Given L independent samples $\{z(\ell)\}_{\ell=1}^{L}$ from $p(z)$, we can approximate the above as

$$E[f] \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z(\ell)) \quad \text{(Monte Carlo sampling)}$$

What if we can't generate samples from $p(z)$?

Answer: Use Importance Sampling.

If we can generate L independent samples $\{z(\ell)\}_{\ell=1}^{L}$ from a different “proposal” distribution $q(z)$, then

$$E[f] = \int f(z) p(z) \, dz = \int f(z) p(z) q(z) q(z) \, dz \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z(\ell)) p(z(\ell)) q(z(\ell))$$

IS only requires that we can evaluate $p(z)$ at any z (in fact, with a small modification to the above, IS works even when we can evaluate $p(z)$ only up to a proportionality constant).

Note: IS is NOT a sampling method (doesn't generate samples from a desired distribution; just a way to approximate expectations).
Sampling for Approximating Expectations

- Suppose \(f(z) \) is function of a random variable \(z \sim p(z) \)
- Wish to compute \(\mathbb{E}[f] = \mathbb{E}_{p(z)}[f(z)] = \int f(z)p(z)\,dz \)

What if we can't generate samples from \(p(z) \)?
Answer: Use Importance Sampling

If we can generate \(L \) independent samples \(\{z(\ell)\}_{\ell=1}^L \) from a different "proposal" distribution \(q(z) \) then

\[
\mathbb{E}[f] = \int f(z)p(z)\,dz = \int f(z)p(z)q(z)\,dz \approx \frac{1}{L} \sum_{\ell=1}^L f(z(\ell))p(z(\ell))q(z(\ell))
\]

IS only requires that we can evaluate \(p(z) \) at any \(z \) (in fact, with a small modification to the above, IS works even when we can evaluate \(p(z) \) only up to a proportionality constant)

Note: IS is NOT a sampling method (doesn't generate samples from a desired distribution; just a way to approximate expectations)
Sampling for Approximating Expectations

- Suppose \(f(z) \) is function of a random variable \(z \sim p(z) \)
- Wish to compute \(\mathbb{E}[f] = \mathbb{E}_{p(z)}[f(z)] = \int f(z)p(z)dz \)
- Given \(L \) independent samples \(\{z^{(\ell)}\}_{\ell=1}^{L} \) from \(p(z) \), we can approximate the above as

\[
\mathbb{E}[f] \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)}) \quad \text{(Monte Carlo sampling)}
\]
Sampling for Approximating Expectations

• Suppose $f(z)$ is function of a random variable $z \sim p(z)$
• Wish to compute $\mathbb{E}[f] = \mathbb{E}_{p(z)}[f(z)] = \int f(z)p(z) \, dz$
• Given L independent samples $\{z^{(\ell)}\}_{\ell=1}^{L}$ from $p(z)$, we can approximate the above as
 $$\mathbb{E}[f] \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)}) \quad \text{(Monte Carlo sampling)}$$
• What if we can’t generate samples from $p(z)$?

Answer: Use Importance Sampling

If we can generate L independent samples $\{z^{(\ell)}\}_{\ell=1}^{L}$ from a different “proposal” distribution $q(z)$, then

$$\mathbb{E}[f] = \int f(z)p(z) \, dz = \int f(z)p(z)q(z) \, q(z) \, dz \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)}) p(z^{(\ell)})q(z^{(\ell)})$$

IS only requires that we can evaluate $p(z)$ at any z (in fact, with a small modification to the above, IS works even when we can evaluate $p(z)$ only up to a proportionality constant)

Note: IS is NOT a sampling method (doesn’t generate samples from a desired distribution; just a way to approximate expectations)
Sampling for Approximating Expectations

- Suppose $f(z)$ is a function of a random variable $z \sim p(z)$

- Wish to compute $\mathbb{E}[f] = \mathbb{E}_{p(z)}[f(z)] = \int f(z)p(z)dz$

- Given L independent samples $\{z^{(\ell)}\}_{\ell=1}^{L}$ from $p(z)$, we can approximate the above as

$$\mathbb{E}[f] \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)}) \quad \text{(Monte Carlo sampling)}$$

- What if we can’t generate samples from $p(z)$? Answer: Use Importance Sampling

Answer: Use Importance Sampling
Sampling for Approximating Expectations

Suppose $f(z)$ is a function of a random variable $z \sim p(z)$.

Wish to compute $E[f] = E_{p(z)}[f(z)] = \int f(z)p(z)dz$.

Given L independent samples $\{z^{(\ell)}\}_{\ell=1}^L$ from $p(z)$, we can approximate the above as

$$E[f] \approx \frac{1}{L} \sum_{\ell=1}^L f(z^{(\ell)}) \quad \text{(Monte Carlo sampling)}$$

What if we can’t generate samples from $p(z)$? Answer: Use Importance Sampling.

If we can generate L independent samples $\{z^{(\ell)}\}_{\ell=1}^L$ from a different “proposal” distribution $q(z)$ then

$$E[f] = \int f(z)p(z)dz$$
Sampling for Approximating Expectations

- Suppose $f(z)$ is function of a random variable $z \sim p(z)$
- Wish to compute $\mathbb{E}[f] = \mathbb{E}_p(z)[f(z)] = \int f(z)p(z)dz$
- Given L independent samples $\{z^{(\ell)}\}_{\ell=1}^L$ from $p(z)$, we can approximate the above as
 \[\mathbb{E}[f] \approx \frac{1}{L} \sum_{\ell=1}^L f(z^{(\ell)}) \] (Monte Carlo sampling)
- What if we can't generate samples from $p(z)$? Answer: Use Importance Sampling
 - If we can generate L indep. samples $\{z^{(\ell)}\}_{\ell=1}^L$ from a different "proposal" distribution $q(z)$ then
 \[\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \]
Sampling for Approximating Expectations

Suppose $f(z)$ is a function of a random variable $z \sim p(z)$.

Wish to compute $E[f] = E_{p(z)}[f(z)] = \int f(z)p(z)\,dz$.

Given L independent samples $\{z^{(\ell)}\}_{\ell=1}^{L}$ from $p(z)$, we can approximate the above as

$$E[f] \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)})$$
(Monte Carlo sampling)

What if we can't generate samples from $p(z)$? Answer: Use Importance Sampling.

If we can generate L independent samples $\{z^{(\ell)}\}_{\ell=1}^{L}$ from a different "proposal" distribution $q(z)$ then

$$E[f] = \int f(z)p(z)\,dz = \int f(z)\frac{p(z)}{q(z)}q(z)\,dz \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$
Sampling for Approximating Expectations

- Suppose $f(z)$ is function of a random variable $z \sim p(z)$
- Wish to compute $\mathbb{E}[f] = \mathbb{E}_{p(z)}[f(z)] = \int f(z)p(z)dz$
- Given L independent samples $\{z^{(\ell)}\}_{\ell=1}^{L}$ from $p(z)$, we can approximate the above as
 $$\mathbb{E}[f] \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)}) \quad \text{(Monte Carlo sampling)}$$
- What if we can’t generate samples from $p(z)$? Answer: Use Importance Sampling
 - If we can generate L indep. samples $\{z^{(\ell)}\}_{\ell=1}^{L}$ from a different “proposal” distribution $q(z)$ then
 $$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L} \sum_{\ell=1}^{L} f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}$$
 - IS only requires that we can evaluate $p(z)$ at any z
Sampling for Approximating Expectations

- Suppose \(f(z) \) is function of a random variable \(z \sim p(z) \)

- Wish to compute \(\mathbb{E}[f] = \mathbb{E}_{p(z)}[f(z)] = \int f(z)p(z)dz \)

- Given \(L \) independent samples \(\{z^{(\ell)}\}_{\ell=1}^L \) from \(p(z) \), we can approximate the above as

\[
\mathbb{E}[f] \approx \frac{1}{L} \sum_{\ell=1}^L f(z^{(\ell)}) \quad \text{(Monte Carlo sampling)}
\]

- What if we can't generate samples from \(p(z) \)? Answer: Use Importance Sampling

 - If we can generate \(L \) indep. samples \(\{z^{(\ell)}\}_{\ell=1}^L \) from a different “proposal” distribution \(q(z) \) then

\[
\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L} \sum_{\ell=1}^L f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}
\]

 - IS only requires that we can evaluate \(p(z) \) at any \(z \) (in fact, with a small modification to the above, IS works even when we can evaluate \(p(z) \) only up to a proportionality constant)
Sampling for Approximating Expectations

- Suppose $f(z)$ is function of a random variable $z \sim p(z)$
- Wish to compute $\mathbb{E}[f] = \mathbb{E}_{p(z)}[f(z)] = \int f(z)p(z)\,dz$
- Given L independent samples $\{z^{(\ell)}\}_{\ell=1}^L$ from $p(z)$, we can approximate the above as
 \[
 \mathbb{E}[f] \approx \frac{1}{L} \sum_{\ell=1}^L f(z^{(\ell)}) \quad \text{(Monte Carlo sampling)}
 \]
- What if we can't generate samples from $p(z)$? Answer: Use Importance Sampling
 - If we can generate L indep. samples $\{z^{(\ell)}\}_{\ell=1}^L$ from a different “proposal” distribution $q(z)$ then
 \[
 \mathbb{E}[f] = \int f(z)p(z)\,dz = \int f(z)\frac{p(z)}{q(z)}q(z)\,dz \approx \frac{1}{L} \sum_{\ell=1}^L f(z^{(\ell)})\frac{p(z^{(\ell)})}{q(z^{(\ell)})}
 \]
 - IS only requires that we can evaluate $p(z)$ at any z (in fact, with a small modification to the above, IS works even when we can evaluate $p(z)$ only up to a proportionality constant)
 - Note: IS is NOT a sampling method (doesn’t generate samples from a desired distribution; just a way to approximate expectations)
Limitations of Basic Sampling Methods

Transformation based methods: Usually limited to drawing from standard distributions

Rejection Sampling and Importance Sampling: Require good proposal distributions

Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)

In high dimensions, most of the mass of $p(z)$ is concentrated in a tiny region of the z space

Difficult to a priori know what those regions are, thus difficult to come up with good proposal dist.

A solution to these: MCMC methods
Limitations of Basic Sampling Methods

- Transformation based methods: Usually limited to drawing from standard distributions

- Rejection Sampling and Importance Sampling: Require good proposal distributions
- Difficult to find good proposal distributions, especially when the dimensionality is high (e.g., models with many parameters)
- In high dimensions, most of the mass of the distribution is concentrated in a tiny region of the parameter space
- Difficult to a priori know what those regions are, thus difficult to come up with good proposal distributions

A solution to these limitations: MCMC methods
Limitations of Basic Sampling Methods

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions

In high dimensions, most of the mass of $p(z)$ is concentrated in a tiny region of the z space. It is difficult to a priori know what those regions are, thus difficult to come up with good proposal distributions.

A solution to these: MCMC methods.
Limitations of Basic Sampling Methods

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions
- Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)
Limitations of Basic Sampling Methods

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions
- Difficult to find good prop. distr. especially when z is high-dim. (e.g., models with many params)
 - In high dimensions, most of the mass of $p(z)$ is concentrated in a tiny region of the z space
Limitations of Basic Sampling Methods

- Transformation based methods: Usually limited to drawing from standard distributions
- Rejection Sampling and Importance Sampling: Require good proposal distributions

Difficult to find good prop. distr. especially when \(z \) is high-dim. (e.g., models with many params)

- In high dimensions, most of the mass of \(p(z) \) is concentrated in a tiny region of the \(z \) space
- Difficult to \textit{a priori} know what those regions are, thus difficult to come up with good proposal dist.

A solution to these: MCMC methods