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Recap of last lecture..

Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models 2



Clustering

Usually an unsupervised learning problem

Given: N unlabeled examples {x1, . . . , xN}; the number of partitions K

Goal: Group the examples into K partitions

Clustering groups examples based of their mutual similarities

A good clustering is one that achieves:

High within-cluster similarity

Low inter-cluster similarity

Examples: K -means, Spectral Clustering, Gaussian Mixture Model, etc.

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)
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Refresher: K-means Clustering

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Initialize: K cluster means µ1, . . . ,µK , µk ∈ RD ; many ways to initialize:

Usually initialized randomly, but good initialization is crucial; many smarter
initialization heuristics exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:

(Re)-Assign each example xn to its closest cluster center

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

A possible convergence criteria: cluster means do not change anymore
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The K-means Objective Function

Notation: Size K one-hot vector to denote membership of xn to cluster k

zn = [0 0 . . . 1 0 0]︸ ︷︷ ︸
all zeros except the k-th bit

Also equivalent to just saying zn = k

K -means objective can be written in terms of the total distortion

J(µ,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2

Distortion: Loss suffered on assigning points {xn}Nn=1 to clusters {µk}Kk=1

Goal: To minimize the objective w.r.t. µ and Z

Note: Non-convex objective. Also, exact optimization is NP-hard

The K -means algorithm is a heuristic; alternates b/w minimizing J w.r.t. µ
and Z ; converges to a local minima
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K-means: Some Limitations

Makes hard assignments of points to clusters

A point either totally belongs to a cluster or not at all

No notion of a soft/fractional assignment (i.e., probability of being assigned to
each cluster: say K = 3 and for some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

K -means often doesn’t work when clusters are not round shaped, and/or may
overlap, and/or are unequal

Gaussian Mixture Model: A probabilistic approach to clustering (and
density estimation) addressing many of these problems
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Mixture Models

Data distribution p(x) assumed to be a weighted sum of K distributions

p(x) =
K∑

k=1

πkp(x|θk )

where πk ’s are the mixing weights:
∑K

k=1 πk = 1, πk ≥ 0 (intuitively, πk is
the proportion of data generated by the k-th distribution)

Each component distribution p(x |θk) represents a “cluster” in the data

Gaussian Mixture Model (GMM): component distributions are Gaussians

p(x) =
K∑

k=1

πkN (x|µk ,Σk )

Mixture models used in many data modeling problems, e.g.,

Unsupervised Learning: Clustering (+density estimation)
Supervised Learning: Mixture of Experts models
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GMM Clustering: Pictorially

Notice the “mixed” colored points in the overlapping regions
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GMM as a Generative Model of Data

Can think of the data {x1, xn, . . . , xN} using a “generative story”

For each example xn, first choose its cluster assignment zn ∈ {1, 2, . . . ,K} as

zn ∼ Multinoulli(π1, π2, . . . , πK )

Now generate x from the Gaussian with id zn

xn|zn ∼ N (µ
zn
,Σzn )

Note: p(znk = 1) = πk is the prior probability of xn going to cluster k and

p(zn) =
K∏

k=1

π
znk
k
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GMM as a Generative Model of Data

Joint distribution of data and cluster assignments

p(x , z) = p(z)p(x |z)

Marginal distribution of data

p(x) =
K∑

k=1

p(zk = 1)p(x |zk = 1) =
K∑

k=1

πkN (x |µk ,Σk)

Thus the generative model leads to exactly the same p(x) that we defined
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Learning GMM

Given N observations {x1, x2, . . . , xN} drawn from mixture distribution p(x)

p(x) =
K∑

k=1

πkN (x|µk ,Σk )

Learning the GMM involves the following:

Learning the cluster assignments {z1, z2, . . . , zN}

Estimating the mixing weights π = {π1, . . . , πK} and the parameters
θ = {µk ,Σk}Kk=1 of each of the K Gaussians

GMM, being probabilistic, allows learning probabilities of cluster assignments
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GMM: Learning Cluster Assignment Probabilities

For now, assume π = {π1, . . . , πK} and θ = {µk ,Σk}Kk=1 are known

Given θ, the posterior probabilities of cluster assignments, using Bayes rule

γnk = p(znk = 1|xn) =
p(znk = 1)p(xn|znk = 1)∑K
j=1 p(znj = 1)p(xn|znj = 1)

=
πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj )

Here γnk denotes the posterior probability that xn belongs to cluster k

Posterior prob. γnk ∝ prior probability πk times likelihood N (xn|µk ,Σk)

Note that unlike K -means, there is a non-zero posterior probability of xn

belonging to each of the K clusters (i.e., probabilistic/soft clustering)

Therefore for each example xn, we have a vector γn of cluster probabilities

γn = [γn1 γn2 . . . γnK ],
K∑

k=1

γnk = 1, γnk > 0
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GMM: Estimating Parameters

Now assume the cluster probabilities γ1, . . . ,γN are known

Let us write down the log-likelihood of the model

L = log p(X) = log
N∏

n=1

p(xn) =
N∑

n=1

log p(xn) =
N∑

n=1

log

{
K∑

k=1

πkN (xn|µk ,Σk )

}

Taking derivative w.r.t. µk (done on black board) and setting to zero

N∑
n=1

πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj )︸ ︷︷ ︸

γnk

Σ−1
k (xn − µk ) = 0

Plugging and chugging, we get

µk =

∑N
n=1 γnkxn∑N
n=1 γnk

=
1

Nk

N∑
n=1

γnkxn

Thus mean of k-th Gaussian is the weighted empirical mean of all examples

Nk =
∑N

n=1 γnk : “effective” num. of examples assigned to k-th Gaussian
(note that each example belongs to each Gaussian, but “partially”)
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GMM: Estimating Parameters

Doing the same, this time w.r.t. the covariance matrix Σk of k-th Gaussian:

Σk =
1

Nk

N∑
n=1

γnk (xn − µk )(xn − µk )
>

.. using similar computations as MLE of the covariance matrix of a single
Gaussian (shown on board)

Thus Σk is the weighted empirical covariance of all examples

Finally, the MLE objective for estimating π = {π1, π2, . . . , πK}
N∑

n=1

log
K∑

k=1

πkN (xn|µk ,Σk ) + λ(
K∑

k=1

πk − 1) (λ is the Lagrange multiplier for
K∑

k=1

πk = 1)

Taking derivative w.r.t. πk and setting it to zero gives Lagrange multiplier
λ = −N. Plugging it back and chugging, we get

πk =
Nk

N

which makes intuitive sense (fraction of examples assigned to cluster k)
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Summary of GMM Estimation

Initialize parameters θ = {µk ,Σk}Kk=1 and mixing weights π = {π1, . . . , πK},
and alternate between the following steps until convergence:

Given current estimates of θ = {µk ,Σk}Kk=1 and π

Estimate the posterior probabilities of cluster assignments

γnk =
πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj )

∀n, k

Given the current estimates of cluster assignment probabilities {γnk}
Estimate the mean of each Gaussian

µk =
1

Nk

N∑
n=1

γnkxn ∀k,where Nk =
N∑

n=1

γnk

Estimate the covariance matrix of each Gaussian

Σk =
1

Nk

N∑
n=1

γnk (xn − µk )(xn − µk )
> ∀k

Estimate the mixing proportion of each Gaussian

πk =
Nk

N
∀k
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K-means: A Special Case of GMM

Assume the covariance matrix of each Gaussian to be spherical

Σk = σ2I

Consider the posterior probabilities of cluster assignments

γnk =
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

=
πk exp{− 1

2σ2 ||xn − µk ||2}∑K
j=1 πj exp{− 1

2σ2 ||xn − µj ||2}

As σ2 → 0, the summation of denominator will be dominated by the term
with the smallest ||xn − µj ||2. For that j ,

γnj ≈
πj exp{− 1

2σ2 ||xn − µj ||2}
πj exp{− 1

2σ2 ||xn − µj ||2}
= 1

For ` 6= j , γn` ≈ 0⇒ hard assignment with γnj ≈ 1 for a single cluster j

Thus, for Σk = σ2I (spherical) and σ2 → 0, GMM reduces to K -means
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Next class: The Expectation
Maximization Algorithm
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