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Recap of last lecture..
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Clustering

@ Usually an unsupervised learning problem
e Given: N unlabeled examples {x1,...,xy}; the number of partitions K

@ Goal: Group the examples into K partitions

(a) Input data (b) Desired clustering

o Clustering groups examples based of their mutual similarities

@ A good clustering is one that achieves:
e High within-cluster similarity
o Low inter-cluster similarity

@ Examples: K-means, Spectral Clustering, Gaussian Mixture Model, etc.

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)
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Refresher: K-means Clustering

o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K

o Initialize: K cluster means p,, ..., py, p, € RP; many ways to initialize:

e Usually initialized randomly, but good initialization is crucial; many smarter
initialization heuristics exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)

o lterate:
o (Re)-Assign each example x, to its closest cluster center

Co=1{n: k=argmin|ix, — s}

(Ck is the set of examples assigned to cluster k with center p,)
o Update the cluster means

ik = mean(Cyx) = Z Xn

neCk

o Repeat while not converged

@ A possible convergence criteria: cluster means do not change anymore

Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models



The K-means Objective Function

@ Notation: Size K one-hot vector to denote membership of x, to cluster k
z, = [00...10 0]
—_———

all zeros except the k-th bit

Also equivalent to just saying z,, = k

@ K-means objective can be written in terms of the total distortion

N K
. 2) =D zaulIxn — sl

n=1 k=1

Distortion: Loss suffered on assigning points {x,}"_; to clusters {p, }K_;

@ Goal: To minimize the objective w.r.t. p and Z

Note: Non-convex objective. Also, exact optimization is NP-hard

@ The K-means algorithm is a heuristic; alternates b/w minimizing J w.r.t. p
and Z ; converges to a local minima
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K-means: Some Limitations

@ Makes hard assignments of points to clusters

o A point either totally belongs to a cluster or not at all

e No notion of a soft/fractional assignment (i.e., probability of being assigned to
each cluster: say K = 3 and for some point x,, pr =0.7,p> = 0.2, p3 = 0.1)

@ K-means often doesn't work when clusters are not round shaped, and/or may

overlap, and/or are unequal
e

o Gaussian Mixture Model: A probabilistic approach to clustering (and
density estimation) addressing many of these problems
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Mixture Models

o Data distribution p(x) assumed to be a weighted sum of K distributions
p(x) = kf;mp()dt'h)
where m's are the mixing weights: Zle me =1, m >0 (intuitively, mx is
the proportion of data generated by the k-th distribution)
e Each component distribution p(x|6y) represents a “cluster” in the data

o Gaussian Mixture Model (GMM): component distributions are Gaussians

K
p(x) =D mN (x|, Zi)

k=1
N(X]u,,Z,)

N(Xlu,.Z,)

417

22

@ Mixture models used in many data modeling problems, e.g.,

o Unsupervised Learning: Clustering (+density estimation)
e Supervised Learning: Mixture of Experts models
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GMM Clustering: Pictorially

°

0 0s 1
Samples from p(x

03
0
¢ s : 0 05 1
Samples labeled using Soft clustering learned
their true component by a Gaussian mixture model

Notice the “mixed” colored points in the overlapping regions
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GMM as a Generative Model of Data

@ Can think of the data {xi, x,,...,xy} using a “generative story”

e For each example x,, first choose its cluster assignment z, € {1, 2,

z, ~ Multinoulli(mry, 72, . . ., k)

o Now generate x from the Gaussian with id z,

X"|Z'7 ~ N(/“Lz,,’ zZn)

() ®,
0100,

Shaded nodes: Observed

White nodes: Unknowns

...,K} as

o Note: p(z,x = 1) = 7 is the prior probability of x, going to cluster k and

K
p(zn) = H ”ink
k=1
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GMM as a Generative Model of Data

@ Joint distribution of data and cluster assignments

p(x,2) = p(2)p(x|2)

@ Marginal distribution of data

K K
p(x) = Zp ze =1)p(x|zx = 1) = Zm/\/(xmk, )
k=1

k=1

@ Thus the generative model leads to exactly the same p(x) that we defined
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Learning GMM

o Given N observations {x1,x2,...,xy} drawn from mixture distribution p(x)

K
p(x) = > N (x| g, Ei))

k=1

@ Learning the GMM involves the following:
o Learning the cluster assignments {z1, 22,...,2zn}

o Estimating the mixing weights w = {71, ..., m«} and the parameters
0 = {p,, Zx}5_, of each of the K Gaussians

olo)
OHO-® |

o GMM, being probabilistic, allows learning probabilities of cluster assignments
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GMM: Learning Cluster Assignment Probabilities

@ For now, assume = {my,...,mx} and 0 = {p,, T, }K_; are known

@ Given 6, the posterior probabilities of cluster assignments, using Bayes rule

p(zok = 1)p(Xn|zpk = 1) TN (Xn| 1, Tk)
Ynk = P(an = 1|X,7) = K — — = K
Zj:l p(znj = 1)p(xn|znj = 1) EJ‘,1 WjN(Xn‘va %))

@ Here v,x denotes the posterior probability that x,, belongs to cluster k

@ Posterior prob. 7,k oc prior probability 7 times likelihood N (x|, )

Note that unlike K-means, there is a non-zero posterior probability of x,,
belonging to each of the K clusters (i.e., probabilistic/soft clustering)

@ Therefore for each example x,, we have a vector =, of cluster probabilities
K
Vo= Y2 oo ekl D Vmk =17k >0
k=1
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GMM: Estimating Parameters

@ Now assume the cluster probabilities 74, ...,y are known

o Let us write down the log-likelihood of the model

N N N K
L =logp(X) = log [ p(xa) = > log p(xa) = > _ log { 37 mN (Xn b, ik)}
n=1 n=1 n=1

k=1

Taking derivative w.r.t. p, (done on black board) and setting to zero

i TN (Xnl 4, i)

T (xn — py) =0
=1 ZJK:1 WJN(anlJ'jv X)) g
[ —

-
Ynk

Plugging and chugging, we get

N

Z:I—l YnkXn 1

By =N = 7 YnkXn
Z,’N:I Ynk Ni Zl §

Thus mean of k-th Gaussian is the weighted empirical mean of all examples

N, = Z,C/:l Yok: “effective” num. of examples assigned to k-th Gaussian
(note that each example belongs to each Gaussian, but “partially”)
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GMM: Estimating Parameters

@ Doing the same, this time w.r.t. the covariance matrix X of k-th Gaussian:

T
Z Yok (Xn — i) (xn — pi)

. using similar computations as MLE of the covariance matrix of a single
Gaussian (shown on board)

@ Thus X is the weighted empirical covariance of all examples

° FinaIIy, the MLE objective for estimating m={m,m..., Tk}
K
Z Iogz TN (x| s i) + A( Z m — 1) (X is the Lagrange multiplier for Z m = 1)
=1 k=1 k=1

o Taking derivative w.r.t. m and setting it to zero gives Lagrange multiplier
A = —N. Plugging it back and chugging, we get

N

T = —
KTN

which makes intuitive sense (fraction of examples assigned to cluster k)
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Summary of GMM Estimation
e Initialize parameters 0 = {p,, £, }X_; and mixing weights 7 = {m1,..., 7k},
and alternate between the following steps until convergence:
o Given current estimates of 0 = {p,, X4 }K_; and =

o Estimate the posterior probabilities of cluster assignments

WkN(Xn\Hk,Zk)
j 1 W/N(Xn‘lija )

Ynk = Vn, k

o Given the current estimates of cluster assignment probabilities {~,x}
o Estimate the mean of each Gaussian

i Z YnkXn Vk, where Ny = Z Aok

o Estimate the covariance matrix of each Gaussian

1 N
= ﬁZ'Ynk(Xn_Mk)(xn_Nk)T vk
k=1

o Estimate the mixing proportion of each Gaussian

N
T = — Vk
N
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K-means: A Special Case of GMM

Assume the covariance matrix of each Gaussian to be spherical
T =0l
@ Consider the posterior probabilities of cluster assignments
1 2
TN (Xn |y, Zi) Tk exp{—35,21Xn — 1y |7}

Wnk = K = K
Zj:l N (x5, Zj) Zj:l ”jeXP{—TiZHXn—Hsz}

As 02 — 0, the summation of denominator will be dominated by the term
with the smallest ||x, — p;||>. For that j,

mepf— s lixe - i)

U mepl- g llxa — I}

For £ # j, Yne = 0 = hard assignment with 7,; =~ 1 for a single cluster j

@ Thus, for X4 = o2l (spherical) and 02 — 0, GMM reduces to K-means
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Next class: The Expectation
Maximization Algorithm
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