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Probabilistic Classification

o Given: N labeled training examples {x,, y,}N_;, x, € RP, y, € {0,1}

o X : N x D feature matrix, y : N x 1 label vector

yn = 1: positive example, y, = 0: negative example

Goal: Learn a classifier that predicts the binary label y, for a new input x,

@ Want a probabilistic model to be able to also predict the /label probabilities

p(yn = 1|x,, w) Hn
p(yn =0|xp,w) = 1—p,

tn € (0,1) is the probability of y, being 1

Note: Features x, assumed fixed (given). Only labels y, being modeled
@ w is the model parameter (to be learned)

@ How do we define u, (want it to be a function of w and input x,)?
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Logistic Regression

o Logistic regression defines p using the sigmoid function

j= o(w x) = 1 _ exp(w " x)
1+exp(—wTx) 1+exp(wTx)

Sigmoid

@ Sigmoid computes a real-valued “score” (w ' x) for input x and “squashes” it
between (0,1) to turn this score into a probability (of x's label being 1)

@ Thus we have

(v = 1lx, w) (W) . =o(w )
= X, w = = w X)= =
Py ’ © 7 1+ exp(—w T x) 1+ exp(w T x)
1
.
= 0|x, = 1—-pu=1-— s S—

p(y = 0|x, w) Iz o(w x) TT op(wx)

@ Note: If we assume y € {—1,+1} instead of y € {0,1} then p(y|x, w) = L

1texp(—yw | x)
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Logistic Regression: A Closer Look..

@ What's the underlying decision rule in Logistic Regression?

@ At the decision boundary, both classes are equiprobable. Thus:

ply =1x,w) = p(y =0|x, w)
exp(w | x) _ 1
1+ exp(w T x) 1+ exp(w T x)
exp(wa) = 1
w'x = 0

@ Thus the decision boundary of LR is nothing but a linear hyperplane, just like
Perceptron, Support Vector Machine (SVM), etc.

o Therefore y = 1 if w'x > 0, otherwise y = 0
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Interpreting the probabilities..

@ Recall that

1
= 1 = =
ply =1|x,w) = p 1+ exp(—w T x)

o Note that the “score” w ' x is also a measure of distance of x from the

hyperplane (score is positive for pos. examples, negative for neg. examples)

@ High positive score w ' x: High probability of label 1

e High negative score w ' x: Low prob. of label 1 (high prob. of label 0)
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Logistic Regression: Parameter Estimation

@ Recall, each label y, is binary with prob. u,. Assume Bernoulli likelihood:

N

N
p(y1X. w) = T plyalxn. w) = [T 12 (1 = pua)' =

n=1 n=1
exp(w | xp)
where Hn = 1texp(w T Zn)
@ Negative log-likelihood
N
NLL(w) = —log p(Y|X, w) = — > (yalog ptn + (1 — ya) log(1 — 12n))
n=1

Plugging in p, = ”"(””7"" and chugging, we get (verify yourself)

1+exp(w

NLL(w Z(ynw Xn — log(1 + exp(w " x,)))

To do MLE for w, we'll minimize negative log-likelihood NLL(w) w.r.t. w

Important note: NLL(w) is convex in w, so global minima can be found
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MLE Estimation for Logistic Regression

@ We have NLL(w) = — SN (yaw " xp — log(1 + exp(w " x,)))

@ Taking the derivative of NLL(w) w.r.t. w

p N
ngl;fw) = [ ; ynw X, — Iog(1+exp(wa,,)))]

N eXp(WTX,,)
> ( T T enwro))

n=1

@ Can't get a closed form estimate for w by setting the derivative to zero

@ One solution: lterative minimization via gradient descent. Gradient is:

dNLL

Z(Yn Hn)Xn = XT(F" -y)

o Intuitively, a large error on x, = (y, — pn) will be large = large contribution
(positive/negative) of x, to the gradient
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MLE Estimation via Gradient Descent

o Gradient descent (GD) or steepest descent

Wil = Wp— 18,

where 7, is the learning rate (or step size), and g, is gradient at step t
@ GD can converge slowly and is also sensitive to the step size
@ Several ways to remedy this!. E.g.,
e Choose the optimal step size 7; by line-search

o Add a momentum term to the updates
Wil = Wr — M8, + Oét(Wt - Wtfl)

o Use methods such as conjugate gradient

e Use second-order methods (e.g., Newton’s method) to exploit the curvature
of the objective function NLL(w): Require the Hessian matrix

lAIso see: “A comparison of numerical optimizers for logistic regression” by Tom Minka
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MLE Estimation via Newton’s Method

@ Update via Newton's method:

1
weyn = we—H; g,

where H; is the Hessian matrix at step t

@ Hessian: double derivative of the objective function (NLL(w) in this case)
_ &NLL(w) _ 9g"
OwowT ow
@ Recall that the gradient is: g = — 3" (yo — n)xa = X" (e — y)
© Thus H=2%_ = 2 5N (y, — p)x] =N oy

9 exp(WTxn)

@ Using the fact that % =5 (m) = pn(1 — pn)xn, we have

N
H=>"un(l — tn)xax, =X'8SX
n=1

where S is a diagonal matrix with its n*" diagonal element = 11,(1 — 1,,)
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MLE Estimation via Newton’s Method

@ Update via Newton's method:
Wil = Wp— Hflgr
= we— (XTSX) X (i, — )
= we+ (XTSX) X (y — )

= (XT8X) XTSX)we + X (v — )]
(XTS: X)X T[S Xwe +y — ]

= (XT8X)"XTS[Xw, + S (y — p)]

= (X's:X)"'X'Ss.y,

@ Interpreting the solution found by Newton's method:

o It basically solves an Iteratively Reweighted Least Squares (IRLS) problem
N

arg min Z Stn(Pen — wa,,)2
n=1
o Note that the (redefined) response vector y, changes in each iteration
e Each term in the objective has weight S;, (changes in each iteration)

o The weight S, is the n™ diagonal element of S;
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MAP Estimation for Logisic Regression

@ MLE estimate of w can lead to overfitting. Solution: use a prior on w

Just like the linear regression case, let's put a Gausian prior on w

p(w) = N(0, >\71|D) o exp(—%wT w)

MAP objective: MLE objective + log p(w)

o Leads to the objective (negative of log posterior, ignoring constants):

A
NLL(w) + EWTW

@ Estimation of w proceeds the same way as MLE excepet that now we have
Gradient: g = X' (p—y)+w
Hessian: H = X'SX 4+ Alp

e Can now apply iterative optimization (gradient des., Newton's method, etc.)

@ Note: MAP estimation for log. reg. is equivalent to regularized log. reg.
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Fully Bayesian Estimation for Logistic Regression

@ What about the full posterior on w?

@ Not as easy to estimate as in the linear regression case!

Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) not conjugate

Need to approximate the posterior in this case

A crude approximation: Laplace approximation: Approximate a posterior by
a Gaussian with mean = MAP estimate and covariance = inverse hessian

p(W‘Xay) = N(WMAPa Hil)

o Will see other ways of approximating the posterior later during the semester

Probabilistic Machine Learning (CS772A)

o

ilistic Linear Classification: Logistic Regressi 12




Derivation of the Laplace Approximation

@ The posterior p(w|X,y) = 2¥X.mplw) | et’s approximate it as

ply[X)
plwlx,y) = Z2CEM)
where E(w) = — log p(y|X, w)p(w) and Z is the normalizer

e Expand E(w) around its minima (w.. = wpap) using 2" order Taylor exp.
E(w) =~ E(w.)+(w—w.) g+ %(w —w.) Hw — w.)
= E(w*)+%(w7w*)TH(w7w*) (because g = 0 at w.))
@ Thus the posterior

exp(—E(w.)) exp(— 4 (w — w.) TH(w — w.)))
V4

p(w|X,y) ~
@ Using [, p(w|X,y)dw =1, we get Z = exp(—E(w.))(2m)?/2|H|~/2. Thus

p(w|X,y) = N(w,,H)
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Multinomial Logistic Regression

Logistic reg. can be extended to handle K > 2 classes)
@ In this case, y, € {0,1,2,..., K — 1} and label probabilities are defined as

exp(w; x,)

p(yn = klxp, W) = —————
n S, exp(w] x7)

= Hnk

lnk: probability that example n belongs to class k. Also, Zle e =1
o W=[w; wy ... wg]is D x K weight matrix (column k for class k)
o Likelihood for the multinomial (or multinoulli) logistic regression model

N K
plyIX, W) =T] H#ZZZ
n=1¢

=1
where y,, = 1 if true class of example nis £ and y,» = 0 for all other ¢ # ¢

e Can do MLE/MAP /fully Bayesian estimation for W similar to the binary case

Decision rule: y, = arg maxe—1, .. « WZX*, i.e., predict the class whose
weight vector gives the largest score (or, equivalently, the largest probability)
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Next class:
Generalized Linear Models
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