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Linear Regression: A Probabilistic View

Given: N training examples {xn, yn}Nn=1, features: xn ∈ RD , response yn ∈ R

X = [x1 . . . xN ]>: N × D feat. matrix, Y = [y1 . . . yN ]>: N × 1 resp. vector

Probabilistic view: responses are generated via a probabilistic model

Assume a “noisy” linear model with regression weight vector w ∈ RD :

yn = w
>
xn + εn

Gaussian noise: εn ∼ N (0, β−1), β: precision (inverse variance) of Gaussian

Thus each response yn also has a Gaussian distribution

yn ∼ N (w>xn, β
−1)

Goal: Learn regression weight vector w to predict y∗ for a new x∗
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Linear Regression: A Probabilistic View

For Gaussian response yn

p(yn|xn,w) =

√
β

2π
exp

{
−β

2
(yn −w>xn)2

}
Thus the likelihood (assuming i.i.d. responses) or probability of data:

p(Y|X,w) =
N∏

n=1

p(yn|xn,w) =

(
β

2π

) N
2

exp

{
−β

2

N∑
n=1

(yn −w>xn)2

}
Note: xn (features) assumed given/fixed. Only modeling the response yn

Log-likelihood (ignoring constants w.r.t. w)

log p(Y|X,w) ∝ −β
2

N∑
n=1

(yn −w>xn)2

Note that the log-likelihood is nothing but a (weighted) sum of (negative)
squared errors on training data: high log-lik ⇒ low sum of squared errors
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Maximum Likelihood Estimation (MLE)

MLE: Find the w that maximizes the (log) likelihood log p(Y|X,w)

arg max
w

log p(Y|X,w) = arg min
w

− log p(Y|X,w) = arg min
w

β

2

N∑
n=1

(yn − w
>
xn)2

Same objective as the classic ordinary least squares (OLS) regression

Basically, maximizing log-lik = minimizing the sum of squared errors

Taking derivative w.r.t. w and setting to zero, we get

wMLE = (
N∑

n=1

xnx
>
n )−1

N∑
n=1

ynxn = (X>X)−1X>Y

Same solution as the solution of the OLS regression problem. Some issues:

X>X may be ill-conditioned (not invertible)

“Uncontrolled” w can lead to overfitting (thus need regularization)

A solution: Put a prior distribution on w (to impose “smoothness” and
control w) and do MAP estimation (MAP estimation = “regularized” MLE)
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Prior Distribution on Weights

Assume zero-mean spherical Gaussian prior on weights w = [w1 w2 . . . wD ]

p(w) = N (0, λ−1ID ) =

(
λ

2π

)D/2

exp(−
λ

2
w
>
w) =

(
λ

2π

)D/2

exp(−
λ

2
||w ||2)

λ is precision (inverse variance) of the Gaussian and ||w ||2 =
∑D

d=1 w
2
d

Note: We can also write the prior as a product of D univariate Gaussians

p(w) =
D∏

d=1

p(wd ) =
D∏

d=1

N (0, λ−1) =
D∏

d=1

√
λ

2π
exp(−

λ

2
w2

d ) =

(
λ

2π

)D/2

exp(−
λ

2

D∑
d=1

w2
d )

Gaussian prior encourages a “small” w by shrinking each component wd

towards zero (Gaussian’s mean). Precision λ controls the extent of shrinkage

This corresponds to imposing a regularizer on w . We will soon see (or you
might already have guessed) that the Gaussian prior results in a squared
norm (`2) regularizer, and λ controls the strength of regularization

Note: Different types of priors result in different types of regularizers (e.g., a
Laplace prior on w : p(w) ∝ exp(−|w |) will result in an `1 regularizer on w)
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MAP Estimation

The posterior distribution on w : p(w |X,Y) ∝ p(Y|X,w)p(w)

The (log) posterior: log p(w |X,Y) = log p(Y|X,w) + log p(w). Thus,

log p(w |X,Y) ∝ −
β

2

N∑
n=1

(yn − w
>
xn)2−

λ

2
w
>
w (ignoring constants w.r.t w)

MAP Estimation: Maximize the (log) posterior w.r.t. w

arg max
w

log p(w |X,Y) = arg min
w

− log p(w |X,Y) = arg min
w

β

2

N∑
n=1

(yn − w
>
xn)2

︸ ︷︷ ︸
fit to the training data

+
λ

2
w
>
w︸ ︷︷ ︸

keep w “simple”

Thus MAP estimation finds a w by trying to balance between the likelihood
(fit to the training data) vs the prior (model’s simplicity)

Setting derivative w.r.t. w to zero yields

wMAP = (
N∑

n=1

xnx
>
n +

λ

β
ID )−1

N∑
n=1

ynxn = (X>X +
λ

β
ID )−1X>Y

This corresponds to the solution of the ridge regression (regularized least
squares) problem with regularization parameter λ

β
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MAP Estimation: An Illustration

wMAP is a compromise between prior’s mean and wMLE
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Summary: MLE vs MAP for Linear Regression

MLE Objective

arg max
w

log p(Y|X,w) = arg min
w

β

2

N∑
n=1

(yn − w
>
xn)2

MLE solution

wMLE = (
N∑

n=1

xnx
>
n )−1

N∑
n=1

ynxn = (X>X)−1X>Y

MAP Objective

arg max
w

log p(w |X,Y) ∝ arg max
w

log p(Y|X,w)p(w) = arg min
w

N∑
n=1

(yn − w
>
xn)2 +

λ

β
w
>
w

MAP solution

wMAP = (
N∑

n=1

xnx
>
n +

λ

β
ID )−1

N∑
n=1

ynxn = (X>X +
λ

β
ID )−1X>Y
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The “Fully” Bayesian Approach

MLE/MAP only provide a point estimate of w (no estimate of uncertainty)

Let’s try to infer the full posterior of w : p(w |X,Y) = p(Y|X,w)p(w)
p(Y|X)

Since the likelihood and the prior, both, are Gaussian, the posterior will also
be Gaussian (due to conjugacy)

What will be the posterior’s mean and covariance/precision matrix ?

Since X is known/fixed, and using the property of Gaussians, given p(Y|X,w)
and p(w) both Gaussian (refer to the results discussed in lecture 2),

p(w |X,Y) = N (µ,Σ)

where µ = Σ(β
N∑

n=1

ynxn) = Σ(βX>Y)

Σ = (β
N∑

n=1

xnx
>
n + λID )−1 = (βX>X + λID )−1
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Making Predictions

MLE and MAP make “plug-in” predictions

p(y∗|x∗,wMLE ) = N (w>MLE x∗, β
−1) - MLE prediction

p(y∗|x∗,wMAP ) = N (w>MAPx∗, β
−1) - MAP prediction

MLE/MAP only use a point estimate (wMLE/wMAP) for making prediction

Fully Bayesian approach of making predictions is via the predictive posterior

p(y∗|x∗,X,Y) =

∫
w

p(y∗|x∗,w)p(w |X,Y)dw (Predictive Posterior)

Predictive Posterior: Don’t use a single w to make predictions but average
p(y∗|x∗,w) over all possible w ’s (each weighted by its posterior probability)

Since the likelihood p(y∗|x∗,w) and posterior p(w |X,Y) are Gaussian, the
predictive posterior is also Gaussian. Thus in the fully Bayesian approach:

p(y∗|x∗,X,Y) = N (µ>x∗, β
−1+x>∗ Σx∗)

where µ and Σ are mean and cov. matrix, resp., of the posterior p(w |X,Y)
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Some things we didn’t cover..

How to estimate the model hyperparameters (e.g., precisions β and λ)? The
Bayesian approach allows us doing this.

Nonlinear regression. What to do when a linear model doesn’t fit the
responses well. Kernel methods (e.g., Gaussian Processes) can handle this.

(We will see these later in the semester)
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Next class: Logistic Regression
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