Exponential Family and Generalized Linear Models

Piyush Rai IIT Kanpur

Probabilistic Machine Learning (CS772A)

Jan 20, 2016

Generalized Linear Models

- Models we have seen so far..
 - (Probabilistic) Linear regression: when y is real-valued

$$p(y|x, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}, \beta^{-1})$$

• Logistic regression: when y is binary (0/1)

$$p(y|\mathbf{x}, \mathbf{w}) = \mathsf{Bernoulli}(\sigma(\mathbf{w}^{\top}\mathbf{x})) = [\sigma(\mathbf{w}^{\top}\mathbf{x})]^y [1 - \sigma(\mathbf{w}^{\top}\mathbf{x})]^{1-y}$$

where
$$\sigma(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})} = \frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$

- ullet In both, the model depends on the inputs x linearly via $w^{ op}x$
- Both are special cases of a more general class: Generalized Linear Models

$$p(y|\eta) = h(y) \exp(\eta y - A(\eta))$$

- .. a special type of exponential family distribution
- GLM can be used to also model responses that aren't reals/binary (can be any exponential family distribution in general)

1 Probabilistic Machine Learning (CS772A) Exponential Family and Generalized Linear Models

Exponential Family Distributions

• An exponential family distribution is of the form

$$p(y|\eta) = h(y) \exp(\eta^{\top} T(y) - A(\eta))$$

- ullet η is called the natural parameter
- h(y) is usually a constant w.r.t. η

Probabilistic Machine Learning (CS772A)

- T(y) is the sufficient statistics: $p(y|\eta)$ depends on y only through T(y)
- $A(\eta)$: log partition function or cumulant function

$$A(\eta) = \log \int h(y) \exp(\eta^{\top} T(y)) dy$$

.. can also be seen as the log of a normalization factor

Bernoulli as Exponential Family

Bernoulli in the usual form:

$$\mathsf{Bernoulli}(y|p) = \rho^{\mathsf{y}} (1-p)^{1-\mathsf{y}} = \exp\left(y \log\left(\frac{p}{1-p}\right) + \log(1-p)\right)$$

- Comparing it as $p(y|\eta) = h(y) \exp(\eta^{\top} T(y) A(\eta))$, we have
 - h(y) = 1

 - $\eta = \log\left(\frac{p}{1-p}\right)$ T(y) = y• $A(\eta) = -\log(1-p)$

Gaussian as Exponential Family

• Gaussian in the usual form:

$$\mathcal{N}(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{\mu}{\sigma^2}y - \frac{1}{2\sigma^2}y^2 - \frac{\mu^2}{2\sigma^2} - \log\sigma\right)$$

- Comparing it as $p(y|\eta) = h(y) \exp(\eta^{\top} T(y) A(\eta))$, we have
 - $h(y) = \frac{1}{\sqrt{2\pi}}$

 - $\eta = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right)^T$ $T(y) = (y, y^2)^T$

Some Useful Properties

- The log partition function $A(\eta)$ has several useful properties
- ullet First derivative of $A(\eta)$ w.r.t. η is the expectation of the sufficient statistics

$$\frac{dA(\eta)}{d\eta} = \mathbb{E}[T(y)]$$
 (proof done on board)

ullet Second derivative of $A(\eta)$ w.r.t. η is the variance of sufficient statistics

$$\frac{d^2A(\eta)}{d\eta^2} = \text{var}[T(y)]$$

• Note: $A(\eta)$ is also convex (because second derivative is non-negative)

MLE for Exponential Family Distributions

• The log-likelihood is given by

$$\begin{split} L(\eta) &= \log \rho(Y|\eta) = \log \prod_{n=1}^N \rho(y_n|\eta) &= \log \prod_{n=1}^N h(y_n) \exp(\eta^\top T(y_n) - A(\eta)) \\ &= \log \prod_{n=1}^N h(y_n) + \eta^\top (\sum_{n=1}^N T(y_n)) - NA(\eta) \end{split}$$

ullet Taking derivative w.r.t. η and setting it to zero

$$N\frac{dA(\eta)}{d\eta} = \sum_{n=1}^{N} T(y_n)$$

• Defining $\mu = \mathbb{E}[\mathcal{T}(\mathbf{y})] = \frac{dA(\eta)}{d\eta}$, we get

$$\hat{\mu}_{\textit{MLE}} = \frac{1}{N} \sum_{n=1}^{N} T(y_n) \qquad \text{(can be used for parameter estimation via } \frac{1}{N} \frac{1}{N} T(y_n)$$

• Note that the estimate only depends on data via the sufficient statistics T(y)

Generalized Linear Models

- ullet An exp. fam. model for x o y is a Generalized Linear Model if:
 - **1** Observed inputs x_n enter the model via linear combination $w^{\top}x_n$
 - ② Conditional mean of response y_n depends on $\mathbf{w}^{\top} \mathbf{x}_n$ via a response function f

$$\mu_n = \mathbb{E}[y_n] = f(\mathbf{w}^\top \mathbf{x}_n)$$

- for linear regression $\mu_n = f(\mathbf{w}^\top \mathbf{x}_n) = \mathbf{w}^\top \mathbf{x}_n$,
- for logistic regression $\mu_n = f(\mathbf{w}^\top \mathbf{x}_n) = \exp(\mathbf{w}^\top \mathbf{x}_n)/(1 + \exp(\mathbf{w}^\top \mathbf{x}_n))$
- T(y) = y
- Form of a GLM

$$p(y|\eta) = h(y) \exp(\eta y - A(\eta))$$

where natural parameter $\eta=\psi(\mu)$, μ : conditional mean, ψ : link function

$$\xi \xrightarrow{f} \mu \xrightarrow{\psi} \eta$$

• Note: Some GLM can be represented as $p(y|\eta,\phi)=h(y,\phi)\exp(\frac{\eta y-A(\eta)}{\phi})$ where ϕ is a dispersion parameter (Gaussian/gamma GLMs use this rep.)

つくで r Probabilistic Machine Learning(CS772A) Exponential Family and Generalized Linear Models 8

GLM with Canonical Response Function

- ullet A GLM has a canonical response function f if $f=\psi^{-1}$
- For such a GLM, $\eta_n = \psi(\mu_n) = \psi(f(\mathbf{w}^\top \mathbf{x}_n)) = \mathbf{w}^\top \mathbf{x}_n$
- ullet E.g., for logistic regression $\eta_n = \log rac{\mu_n}{1-\mu_n} = m{w}^{ op} m{x}_n$ (exercise: verify by recalling the exponential family representation of Bernoulli distribution)
- Thus, for Canonical GLMs

$$p(y|\eta) = h(y) \exp(\eta y - A(\eta))$$

= $h(y) \exp(y \mathbf{w}^{\top} \mathbf{x} - A(\eta))$

Such design choices in the canonical GLM make parameter estimation easy

Next class:

MLE for Generalized Linear Models

Log likelihood

$$L(\eta) = \log p(Y|\eta) = \log \prod_{n=1}^{N} h(y_n) \exp(y_n \mathbf{w}^{\top} x_n - A(\eta_n)) = \sum_{n=1}^{N} \log h(y_n) + \mathbf{w}^{\top} \sum_{n=1}^{N} y_n x_n - \sum_{n=1}^{N} A(\eta_n)$$

• Convexity of $A(\eta)$ guarantees a global optima. Taking derivative w.r.t. \boldsymbol{w}

$$\sum_{n=1}^{N} \left(y_n x_n - A'(\eta_n) \frac{d\eta_n}{dw} \right) = \sum_{n=1}^{N} (y_n x_n - \mu_n x_n) = \sum_{n=1}^{N} (y_n - \mu_n) x_n$$

where $\mu_n = f(\mathbf{w}^\top \mathbf{x}_n)$ and 'f' $(= \psi^{-1})$ depends on type of response y, e.g.,

- Real-valued y (linear regression): f is identity, i.e., $\mu_n = \mathbf{w}^{\top} \mathbf{x}_n$
- Binary y (logistic regression): f is logistic function, i.e., $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Count-valued y (Poisson regression): $\mu_n = \exp(\mathbf{w}^\top \mathbf{x}_n)$ Positive reals y (gamma regression): $\mu_n = -(\mathbf{w}^\top \mathbf{x}_n)^{-1}$
- \bullet To estimate \boldsymbol{w} , either set the derivative to zero or use iterative methods (e.g., gradient descent, iteratively reweighted least squares, etc.)

Clustering via Gaussian Mixture Models