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Probabilistic Classification Logistic Regression

@ Logistic regression defines u using the sigmoid function
@ Given: N labeled training examples {x,, y,}N_;, x, € RP, y, € {0,1}

. 1 exp(w ' x)
@ X : N x D feature matrix, y : N x 1 label vector p=o(wx) = Tron(—w x) ~ IT+exp(w x)
@ y, = 1: positive example, y, = 0: negative example sgnoid

@ Goal: Learn a classifier that predicts the binary label y. for a new input x.

@ Want a probabilistic model to be able to also predict the /abel probabilities

p(yn = 1xsw) = p, . . T ) )
Py =Olxpw) = 1-—p, @ Sigmoid computes a real.-valued “score (w x) for |npu't x and §quashes it
between (0,1) to turn this score into a probability (of x's label being 1)
® 1, € (0,1) is the probability of y, being 1 @ Thus we have ~
1 x
o Note: Features x,, assumed fixed (given). Only labels y, being modeled ply=1x.w) = p=ow'x)= Trea(Cwix) 1 T ZX(;;WX)X)
@ w is the model parameter (to be learned) ply =0lx,w) = 1—p=1-ocw x)= L

1+ exp(w T x)
® How do we define u, (want it to be a function of w and input x,)?

@ Note: If we assume y ¢ {1, +1} instead of y € {0, 1} then p(y|x, w) — e
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Logistic Regression: A Closer Look.. Interpreting the probabilities..

@ What's the underlying decision rule in Logistic Regression?
@ Recall that

@ At the decision boundary, both classes are equiprobable. Thus: 1
i ore ead ply = lx.w)=p=
ply =1jx,w) = p(y =0|x,w) 1+ exp(—w "x)
exp(wa) _ 1
1 T - 1 T
+exp((w TX)) . o) @ Note that the “score’ w ' x is also a measure of distance of x from the
exp(w x = . ) -
P s . hyperplane (score is positive for pos. examples, negative for neg. examples)
w X =

Sigmoid

@ Thus the decision boundary of LR is nothing but a linear hyperplane, just like .
Perceptron, Support Vector Machine (SVM), etc. r

@ Therefore y =1 if w' x > 0, otherwise y = 0

@ High positive score w ' x: High probability of label 1

@ High negative score w ' x: Low prob. of label 1 (high prob. of label 0)
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Logistic Regression: Parameter Estimation MLE Estimation for Logistic Regression
@ Recall, each label y, is binary with prob. u,. Assume Bernoulli likelihood: @ We have NLL(w) = — S, (vaw " x, — log(1 + exp(w " x,)))

N N
plyIX, w) = [T p(valxn. w) = [T (@ — )"
n=1

n=1

@ Taking the derivative of NLL(w) w.r.t. w

h o) ONLL 0

where p Ttexp(w | xp) % — mli ;(yanxn — log(1 +e><p(wa,,)))]
o . el

Negative log-likelihood . _ _EN: o (W x) )

NLL(w) = — log p(Y|X,w) = = > (ynlog s + (1 — yn) log(1 — 1tn)) 2\ T T ep(w x,)
n=1
H H ex] WT){" : T ! H N . T

@ Plugging in u, = H%D(W—TX% and chugging, we get (verify yourself) @ Can't get a closed form estimate for w by setting the derivative to zero

@ One solution: lterative minimization via gradient descent. Gradient is:

N
NLL(w) = — Z(y"WTXn — log(1 + exp(wa,,))) -
n= ONLL
: g=%=*2(yn*m)x"=xnu7y)
n=1
® To do MLE for w, we'll minimize negative log-likelihood NLL(w) w.r.t. w
e Important note: NLL(w) is convex in w, so global minima can be found @ Intuitively, a large error on x,, = (y, — ftn) will be large = large contribution

(positive/negative) of x, to the gradient
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MLE Estimation via Gradient Descent

e Gradient descent (GD) or steepest descent
Wil = Wi — M8,
where 7, is the learning rate (or step size), and g, is gradient at step t

@ GD can converge slowly and is also sensitive to the step size
@ Several ways to remedy this'. E.g.,

@ Choose the optimal step size 7: by line-search

@ Add a momentum term to the updates

Weil = We — e, + ae(wWe — we 1)

@ Use methods such as conjugate gradient

@ Use second-order methods (e.g., Newton’s method) to exploit the curvature
of the objective function NLL(w): Require the Hessian matrix

Also see: “A comparison of numerical optimizers for logistic regression” by Tom Minka
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MLE Estimation via Newton’s Method

@ Update via Newton's method:
Wil = W — Hr_lgz
= we— (X'SX) X (, — y)
= wet (X'SX) X (v — o)
= (XTSX)THXTSX)we + X (y — p2,)]
= (XTSX) ' XT[S:Xw, +y — p,]
= (XTSX) XTSeXwe + 57 (y — )]
= (XTs:X)7'XTs.y,
@ Interpreting the solution found by Newton's method:
o It basically solves an Iteratively Reweighted Least Squares (IRLS) problem
N
. ~ T 2
arg min 2_; Stn(Jen — W xn)
o Note that the (redefined) response vector §, changes in each iteration
e Each term in the objective has weight S;, (changes in each iteration)
@ The weight S;, is the n'" diagonal element of S
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MLE Estimation via Newton’s Method

Update via Newton's method:

—1
wenn = we—H, g,

where H; is the Hessian matrix at step t

Hessian: double derivative of the objective function (NLL(w) in this case)

_ ONLL(w) _ og"

OwowT™ ow

Recall that the gradient is: g = — SV (ys — pa)xs = X" (1 — y)

: N T N oun T
= g S (e — Ha)x, = 0L X,

A 0 [ _exp(wx,) \ _
ow (1+€XP(WTXN) - ;1,7(1 - 'u")x"' we have

.
@ Thus H= 2

®

Using the fact that

ow

N
H= Z;tn(l - u,,)x,,x;r =XTsx

n=1

where S is a diagonal matrix with its nt" diagonal element = (1 — 1)
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MAP Estimation for Logisic Regression

MLE estimate of w can lead to overfitting. Solution: use a prior on w

Just like the linear regression case, let's put a Gausian prior on w

p(w) = N(0, A7 Mp) o exp(finW)
MAP objective: MLE objective + log p(w) 2

L]

Leads to the objective (negative of log posterior, ignoring constants):

NLL(w) + %WTW

@ Estimation of w proceeds the same way as MLE excepet that now we have
Gradient: g = X'(n—y)+w
Hessian:  H XTSX + Ap

@ Can now apply iterative optimization (gradient des., Newton's method, etc.)

@ Note: MAP estimation for log. reg. is equivalent to regularized log. reg.
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Fully Bayesian Estimation for Logistic Regression

@ What about the full posterior on w?

@ Not as easy to estimate as in the linear regression case!

@ Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) not conjugate
@ Need to approximate the posterior in this case

@ A crude approximation: Laplace approximation: Approximate a posterior by
a Gaussian with mean = MAP estimate and covariance = inverse hessian

p(w|X,y) = N(wmap,H™?)

PWIXy) /7

@ Will see other ways of approximating the posterior later during the semester
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Multinomial Logistic Regression

Logistic reg. can be extended to handle K > 2 classes)
@ In this case, y, € {0,1,2,..., K — 1} and label probabilities are defined as

exp(wy X,)

plyn = klxn. W) = A2 —
! ! SR, exp(w] x,)

= HMnk

Link: probability that example n belongs to class k. Also, Zj;l e =1

o W=[w; wy ... wg]is D x K weight matrix (column k for class k)

Likelihood for the multinomial (or multinoulli) logistic regression model

N

K
pyX, W) =TT rs

n=1¢=1

where y,, = 1 if true class of example nis £ and y,; = 0 for all other ' # ¢

Can do MLE/MAP /fully Bayesian estimation for W similar to the binary case

Decision rule: y, = argmax/—1 .« w[x*, i.e., predict the class whose
weight vector gives the largest score (or, equivalently, the largest probability)
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Probabilistic Machine Learning (CS772A)

Derivation of the Laplace Approximation

@ The posterior p(w|X,y) = 2¥Xmp) | et's approximate it as

Py [X)
plwx.y) = Z2E)

where E(w) = — log p(y|X, w)p(w) and Z is the normalizer
@ Expand E(w) around its minima (w, = wap) using 2"¢ order Taylor exp.
Ew) ~ E(w.)+(w-w.) g+ 2(w—w.) Hw—w.)

= E(w*)+%(w—w*)TH(w—wy) (because g = 0 at w..))
@ Thus the posterior
exp(—E(w.)) exp(—I(w — w.) "H(w —w.)))
z
@ Using [, p(w|X.y)dw =1, we get Z = exp(—E(w.))(2x)?/?|H|~/2. Thus

p(w|X,y) ~

p(w|X,y) = N(w.,H™")
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Next class:
Generalized Linear Models
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