Probabilistic Linear Classification: Logistic Regression

Piyush Rai IIT Kanpur

Probabilistic Machine Learning (CS772A)

Jan 18, 2016

Recap of last lecture..

Probabilistic Classification

- Given: N labeled training examples $\{x_n, y_n\}_{n=1}^N$, $x_n \in \mathbb{R}^D$, $y_n \in \{0, 1\}$
- $\mathbf{X}: N \times D$ feature matrix, $\mathbf{y}: N \times 1$ label vector
- $y_n = 1$: positive example, $y_n = 0$: negative example
- Goal: Learn a classifier that predicts the binary label y_* for a new input x_*
- Want a probabilistic model to be able to also predict the label probabilities

$$p(y_n = 1 | \mathbf{x}_n, \mathbf{w}) = \mu_n$$

$$p(y_n = 0 | \mathbf{x}_n, \mathbf{w}) = 1 - \mu_n$$

- $\mu_n \in (0,1)$ is the probability of y_n being 1
- Note: Features x_n assumed fixed (given). Only labels y_n being modeled
- w is the model parameter (to be learned)
- How do we define μ_n (want it to be a function of \boldsymbol{w} and input \boldsymbol{x}_n)?

Logistic Regression

 \bullet Logistic regression defines μ using the sigmoid function

$$\mu = \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top} \mathbf{x})} = \frac{\exp(\mathbf{w}^{\top} \mathbf{x})}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

- Sigmoid computes a real-valued "score" $(\mathbf{w}^{\top}\mathbf{x})$ for input \mathbf{x} and "squashes" it between (0,1) to turn this score into a probability (of x's label being 1)

$$\rho(y = 1|x, \mathbf{w}) = \mu = \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top} \mathbf{x})} = \frac{\exp(\mathbf{w}^{\top} \mathbf{x})}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

$$\rho(y = 0|\mathbf{x}, \mathbf{w}) = 1 - \mu = 1 - \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

• Note: If we assume $y \in \{-1, +1\}$ instead of $y \in \{0, 1\}$ then $p(y|x, w) = \frac{1}{1 + \exp(-yw^Tx)}$

Logistic Regression: A Closer Look...

- What's the underlying decision rule in Logistic Regression?
- At the decision boundary, both classes are equiprobable. Thus:

 $p(y=1|x, \mathbf{w}) = p(y=0|x, \mathbf{w})$ $\frac{\exp(\boldsymbol{w}^{\top}\boldsymbol{x})}{1+\exp(\boldsymbol{w}^{\top}\boldsymbol{x})} = \frac{1}{1+\exp(\boldsymbol{w}^{\top}\boldsymbol{x})}$

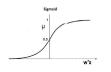
- Thus the decision boundary of LR is nothing but a linear hyperplane, just like Perceptron, Support Vector Machine (SVM), etc.
- Therefore y = 1 if $\mathbf{w}^{\top} \mathbf{x} \ge 0$, otherwise y = 0

Interpreting the probabilities...

Recall that

$$p(y=1|\mathbf{x},\mathbf{w}) = \mu = \frac{1}{1+\exp(-\mathbf{w}^{\top}\mathbf{x})}$$

• Note that the "score" $\mathbf{w}^{\top}\mathbf{x}$ is also a measure of distance of \mathbf{x} from the hyperplane (score is positive for pos. examples, negative for neg. examples)



- High positive score $\mathbf{w}^{\top} \mathbf{x}$: High probability of label 1
- High negative score $\mathbf{w}^{\top}\mathbf{x}$: Low prob. of label 1 (high prob. of label 0)

5 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification: Logistic Regression

Logistic Regression: Parameter Estimation

• Recall, each label y_n is binary with prob. μ_n . Assume Bernoulli likelihood:

$$\rho(\mathbf{y}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} \rho(y_n|\mathbf{x}_n,\mathbf{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1 - \mu_n)^{1-y_n}$$

where $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$

Negative log-likelihood

$$\mathsf{NLL}(oldsymbol{w}) = -\log p(oldsymbol{\mathsf{Y}}|oldsymbol{\mathsf{X}},oldsymbol{w}) = -\sum_{n=1}^N (y_n \log \mu_n + (1-y_n) \log (1-\mu_n))$$

• Plugging in $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1+\exp(\mathbf{w}^\top \mathbf{x}_n)}$ and chugging, we get (verify yourself)

$$\boxed{\mathsf{NLL}(\boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \boldsymbol{w}^{\top} \boldsymbol{x}_n - \log(1 + \exp(\boldsymbol{w}^{\top} \boldsymbol{x}_n)))}$$

- To do MLE for w, we'll minimize negative log-likelihood NLL(w) w.r.t. w
- Important note: NLL(w) is convex in w, so global minima can be found

MLE Estimation for Logistic Regression

- We have $NLL(w) = -\sum_{n=1}^{N} (y_n \mathbf{w}^{\top} \mathbf{x}_n \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)))$
- Taking the derivative of NLL(w) w.r.t. w

$$\begin{split} \frac{\partial \text{NLL}(\boldsymbol{w})}{\partial \boldsymbol{w}} &= \frac{\partial}{\partial \boldsymbol{w}} [- \sum_{n=1}^{N} (y_n \boldsymbol{w}^{\top} \boldsymbol{x}_n - \log(1 + \exp(\boldsymbol{w}^{\top} \boldsymbol{x}_n)))] \\ &= - \sum_{n=1}^{N} \left(y_n \boldsymbol{x}_n - \frac{\exp(\boldsymbol{w}^{\top} \boldsymbol{x}_n)}{(1 + \exp(\boldsymbol{w}^{\top} \boldsymbol{x}_n))} \boldsymbol{x}_n \right) \end{split}$$

- \bullet Can't get a closed form estimate for w by setting the derivative to zero
- One solution: Iterative minimization via gradient descent. Gradient is:

$$\mathbf{g} = \frac{\partial \mathsf{NLL}(\boldsymbol{w})}{\partial \boldsymbol{w}} = -\sum_{n=1}^{N} (y_n - \mu_n) \mathbf{x}_n = \mathbf{X}^{\top} (\boldsymbol{\mu} - \boldsymbol{y})$$

• Intuitively, a large error on $x_n \Rightarrow (y_n - \mu_n)$ will be large \Rightarrow large contribution (positive/negative) of x_n to the gradient

MLE Estimation via Gradient Descent

• Gradient descent (GD) or steepest descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \mathbf{g}_t$$

where η_t is the learning rate (or step size), and \mathbf{g}_t is gradient at step t

- GD can converge slowly and is also sensitive to the step size
- Several ways to remedy this¹. E.g.,
 - Choose the optimal step size η_t by line-search
 - Add a momentum term to the updates

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \mathbf{g}_t + \alpha_t (\mathbf{w}_t - \mathbf{w}_{t-1})$$

- Use methods such as conjugate gradient
- Use second-order methods (e.g., Newton's method) to exploit the curvature of the objective function NLL(w): Require the Hessian matrix

$\ensuremath{^{1}}\xspace$ Also see: "A comparison of numerical optimizers for logistic regression" by Tom Minka Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification: Logistic Regression

MLE Estimation via Newton's Method

Update via Newton's method:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

where \mathbf{H}_t is the Hessian matrix at step t

• Hessian: double derivative of the objective function (NLL(w)) in this case)

$$\mathbf{H} = \frac{\partial^2 \mathsf{NLL}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^\top} = \frac{\partial \mathbf{g}^\top}{\partial \boldsymbol{w}}$$

- Recall that the gradient is: $\mathbf{g} = -\sum_{n=1}^{N} (y_n \mu_n) \mathbf{x}_n = \mathbf{X}^{\top} (\boldsymbol{\mu} \mathbf{y})$
- Thus $\mathbf{H} = \frac{\partial \mathbf{g}^{\top}}{\partial \mathbf{w}} = -\frac{\partial}{\partial \mathbf{w}} \sum_{n=1}^{N} (y_n \mu_n) \mathbf{x}_n^{\top} = \sum_{n=1}^{N} \frac{\partial \mu_n}{\partial \mathbf{w}} \mathbf{x}_n^{\top}$
- Using the fact that $\frac{\partial \mu_n}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{x}_n)}{1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)} \right) = \mu_n (1 \mu_n) \mathbf{x}_n$, we have

$$\mathsf{H} = \sum_{n=1}^N \mu_n (1 - \mu_n) x_n x_n^ op = \mathsf{X}^ op \mathsf{SX}$$

where **S** is a diagonal matrix with its n^{th} diagonal element $= \mu_n(1 - \mu_n)$

4 m > 4 m >

9 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification: Logistic Regression

MLE Estimation via Newton's Method

Update via Newton's method:

$$\begin{array}{rcl} w_{t+1} & = & w_t - H_t^{-1} g_t \\ & = & w_t - (X^\top S_t X)^{-1} X^\top (\mu_t - y) \\ & = & w_t + (X^\top S_t X)^{-1} X^\top (y - \mu_t) \\ & = & (X^\top S_t X)^{-1} [(X^\top S_t X) w_t + X^\top (y - \mu_t)] \\ & = & (X^\top S_t X)^{-1} X^\top [S_t X w_t + y - \mu_t] \\ & = & (X^\top S_t X)^{-1} X^\top S_t [X w_t + S^{-1} (y - \mu_t)] \\ & = & (X^\top S_t X)^{-1} X^\top S_t Y_t \end{array}$$

- Interpreting the solution found by Newton's method:
 - It basically solves an Iteratively Reweighted Least Squares (IRLS) problem

$$\arg\min_{\boldsymbol{w}} \sum_{n=1}^{N} S_{tn} (\hat{y}_{tn} - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2$$

- Note that the (redefined) response vector \hat{y}_t changes in each iteration
- ullet Each term in the objective has weight S_{tn} (changes in each iteration)
- ullet The weight S_{tn} is the n^{th} diagonal element of $oldsymbol{S}_t$

MAP Estimation for Logisic Regression

- MLE estimate of w can lead to overfitting. Solution: use a prior on w
- ullet Just like the linear regression case, let's put a Gausian prior on $oldsymbol{w}$
- MAP objective: MLE objective $+ \log p(\mathbf{w}) = \mathcal{N}(0, \lambda^{-1} I_D) \propto \exp(-\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w})$
- Leads to the objective (negative of log posterior, ignoring constants):

$$NLL(w) + \frac{\lambda}{2} w^{\top} w$$

• Estimation of w proceeds the same way as MLE except that now we have

Gradient:
$$\mathbf{g} = \mathbf{X}^{\top}(\mu - \mathbf{y}) + \lambda \mathbf{w}$$

Hessian: $\mathbf{H} = \mathbf{X}^{\top}\mathbf{S}\mathbf{X} + \lambda\mathbf{I}_{D}$

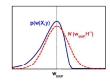
- Can now apply iterative optimization (gradient des., Newton's method, etc.)
- Note: MAP estimation for log. reg. is equivalent to regularized log. reg.

Fully Bayesian Estimation for Logistic Regression

• What about the full posterior on w?

- Not as easy to estimate as in the linear regression case!
- Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) not conjugate
- Need to approximate the posterior in this case
- A crude approximation: Laplace approximation: Approximate a posterior by a Gaussian with mean = MAP estimate and covariance = inverse hessian

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{w}_{MAP},\mathbf{H}^{-1})$$



• Will see other ways of approximating the posterior later during the semester

Derivation of the Laplace Approximation

• The posterior $p(w|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$. Let's approximate it as

$$\rho(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{\exp(-E(\mathbf{w}))}{Z}$$

where $E(w) = -\log p(y|\mathbf{X}, w)p(w)$ and Z is the normalizer

• Expand E(w) around its minima $(w_* = w_{MAP})$ using 2^{nd} order Taylor exp.

$$\begin{split} E(\mathbf{w}) &\approx E(\mathbf{w}_*) + (\mathbf{w} - \mathbf{w}_*)^{\top} \mathbf{g} + \frac{1}{2} (\mathbf{w} - \mathbf{w}_*)^{\top} \mathbf{H} (\mathbf{w} - \mathbf{w}_*) \\ &= E(\mathbf{w}_*) + \frac{1}{2} (\mathbf{w} - \mathbf{w}_*)^{\top} \mathbf{H} (\mathbf{w} - \mathbf{w}_*) & \text{(because } \mathbf{g} = 0 \text{ at } \mathbf{w}_*)) \end{split}$$

Thus the posterior

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) \approx \frac{\exp(-E(\mathbf{w}_*))\exp(-\frac{1}{2}(\mathbf{w}-\mathbf{w}_*)^{\top}\mathbf{H}(\mathbf{w}-\mathbf{w}_*)))}{Z}$$

• Using $\int_{w} \rho(w|\mathbf{X}, \mathbf{y}) dw = 1$, we get $Z = \exp(-E(w_*))(2\pi)^{D/2} |\mathbf{H}|^{-1/2}$. Thus

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{w}_*,\mathbf{H}^{-1})$$

Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification: Logistic Regression

4 □ > 4 個 > 4 분 > 4 분 > 1분 - 50 약

Multinomial Logistic Regression

- Logistic reg. can be extended to handle K > 2 classes)
- In this case, $y_n \in \{0, 1, 2, \dots, K-1\}$ and label probabilities are defined as

$$p(y_n = k|x_n, \mathbf{W}) = \frac{\exp(\mathbf{W}_k^{\top} \mathbf{x}_n)}{\sum_{\ell=1}^K \exp(\mathbf{W}_\ell^{\top} \mathbf{x}_n)} = \mu_{nk}$$

- μ_{nk} : probability that example n belongs to class k. Also, $\sum_{\ell=1}^K \mu_{n\ell} = 1$
- $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix (column k for class k)
- Likelihood for the multinomial (or multinoulli) logistic regression model

$$p(\mathbf{y}|\mathbf{X},\mathbf{W}) = \prod_{n=1}^{N} \prod_{\ell=1}^{K} \mu_{n\ell}^{\mathbf{y}_{n\ell}}$$

where $y_{n\ell}=1$ if true class of example n is ℓ and $y_{n\ell'}=0$ for all other $\ell'
eq \ell$

- ullet Can do MLE/MAP/fully Bayesian estimation for $oldsymbol{W}$ similar to the binary case
- **Decision rule:** $y_* = \arg\max_{\ell=1,...,K} \mathbf{w}_{\ell}^{\top} \mathbf{x}_*$, i.e., predict the class whose weight vector gives the largest score (or, equivalently, the largest probability)

Next class: Generalized Linear Models