Probabilistic Linear Regression

Piyush Rai IIT Kanpur

Probabilistic Machine Learning (CS772A)

Jan 13, 2016

Linear Regression: A Probabilistic View

- Given: N training examples $\{x_n, y_n\}_{n=1}^N$, features: $x_n \in \mathbb{R}^D$, response $y_n \in \mathbb{R}$
- $\mathbf{X} = [x_1 \dots x_N]^{\top}$: $N \times D$ feat. matrix, $\mathbf{Y} = [y_1 \dots y_N]^{\top}$: $N \times 1$ resp. vector
- Probabilistic view: responses are generated via a probabilistic model
- Assume a "noisy" linear model with regression weight vector $\mathbf{w} \in \mathbb{R}^D$:

$$y_n = \mathbf{w}^{\top} \mathbf{x}_n + \epsilon_n$$

- Gaussian noise: $\epsilon_n \sim \mathcal{N}(0, \beta^{-1})$, β : precision (inverse variance) of Gaussian
- Thus each response y_n also has a Gaussian distribution

$$y_n \sim \mathcal{N}(\mathbf{w}^{ op} \mathbf{x}_n, eta^{-1})$$

ullet Goal: Learn regression weight vector $oldsymbol{w}$ to predict y_* for a new $oldsymbol{x}_*$

4 □ > 4 畳 > 4 畳 > 一畳 を う Q で

1 Probabilistic Machine Learning (CS772A) Probabilistic Linear Regression

Linear Regression: A Probabilistic View

For Gaussian response y_n

$$p(y_n|\mathbf{x}_n, \mathbf{w}) = \sqrt{\frac{\beta}{2\pi}} \exp\left\{-\frac{\beta}{2}(y_n - \mathbf{w}^{\top}\mathbf{x}_n)^2\right\}$$

• Thus the likelihood (assuming i.i.d. responses) or probability of data:

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n, \mathbf{w}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \exp\left\{-\frac{\beta}{2} \sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2\right\}$$

- Note: x_n (features) assumed given/fixed. Only modeling the response y_n
- Log-likelihood (ignoring constants w.r.t. w)

$$\log p(\mathbf{Y}|\mathbf{X}, \mathbf{w}) \propto -\frac{\beta}{2} \sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2$$

• Note that the log-likelihood is nothing but a (weighted) sum of (negative) squared errors on training data: high log-lik ⇒ low sum of squared errors

Maximum Likelihood Estimation (MLE)

• MLE: Find the w that maximizes the (log) likelihood log p(Y|X, w)

$$\arg\max_{\mathbf{w}}\log p(\mathbf{Y}|\mathbf{X},\mathbf{w}) = \arg\min_{\mathbf{w}} -\log p(\mathbf{Y}|\mathbf{X},\mathbf{w}) = \arg\min_{\mathbf{w}} \frac{\beta}{2} \sum_{i=1}^{N} (y_{i} - \mathbf{w}^{\top} \mathbf{x}_{n})^{2}$$

- Same objective as the classic ordinary least squares (OLS) regression
 - Basically, maximizing log-lik = minimizing the sum of squared errors
- Taking derivative w.r.t. w and setting to zero, we get

- Same solution as the solution of the OLS regression problem. Some issues:
 - X^TX may be ill-conditioned (not invertible)
 - "Uncontrolled" w can lead to overfitting (thus need regularization)
- ullet A solution: Put a prior distribution on $oldsymbol{w}$ (to impose "smoothness" and control w) and do MAP estimation (MAP estimation = "regularized" MLE)

Probabilistic Linear Regres

Prior Distribution on Weights

• Assume zero-mean spherical Gaussian prior on weights $\mathbf{w} = [w_1 \ w_2 \dots \ w_D]$

$$\rho(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} I_D) = \left(\frac{\lambda}{2\pi}\right)^{D/2} \exp(-\frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w}) = \left(\frac{\lambda}{2\pi}\right)^{D/2} \exp(-\frac{\lambda}{2} ||\boldsymbol{w}||^2)$$

 λ is **precision** (inverse variance) of the Gaussian and $||{m w}||^2 = \sum_{d=1}^D w_d^2$

• Note: We can also write the prior as a product of D univariate Gaussians

$$\rho(\mathbf{w}) = \prod_{d=1}^{D} \rho(w_d) = \prod_{d=1}^{D} \mathcal{N}(0, \lambda^{-1}) = \prod_{d=1}^{D} \sqrt{\frac{\lambda}{2\pi}} \exp(-\frac{\lambda}{2} w_d^2) = \left(\frac{\lambda}{2\pi}\right)^{D/2} \exp(-\frac{\lambda}{2} \sum_{d=1}^{D} w_d^2)$$

- ullet Gaussian prior encourages a "small" $oldsymbol{w}$ by shrinking each component w_d towards zero (Gaussian's mean). Precision λ controls the extent of shrinkage
- ullet This corresponds to imposing a regularizer on $oldsymbol{w}$. We will soon see (or you might already have guessed) that the Gaussian prior results in a squared norm (ℓ_2) regularizer, and λ controls the strength of regularization
- Note: Different types of priors result in different types of regularizers (e.g., a Laplace prior on w: $p(w) \propto \exp(-|w|)$ will result in an ℓ_1 regularizer on w)

MAP Estimation

- The posterior distribution on \mathbf{W} : $\rho(\mathbf{w}|\mathbf{X},\mathbf{Y}) \propto \rho(\mathbf{Y}|\mathbf{X},\mathbf{w})\rho(\mathbf{w})$
- The (log) posterior: $\log p(w|\mathbf{X}, \mathbf{Y}) = \log p(\mathbf{Y}|\mathbf{X}, w) + \log p(w)$. Thus,

$$\log p(\boldsymbol{w}|\mathbf{X},\mathbf{Y}) \propto -\frac{\beta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2 - \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} \quad \text{(ignoring constants w.r.t } \boldsymbol{w})$$
• MAP Estimation: Maximize the (log) posterior w.r.t. \boldsymbol{w}

$$\arg\max_{\mathbf{w}}\log\rho(\mathbf{w}|\mathbf{X},\mathbf{Y}) = \arg\min_{\mathbf{w}} -\log\rho(\mathbf{w}|\mathbf{X},\mathbf{Y}) = \arg\min_{\mathbf{w}} \underbrace{\frac{\beta}{2}\sum_{n=1}^{N}(y_{n} - \mathbf{w}^{\top}\mathbf{x}_{n})^{2}}_{\text{fit to the training data}} + \underbrace{\frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w}}_{\text{keep w}^{-1}\text{simple}}$$

- ullet Thus MAP estimation finds a $oldsymbol{w}$ by trying to balance between the likelihood (fit to the training data) vs the prior (model's simplicity)
- Setting derivative w.r.t. w to zero yields

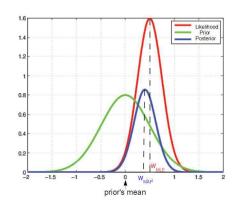
$$\boxed{ \boldsymbol{w}_{MAP} = (\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top} + \frac{\lambda}{\beta} \mathbf{I}_{D})^{-1} \sum_{n=1}^{N} y_{n} \mathbf{x}_{n} = (\mathbf{X}^{\top} \mathbf{X} + \frac{\lambda}{\beta} \mathbf{I}_{D})^{-1} \mathbf{X}^{\top} \mathbf{Y} }$$

 This corresponds to the solution of the ridge regression (regularized least squares) problem with regularization parameter $\frac{\lambda}{\beta}$

←□ → ←部 → ← 差 → を ● ・ つへの

MAP Estimation: An Illustration

 \boldsymbol{w}_{MAP} is a compromise between prior's mean and \boldsymbol{w}_{MLE}



Summary: MLE vs MAP for Linear Regression

• MLE Objective

$$\arg\max_{w}\log p(\mathbf{Y}|\mathbf{X}, \mathbf{w}) = \arg\min_{\mathbf{w}} \frac{\beta}{2} \sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} x_n)^2$$

MLE solution

$$\boxed{\boldsymbol{w}_{MLE} = (\sum_{n=1}^{N} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\top})^{-1} \sum_{n=1}^{N} \boldsymbol{y}_{n} \boldsymbol{x}_{n} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}}$$

MAP Objective

$$\arg\max_{\mathbf{w}}\log p(\mathbf{w}|\mathbf{X},\mathbf{Y}) \propto \arg\max_{\mathbf{w}}\log p(\mathbf{Y}|\mathbf{X},\mathbf{w})p(\mathbf{w}) = \arg\min_{\mathbf{w}}\sum_{n=1}^{N}(y_n - \mathbf{w}^{\top}x_n)^2 + \frac{\lambda}{\beta}\mathbf{w}^{\top}\mathbf{w}$$

MAP solution

$$\boxed{ \mathbf{w}_{MAP} = (\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top} + \frac{\lambda}{\beta} \mathbf{I}_{D})^{-1} \sum_{n=1}^{N} y_{n} \mathbf{x}_{n} = (\mathbf{X}^{\top} \mathbf{X} + \frac{\lambda}{\beta} \mathbf{I}_{D})^{-1} \mathbf{X}^{\top} \mathbf{Y} }$$

The "Fully" Bayesian Approach

- MLE/MAP only provide a point estimate of \boldsymbol{w} (no estimate of uncertainty)
- Let's try to infer the full posterior of w: $p(w|X,Y) = \frac{p(Y|X,w)p(w)}{p(Y|X)}$
- Since the likelihood and the prior, both, are Gaussian, the posterior will also be Gaussian (due to conjugacy)
- What will be the posterior's mean and covariance/precision matrix?
- Since **X** is known/fixed, and using the property of Gaussians, given $p(\mathbf{Y}|\mathbf{X}, \mathbf{w})$ and $p(\mathbf{w})$ both Gaussian (refer to the results discussed in lecture 2),

$$\begin{array}{lcl} \rho(\boldsymbol{w}|\mathbf{X},\mathbf{Y}) & = & \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma}) \\ \\ \text{where} & \boldsymbol{\mu} & = & \boldsymbol{\Sigma}(\boldsymbol{\beta}\sum_{n=1}^{N}y_{n}\boldsymbol{x}_{n}) = \boldsymbol{\Sigma}(\boldsymbol{\beta}\mathbf{X}^{\top}\mathbf{Y}) \\ \\ \boldsymbol{\Sigma} & = & (\boldsymbol{\beta}\sum_{n=1}^{N}x_{n}\boldsymbol{x}_{n}^{\top} + \lambda\mathbf{I}_{\mathcal{D}})^{-1} = (\boldsymbol{\beta}\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{\mathcal{D}})^{-1} \end{array}$$

Making Predictions

• MLE and MAP make "plug-in" predictions

$$p(y_*|X_*, w_{MLE}) = \mathcal{N}(w_{MLE}^\top X_*, \beta^{-1}) - \text{MLE prediction}$$

$$p(y_*|X_*, w_{MAP}) = \mathcal{N}(w_{MAP}^\top X_*, \beta^{-1}) - \text{MAP prediction}$$

- ullet MLE/MAP only use a point estimate ($oldsymbol{w}_{MLE}/oldsymbol{w}_{MAP}$) for making prediction
- Fully Bayesian approach of making predictions is via the predictive posterior

$$p(y_*|x_*, \mathbf{X}, \mathbf{Y}) = \int_{w} p(y_*|x_*, \mathbf{w}) p(\mathbf{w}|\mathbf{X}, \mathbf{Y}) d\mathbf{w}$$
 (Predictive Posterior)

- ullet Predictive Posterior: Don't use a single $oldsymbol{w}$ to make predictions but average $p(y_*|x_*, w)$ over all possible w's (each weighted by its posterior probability)
- Since the likelihood $p(y_*|x_*, w)$ and posterior p(w|X, Y) are Gaussian, the predictive posterior is also Gaussian. Thus in the fully Bayesian approach:

$$\rho(y_*|x_*, \mathbf{X}, \mathbf{Y}) = \mathcal{N}(\boldsymbol{\mu}^\top x_*, \boldsymbol{\beta}^{-1} + \boldsymbol{x}_*^\top \boldsymbol{\Sigma} \boldsymbol{x}_*)$$

where μ and Σ are mean and cov. matrix, resp., of the posterior $p(\textbf{\textit{w}}|\textbf{X},\textbf{Y})$

←□ → ←□ → ← □ → ← □ → ○ へ ○

Some things we didn't cover..

- How to estimate the model hyperparameters (e.g., precisions β and λ)? The Bayesian approach allows us doing this.
- Nonlinear regression. What to do when a linear model doesn't fit the responses well. Kernel methods (e.g., Gaussian Processes) can handle this.

(We will see these later in the semester)

Next class: Logistic Regression