Linear Regression: A Probabilistic View

@ Given: N training examples {xn,y,,},’yzl, features: x, € RP, response y, € R

Probabilistic Linear Regressuon J @ X=[x;...xy]": N x D feat. matrix, Y =[y;...yn]": N x 1 resp. vector
@ Probabilistic view: responses are generated via a probabilistic model
PiyUSh Rai @ Assume a “noisy” linear model with regression weight vector w € RP:
T Kanpur

T
Yn =W Xp+ €,

@ Gaussian noise: ¢, ~ N(0,371), B: precision (inverse variance) of Gaussian
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@ Thus each response y, also has a Gaussian distribution

Jan 13, 2016
Yo~ N(w 3,57
@ Goal: Learn regression weight vector w to predict y, for a new x.
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Linear Regression: A Probabilistic View Maximum Likelihood Estimation (MLE)
@ For Gaussian response y, @ MLE: Find the w that maximizes the (log) likelihood log p(Y|X, w)
P(Ynlxn, w) =4/ b exp —é(y - w'x,)? B Ty
e 2 2 " " arg mfxlog p(Y|X,w) = arg m“i/n — log p(Y|X, w) = arg ":,E" 5 Z(y" —w'x,)
n=1
@ Thus the likelihood (assuming i.i.d. responses) or probability of data: @ Same objective as the classic ordinary least squares (OLS) regression
N y N @ Basically, maximizing log-lik = minimizing the sum of squared errors
B\? B T \2 Y g log g q
Y|X, = 'n|Xn, =5 -5 n — n . L .
p(Y|X, w) nU1p(y [xn, w) (27r &Py ;(y W xp) @ Taking derivative w.r.t. w and setting to zero, we get
. : - : N N
o Note: x, (features) assumed given/fixed. Only modeling the response y, wite = (3 %) S Sy = (XTX) XY
@ Log-likelihood (ignoring constants w.r.t. w) = =
@ Same solution as the solution of the OLS regression problem. Some issues:
N T . . . .
B T @ X' X may be ill-conditioned (not invertible)
log p(Y[X, w) ox ) Z(y” W Xp) @ “Uncontrolled” w can lead to overfitting (thus need regularization)
n=1

@ A solution: Put a prior distribution on w (to impose “smoothness’ and
@ Note that the log-likelihood is nothing but a (weighted) sum of (negative) control w) and do MAP estimation (MAP estimation = “regularized” MLE)
squared errors on training data: high log-lik = low sum of squared errors
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Prior Distribution on Weights MAP Estimation

@ Assume zero-mean spherical Gaussian prior on weights w = [w; w; ... wp] @ The posterior distribution on w: p(w|X, Y) o p(Y|X, w)p(w)
. A\ P/2 P A\ D72 N ) @ The (Iog) posterior: log p(w|X,Y) = log p(Y|X, w) + log p(w). Thus,
p(w) = N(0, X" "Ip) = (g) exp(—Ew w) = (E) exp(—5||w|| ) 4 N
log p(w|X,Y) = Z(y,, w'x,)’~Zw w (ignoring constants w.r.t w)
. .. . . . D 2 2
A is precision (inverse variance) of the Gaussian and ||w|]? =Y ,_; w3 I Lo .
d=1"d @ MAP Estimation: Maximize the (log) posterior w.r.t. w
@ Note: We can also write the prior as a product of D univariate Gaussians o \
arg max log p(w|X,Y) = arg min — log p(w|X,Y) = arg min — Z(yn - WTXn)Ur Zw'w
D D ) D \/T A, A\ D/2 AL, v v v 20D 2
= = A= AR -= = (= —= — . "
ptw) =TTt =TT 03 =TT/ 5 o059 = (57) o3 2w ——
) ) o @ Thus MAP estimation finds a w by trying to balance between the likelihood
@ Gaussian prior encourages a “small” w by shrinking each component wy (fit to the training data) vs the prior (model's simplicity)

towards zero (Gaussian's mean). Precision A controls the extent of shrinkage
@ Setting derivative w.r.t. w to zero yields

This corresponds to imposing a regularizer on w. We will soon see (or you
might already have guessed) that the Gaussian prior results in a squared
norm (¢5) regularizer, and X controls the strength of regularization

N N
A A -
wiap = (D xux, + Z10) 70 D yxe = (X7 X+ 5'0) xTy
n=1 . n=1

Note: Different types of priors result in different types of regularizers (e.g., a

) . ! ) @ This corresponds to the solution of the ridge regression (regularized least
Laplace prior on w: p(w) o exp(—|w|) will result in an ¢; regularizer on w) P dge regression (reg

squares) problem with regularization parameter 3
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MAP Estimation: An lllustration Summary: MLE vs MAP for Linear Regression

W ap is @ compromise between prior's mean and wy g

®

MLE Objective

N
16 arg max log p(Y|X, w) = arg m'mé z(y,, — wa,,)z
Likelihood v w2
i - Prior || .
- il @ MLE solution
- N N
A wiie = (3 xnx) ) TE Y yaxa = (XTX)TIXTY
n=1 n=1
. i
@ MAP Objective
08
N A
L 1 arg max log p(w|X. Y) o arg maxlog p(Y|X, w)p(w) = arg min Z(}/n —w'x,)’ + /:WTW
n=1
04 |
@ MAP solution
02 1
N T, A o T A 1y T
U ys ] wuap = (D Xnx, + ;ID)_ D yexn = (XX + E'p)_ xTy
n=1 r n=1

prior's mean
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The “Fully” Bayesian Approach

@ MLE/MAP only provide a point estimate of w (no estimate of uncertainty)

@ Let's try to infer the full posterior of w: p(w|x,Y) = e0mptn)
@ Since the likelihood and the prior, both, are Gaussian, the posterior will also
be Gaussian (due to conjugacy)

@ What will be the posterior's mean and covariance/precision matrix ?

@ Since X is known/fixed, and using the property of Gaussians, given p(Y|X, w)
and p(w) both Gaussian (refer to the results discussed in lecture 2),

p(w|X,Y) = N(p. X)
N
where p = E(B yaxa) =EZ(8X"Y)
n=1
N
== (B xnx, +Alp)"h = (BXT X+ Alp) T
n=1
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Some things we didn’t cover..

@ How to estimate the model hyperparameters (e.g., precisions 5 and A)? The
Bayesian approach allows us doing this.

@ Nonlinear regression. What to do when a linear model doesn't fit the
responses well. Kernel methods (e.g., Gaussian Processes) can handle this.

(We will see these later in the semester)
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Making Predictions

@ MLE and MAP make “plug-in" predictions

- MLE prediction
- MAP prediction

N(Wex, 87)

N(Wypapxe, 871

Py« X, Wwhne) =

P(y=|X«. whap) =

MLE/MAP only use a point estimate (w i e/wmap) for making prediction

®

Fully Bayesian approach of making predictions is via the predictive posterior

plys|x.c, X, Y) = / Py« |x«, w)p(w|X,Y)dw (Predictive Posterior)
w

Predictive Posterior: Don't use a single w to make predictions but average
p(y«<|x., w) over all possible w's (each weighted by its posterior probability)

@ Since the likelihood p(y.|x., w) and posterior p(w|X,Y) are Gaussian, the
predictive posterior is also Gaussian. Thus in the fully Bayesian approach:

] P(yel%0, X, ¥) = N(p " x., 1 4x] Ex.)

where 1 and X are mean and cov. matrix, resp., of the posterior p(w|X,Y)
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Next class: Logistic Regression
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