
Patterns of Scalable Bayesian Inference

Elaine Angelino∗
UC Berkeley

elaine@eecs.berkeley.edu

Matthew James Johnson∗
Harvard University
mattjj@csail.mit.edu

Ryan P. Adams
Harvard University and Twitter

rpa@seas.harvard.edu

∗Authors contributed equally

ar
X

iv
:1

60
2.

05
22

1v
1 

 [
st

at
.M

L
] 

 1
6 

Fe
b 

20
16



Contents

1 Introduction 2
1.1 Why be Bayesian with big data? . . . . . . . . . . . . . . 3
1.2 The fidelity of approximate integration . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Exponential families . . . . . . . . . . . . . . . . . . . . . 8
2.2 Markov Chain Monte Carlo inference . . . . . . . . . . . . 12

2.2.1 Bias and variance of estimators . . . . . . . . . . . 12
2.2.2 Monte Carlo estimates from indepdent samples . . 13
2.2.3 Markov chains . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Markov chain Monte Carlo (MCMC) . . . . . . . . 16
2.2.5 Metropolis-Hastings (MH) sampling . . . . . . . . 22
2.2.6 Gibbs sampling . . . . . . . . . . . . . . . . . . . 24

2.3 Mean field variational inference . . . . . . . . . . . . . . . 25
2.4 Stochastic gradient optimization . . . . . . . . . . . . . . 29

3 MCMC with data subsets 32
3.1 Factoring the joint density . . . . . . . . . . . . . . . . . 32
3.2 Adaptive subsampling for Metropolis–Hastings . . . . . . . 33

3.2.1 An approximate MH test based on a data subset . 34

ii



iii

3.2.2 Approximate MH with an adaptive stopping rule . 35
3.2.3 Using a t-statistic hypothesis test . . . . . . . . . . 37
3.2.4 Using concentration inequalities . . . . . . . . . . 39
3.2.5 Error bounds on the stationary distribution . . . . 41

3.3 Sub-selecting data via a lower bound on the likelihood . . 44
3.4 Stochastic gradients of the log joint density . . . . . . . . 46
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Parallel and distributed MCMC 54
4.1 Parallelizing standard MCMC algorithms . . . . . . . . . . 55

4.1.1 Conditional independence and graph structure . . . 55
4.1.2 Speculative execution and prefetching . . . . . . . 56

4.2 Defining new data-parallel dynamics . . . . . . . . . . . . 58
4.2.1 Aggregating from subposteriors . . . . . . . . . . . 60

Embarrassingly parallel consensus of subposteriors . 61
Weighted averaging of subposterior samples . . . . 63
Subposterior density estimation . . . . . . . . . . . 64
Weierstrass samplers . . . . . . . . . . . . . . . . 67

4.2.2 Hogwild Gibbs . . . . . . . . . . . . . . . . . . . . 72
Defining Hogwild Gibbs variants . . . . . . . . . . 73
Theoretical analysis . . . . . . . . . . . . . . . . . 75

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Scaling variational mean field algorithms 83
5.1 Stochastic optimization and variational inference . . . . . 84

5.1.1 SVI for complete-data conjugate models . . . . . . 85
5.1.2 Stochastic gradients with general nonconjugate

models . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.3 Exploiting reparameterization for some nonconju-

gate models . . . . . . . . . . . . . . . . . . . . . 92
5.2 Streaming variational Bayes (SVB) . . . . . . . . . . . . . 94
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 98



iv

6 Challenges and questions 99

References 107



Abstract

Datasets are growing not just in size but in complexity, creating a
demand for rich models and quantification of uncertainty. Bayesian
methods are an excellent fit for this demand, but scaling Bayesian in-
ference is a challenge. In response to this challenge, there has been
considerable recent work based on varying assumptions about model
structure, underlying computational resources, and the importance of
asymptotic correctness. As a result, there is a zoo of ideas with few
clear overarching principles.

In this paper, we seek to identify unifying principles, patterns, and
intuitions for scaling Bayesian inference. We review existing work on
utilizing modern computing resources with both MCMC and varia-
tional approximation techniques. From this taxonomy of ideas, we char-
acterize the general principles that have proven successful for designing
scalable inference procedures and comment on the path forward.



1
Introduction

We have entered a new era of scientific discovery, in which compu-
tational insights are being integrated with large-scale statistical data
analysis to enable researchers to ask both grander and more subtle ques-
tions about our natural world. This viewpoint asserts that we need not
be limited to the narrow hypotheses that can be framed by traditional
small-scale analysis techniques. Supporting new kinds of data-driven
queries, however, requires that new methods be developed for statisti-
cal inference that can scale up along multiple axes — more samples,
more dimensions, and greater model complexity — as well as scale out
by taking advantage of modern parallel compute environments.

There are a variety of methodological frameworks for performing
statistical inference, e.g., performing estimation and evaluating hy-
potheses; here we are concerned with the Bayesian formalism. In the
Bayesian setting, queries about structure in data are framed as inter-
rogations of the posterior distribution over parameters, missing data,
and other unknowns; these unobserved quantities are treated as ran-
dom variables. By conditioning on the data, the Bayesian hopes to not
only perform point estimation, but also to understand the uncertainties
associated with those estimates.

2



1.1. Why be Bayesian with big data? 3

Accounting for uncertainty is central to Bayesian analysis, and so
the computations associated with most common tasks – e.g., estima-
tion, prediction, evaluation of hypotheses – are typically integrations.
In some situations, it is possible to perform such integrations exactly, ei-
ther by taking advantage of conjugate structure in the prior-likelihood
pair, or by using dynamic programming when the dependencies be-
tween random variables are appropriately simple. Unfortunately, most
real-world analysis problems are not amenable to these exact inference
procedures and so most of the interest in Bayesian computation focuses
on better methods of approximate inference.

There are two dominant paradigms for approximate inference in
Bayesian models: Monte Carlo sampling methods and variational ap-
proximations. The Monte Carlo approach observes that integrations
performed to query posterior distributions can be framed as expecta-
tions, and thus estimated with samples; such samples are most often
generated via simulation from carefully designed Markov chains. Varia-
tional inference seeks to compute these integrals by approximating the
posterior distribution with a more tractable alternative, where identifi-
cation of the best approximation can then be performed using powerful
optimization techniques.

In this paper, we examine how these techniques can be scaled up to
larger problems and scaled out across parallel computational resources.
This is not intended to be an exhaustive survey of a rapidly-evolving
area of research; rather, we seek to identify the main ideas and themes
that are emerging in this area, and articulate what we believe are some
of the significant open questions and challenges.

1.1 Why be Bayesian with big data?

The Bayesian paradigm is fundamentally about integration: integra-
tion computes posterior estimates and measures of uncertainty, elimi-
nates nuisance variables or missing data, and averages models to com-
pute predictions or perform model comparison. While some statistical
methods, such as MAP estimation, can be described from a Bayesian
perspective, in which case the prior might serves as a regularizer in an



4 Introduction

optimization problem, such methods are not inherently or exclusively
Bayesian. Posterior integration is the distinguishing characteristic of
Bayesian statistics, and so a defense of Bayesian ideas in the big data
regime rests on the utility of integration.

But from a classical perspective, the big data setting might seem
to be precisely where integration isn’t important: as the dataset grows,
shouldn’t the posterior distribution concentrate towards a point mass?
If big data means we end up making predictions with such concentrated
posteriors, why not focus on point estimation and avoid the specifica-
tion of priors and the burden of approximate integration?

These objections certainly apply to settings where the number of
parameters is small and fixed (“tall data”). However, many models of
interest have many parameters (“wide data”), or indeed have a number
of parameters that grows along with the amount of data.

For example, an Internet company making inferences about its
users’ viewing and buying habits may have terabytes of data in to-
tal but only a few observations for its newest customers, the ones most
important to impress with personalized recommendations. Moreover,
it may wish to adapt its model in an online way as data arrive, a task
that benefits from calibrated posterior uncertainties [Stern et al., 2009].
As another example, consider a healthcare company. As its dataset
grows, it might hope to make more detailed and complex inferences
about populations while also making careful predictions with calibrated
uncertainty for each patient, even in the presence of massive missing
data [Lawrence, 2015]. These scaling issues also arise in astronomy,
where hundreds of billions of light sources, such as stars, galaxies, and
quasars, each have latent variables that must be estimated from very
weak observations, and are coupled in a large hierarchical model [Regier
et al., 2015]. In Microsoft Bing’s sponsored search advertising, predic-
tive probabilities inform the pricing in the keyword auction mechanism.
This problem nevertheless must be solved at scale, with tens of millions
of impressions per hour [Graepel et al., 2010].

These are the regimes where big data can be small [Lawrence, 2015]
and the number and complexity of statistical hypotheses grows with
the data. The Bayesian methods we survey in this paper may provide



1.2. The fidelity of approximate integration 5

solutions to these challenges.

1.2 The fidelity of approximate integration

Bayesian inference may be important in some modern big data regimes,
but exact integration in general is computationally out of reach. While
decades of research in Bayesian inference in both statistics and ma-
chine learning have produced many powerful approximate inference
algorithms, the big data setting poses some new challenges. Iterative
algorithms that read the entire dataset before making each update
become prohibitively expensive. Sequential computation that cannot
leverage parallel and distributed computing resources is at a signifi-
cant and growing disadvantage. Insisting on zero asymptotic bias from
Monte Carlo estimates of expectations may leave us swamped in errors
from high variance [Korattikara et al., 2014] or transient bias.

These challenges, and the tradeoffs that may be necessary to address
them, can be viewed in terms of how accurate the integration in our
approximate inference algorithms must be. Markov chain Monte Carlo
(MCMC) algorithms that admit the exact posterior as a stationary dis-
tribution may be the gold standard for generically estimating posterior
expectations, but if standard MCMC algorithms become intractable
in the big data regime we must find alternatives and understand their
tradeoffs. Indeed, someone using Bayesian methods for machine learn-
ing may be less constrained than a classical Bayesian statistician: if the
ultimate goal is to form predictions that perform well according to a
specific loss function, computational gains at the expense of the inter-
nal posterior representation may be worthwhile. The methods studied
here cover a range of such approximate integration tradeoffs.

1.3 Outline

The remainder of this review is organized as five chapters. In Chap-
ter 2, we provide relevant background material on exponential fami-
lies, MCMC inference, mean field variational inference, and stochastic
gradient optimization. The next three chapters survey recent algorith-
mic ideas for scaling Bayesian inference, highlighting theoretical results



6 Introduction

where possible. Each of these central technical chapters ends with a
summary and discussion, identifying emergent themes and patterns as
well as open questions. Chapters 3 and 4 focus on MCMC algorithms,
which are inherently serial and often slow to converge; the algorithms
in the first of these use various forms of data subsampling to scale
up serial MCMC and in the second use a diverse array of strategies to
scale out on parallel resources. In Chapter 5 we discuss two recent tech-
niques for scaling variational mean field algorithms. Both process data
in minibatches: the first applies stochastic gradient optimization meth-
ods and the second is based on incremental posterior updating. Finally,
in Chapter 6 we provide an overarching discussion of the ideas we sur-
vey, focusing on challenges and open questions in large-scale Bayesian
inference.



2
Background

In this chapter we summarize background material on which the ideas
in subsequent chapters are based. This chapter also serves to fix some
common notation. Throughout the chapter, we avoid measure-theoretic
definitions and instead assume that any density exists with respect ei-
ther to Lebesgue measure or counting measure, depending on its con-
text.

First, we cover some relevant aspects of exponential families. Sec-
ond, we cover the foundations of Markov chain Monte Carlo (MCMC)
algorithms, which are the workhorses of Bayesian statistics and are
common in Bayesian machine learning. Indeed, the algorithms dis-
cussed in Chapters 3 and 4 are either MCMC algorithms or aim to
approximate MCMC algorithms. Next, we describe the basics of mean
field variational inference and stochastic gradient optimziation, both
of which are used extensively in Chapter 5. Finally, we close the chap-
ter with notes on computational architectures and useful notions for
measuring performance.

7



8 Background

2.1 Exponential families

Exponential families of densities play a key role in Bayesian analysis
and many practical Bayesian methods. In particular, likelihoods that
are exponential families yield natural conjugate prior families, which
provide analytical and computational advantages in both MCMC and
variational inference algorithms. Exponential families are also particu-
larly relevant in the context of large datasets: in a precise sense, they
are the only families of densities which admit a finite-dimensional suf-
ficient statistic. Thus only exponential families allow arbitrarily large
amounts of data to be summarized with a fixed-size description.

In this section we give basic definitions, notation, and results con-
cerning exponential families. For perspectives from convex analysis
see Wainwright and Jordan [2008], and for perspectives from differ-
ential geometry see Amari and Nagaoka [2007].

Exponential families are defined in terms of densities with respect
to some underlying σ-finite measure, which we denote ν.

Definition 2.1 (Exponential family). We say a parameterized family of
densities {p( · |θ) : θ ∈ Θ} is an exponential family if each density can
be written as

p(x|θ) = h(x) exp{〈η(θ), t(x)〉 − logZ(η(θ))} (2.1)

where 〈·, ·〉 is an inner product on a finite-dimensional real vector space.
We call η(θ) the natural parameter vector, t(x) the statistic vector, h(·)
the base density, and

logZ(η) , log
∫
e〈η,t(x)〉h(x)ν(dx) (2.2)

the log partition function.

We restrict our attention to families for which the support of the
density does not depend on θ. When η(θ) = θ we say the family is
written in natural parameters or natural coordinates, which we denote
by writing p(x|η). We say a family is regular if Θ is open, and minimal
if there is no nonzero a such that 〈a, t(x)〉 is equal to a constant (ν-a.e.).



2.1. Exponential families 9

The statistic t is sufficient in the sense of the Fisher-Neyman Fac-
torization Theorem [Keener, 2010, Theorem 3.6] by construction

p(x|θ) ∝ h(x) exp{〈η(θ), t(x)},

and hence t(x) contains all the information about x that is relevant for
the parameter θ. In the context of Bayesian analysis, in which θ is a
random variable, this definition of sufficiency is equivalent to the condi-
tional independence statement θ ⊥⊥ X | t(X). The Koopman-Pitman-
Darmois Theorem shows that exponential families are the only families
which provide this powerful summarization property, under some mild
regularity conditions [Hipp, 1974].

Exponential families have many convenient analytical and compu-
tational properties. In particular, differentiating the log partition func-
tion logZ generates cumulants:

Proposition 2.1 (Mean mapping and cumulants). For a regular ex-
ponential family of densities of the form (2.1) with X ∼ p( · |η), we
have ∇ logZ : Θ→M and

∇ logZ(η) = E[t(X)] (2.3)

and writing µ , E[t(X)] we have

∇2 logZ(η) = E[t(X)t(X)T]− µµT. (2.4)

More generally, the moment generating function of t(X) can be written

Mt(X)(s) , E[e〈s,t(X)〉] = elogZ(η+s)−logZ(η). (2.5)

and so derivatives of logZ give cumulants of t(X), where the first
cumulant is the mean and the second and third cumulants are the
second and third central moments, respectively.

Proof. To show 2.3, we write

∇η logZ(η) = ∇η log
∫
e〈η,t(x)〉h(x)ν(dx) (2.6)

= 1∫
e〈η,t(x)〉h(x)ν(dx)

∫
t(x)e〈η,t(x)〉h(x)ν(dx) (2.7)

=
∫
t(x)p(x|η)ν(dx) (2.8)

= E[t(X)]. (2.9)



10 Background

To derive the form of the moment generating function, we write

E[e〈s,t(X)〉] =
∫
e〈s,t(x)〉p(x)ν(dx) (2.10)

=
∫
e〈s,t(x)〉e〈η,t(x)〉−logZ(η)h(x)ν(dx) (2.11)

= elogZ(η+s)−logZ(η). (2.12)

For members of an exponential family, many quantities can be ex-
pressed generically in terms of the natural parameter, expected statis-
tics under that parameter, and the log partition function.

Proposition 2.2 (Score and Fisher information). For a regular exponen-
tial family in natural coordinates, with X ∼ p( · |η) and µ(η) , E[t(X)]
we have

1. When the family is regular, the score with respect to the
natural parameter is

v(x, η) , ∇η log p(x|η) = t(x)− µ(η) (2.13)

2. When the family is regular, the Fisher information with
respect to the natural parameter is

I(η) , E[v(X, η)v(X, η)T] = ∇2 logZ(η). (2.14)

Proof. Each follows from (2.1) and Proposition 2.1.

Below, we define a notion of conjugacy for pairs of families of distri-
butions. Conjugate families are especially useful for Bayesian analysis
and algorithms.

Definition 2.2. A parameterized (not necessarily exponential) family
of densities F = {p(·|α) : α ∈ A} is conjugate for a likelihood func-
tion p(x|·) if for every density p(·|α) in F the posterior distribution

p(θ|α′) ∝ p(θ|α)p(x|θ) (2.15)

also belongs to F , for some α′ = α′(x, α) that may depend on x and α.



2.1. Exponential families 11

Conjugate pairs are particularly useful in Bayesian analysis because
if we have a prior family p(θ|α) and we observe data generated accord-
ing to a likelihood p(x|θ) then the posterior p(θ|x, α) is in the same
family as the prior. In the context of Bayesian updating, we call α the
hyperparameter and α′ the posterior hyperparameter.

Given a regular exponential family likelihood, we can always define
a conjugate prior, as shown in the next proposition.

Proposition 2.3. Given a regular exponential family

pX|θ(x|θ) = hX(x) exp{〈ηX(θ), tX(x)〉 − logZX(ηX(θ))} (2.16)
= hX(x) exp{〈(ηX(θ),− logZX(η(θ))), (tX(x), 1)〉} (2.17)

then if we define the statistic tθ(θ) , (ηX(θ),− logZX(η(θ))) and an
exponential family of densities with respect to that statistic as

pθ|α(θ|α) = hθ(θ) exp{〈ηθ(α), tθ(θ)〉 − logZθ(ηθ(α))} (2.18)

then the pair (pθ|α, pX|θ) is a conjugate pair of families with

p(θ|α)p(x|θ) ∝ hθ(θ) exp{〈ηθ(α) + (tX(x), 1), tθ(θ)〉} (2.19)

and hence we can write the posterior hyperparameter as

α′ = η−1
θ (ηθ(α) + (tX(x), 1)) . (2.20)

When the prior family is parameterized with its natural parameter, we
have η′ = η + (tX(x), 1).

As a consequence of Proposition 2.3, if the prior family is written
with natural parameters and we generate data {xi}ni=1 according to the
model

θ ∼ pθ|η( · |η) (2.21)

xi|θ
iid∼ pX|θ( · |θ) i = 1, 2, . . . , n, (2.22)

where the notation xi
iid∼ p( · ) denotes that the random variables xi are

independently and identically distributed, then p(θ|{xi}ni=1, η) has pos-
terior hyperparameter η′ = η+(

∑n
i=1 t(xi), n). Therefore any tractable

computations in the prior, such as simulation or computing expecta-
tions, are shared by the posterior. Furthermore, for inferences about θ,
the entire dataset can be summarized by the statistic (

∑n
i=1 t(xi), n).



12 Background

2.2 Markov Chain Monte Carlo inference

Markov chain Monte Carlo (MCMC) is a class of algorithms for estimat-
ing expectations with respect to distributions. These distributions may
be intractable, such as most posterior distributions arising in Bayesian
inference. Given a target distribution, a standard MCMC algorithm
proceeds by simulating an ergodic random walk that admits the target
distribution as its stationary distribution. As we develop in the follow-
ing subsections, by collecting samples from the simulated trajectory
and forming Monte Carlo estimates, expectations of many functions
can be approximated to arbitrary accuracy. Thus MCMC is employed
when samples or expectations from a distribution cannot be obtained
directly, as is often the case with complex, high-dimensional systems
arising across disciplines, such as estimating bulk material properties
from molecular dynamics physics simulations or performing inference
in Bayesian probabilistic models.

In this section, we first review the two underlying ideas behind
MCMC algorithms: Monte Carlo methods and Markov chains. First we
define the bias and variance of estimators. Next, we introduce Monte
Carlo estimators based on independent and identically distributed sam-
ples. We then describe how Monte Carlo estimates can be formed using
mutually dependent samples generated by a Markov chain simulation.
Finally, we introduce two general MCMC algorithms commonly applied
to Bayesian posterior inference, the Metropolis-Hastings and Gibbs
sampling algorithms. Our exposition here mostly follows the standard
treatment, such as in Brooks et al. [2011, Chapter 1], Geyer [1992], and
Robert and Casella [2004].

2.2.1 Bias and variance of estimators

Notions of bias and variance are fundamental to understanding and
comparing estimator performance, and much of our discussion of
MCMC methods is framed in these terms.

Consider using a scalar-valued random variable θ̂ to estimate a fixed
scalar quantity of interest θ. The bias and variance of the estimator θ̂



2.2. Markov Chain Monte Carlo inference 13

are defined as

Bias[θ̂] = E[θ̂ − θ] (2.23)

Var[θ̂] = E[(θ̂ − E[θ̂])2]. (2.24)

The mean squared error E[(θ̂ − θ)2] can be decomposed in terms of the
variance and the square of the bias:

E[(θ̂ − θ)2] = E[(θ̂ − E[θ̂] + E[θ̂]− θ)2] (2.25)

= E[(θ̂ − E[θ̂])2] + (E[θ̂]− θ)2 (2.26)
= Var[θ̂] + Bias2[θ̂] (2.27)

This decomposition provides a basic language for evaluating estima-
tors and thinking about tradeoffs. Among unbiased estimators, those
with lower variance are generally preferrable. However, when an unbi-
ased estimator has high variance, a biased estimator that achieves low
variance can have a lower overall mean squared error.

As we describe in the following sections, a substantial amount of
the study of Bayesian statistical computation has focused on algorithms
that produce asymptotically unbiased estimates of posterior expecta-
tions, in which the bias due to initialization is transient and is washed
out relatively quickly. In this setting, the error is typically considered
to be dominated by the variance term, which can be made as small
as desired by increasing computation time without bound. When com-
putation becomes expensive as in the big data setting, errors under a
realistic computational budget may in fact be dominated by variance,
as observed by Korattikara et al. [2014], or, as we argue in Chapter 6,
transient bias. Several of the new algorithms we examine in Chapters 3
and 4 aim to adjust this tradeoff by allowing some asymptotic bias
while effectively reducing the variance and transient bias contributions
through more efficient computation.

2.2.2 Monte Carlo estimates from indepdent samples

Let X be a random variable with E[X] = µ <∞, and let (Xi : i ∈ N)
be a sequence of i.i.d. random variables each with the same distribution



14 Background

as X. The Strong Law of Large Numbers (LLN) states that the sample
average converges almost surely to the expectation µ as n→∞:

P
(

lim
n→∞

1
n

n∑
i=1

Xi = µ

)
= 1. (2.28)

This convergence immediately suggests the Monte Carlo method: to
approximate the expectation of X, which to compute exactly may in-
volve an intractable integral, one can use i.i.d. samples and compute a
sample average. In addition, because for any measurable function f the
sequence (f(Xi) : i ∈ N) is also a sequence of i.i.d. random variables,
we can form the Monte Carlo estimate

E[f(X)] ≈ 1
n

n∑
i=1

f(Xi). (2.29)

Monte Carlo estimates of this form are unbiased by construction,
and so the quality of a Monte Carlo estimate can be evaluated in terms
of its variance as a function of the number of samples n, which in
turn can be understood with the Central Limit Theorem (CLT), at
least in the asymptotic regime. If X is real-valued and has finite vari-
ance E[(X − µ)2] = σ2 < ∞, then the CLT states that the devia-
tion 1

n

∑n
i=1Xi − µ, rescaled appropriately, converges in distribution

and is asymptotically normal:

lim
n→∞

P
(

1√
n

n∑
i=1

(Xi − µ) < α

)
= P(Z < α) (2.30)

where Z ∼ N (0, σ2). In particular, as n grows, the standard deviation
of the sample average 1

n

∑n
i=1Xi−µ converges to zero at an asymptotic

rate proportional to 1√
n
. More generally, for any real-valued measur-

able function f , the Monte Carlo standard error (MCSE) in the es-
timate (2.29) asymptotically scales as 1√

n
regardless of the dimension

of X.
Monte Carlo estimators effectively reduce the problem of computing

expectations to the problem of generating samples. However, the pre-
ceding statements require the samples used in the Monte Carlo estimate
to be independent, and independent samples can be computationally



2.2. Markov Chain Monte Carlo inference 15

difficult to generate. Instead of relying on independent samples, Markov
chain Monte Carlo algorithms compute estimates using mutually de-
pendent samples generated by simulating a Markov chain.

2.2.3 Markov chains

Let X be a discrete or continuous state space and let x, x′ ∈ X denote
states. A time-homogeneous Markov chain is a discrete-time stochastic
process (Xt : t ∈ N) governed by a transition operator T (x→ x′) that
specifies the probability density of transitioning to a state x′ from a
given state x:

P(Xt+1 ∈ A |Xt = x) =
∫
A
T (x→ x′) dx′ ∀t ∈ N (2.31)

for all measurable sets A. A Markov chain is memoryless in the sense
that its future behavior depends only on the current state and is inde-
pendent of its past history.

Given an initial density π0(x) for X0, a Markov chain evolves this
density from one time point to the next through iterative application
of the transition operator. We write the application of the transition
operator to a density π0 to yield a new density π1 as

π1(x′) = (π0T )(x′) =
∫
X
T (x→ x′)π0(x) dx. (2.32)

Writing T t to denote t repeated applications of the transition opera-
tor T , the density ofXt induced by π0 and T is then given by πt = π0T

t.
Markov chain simulation follows this iterative definition by itera-

tively sampling the next state using the current state and the transition
operator. That is, after first sampling X0 from π0( · ), Markov chain
simulation proceeds at time step t by sampling Xt+1 according to the
density T (xt → · ) induced by the fixed sample xt.

We are interested in Markov chains that converge in total variation
to a unique stationary density π(x) in the sense that

lim
t→∞
‖πt − π‖TV = 0 (2.33)

for any initial distribution π0, where ‖ · ‖TV denotes the total variation
norm on densities:

‖p− q‖TV = 1
2

∫
X
|p(x)− q(x)| dx. (2.34)



16 Background

For a transition operator T (x → x′) to admit π(x) as a stationary
density, its application must leave π(x) invariant:

π = πT. (2.35)

For a discussion of general conditions that guarantee a Markov chain
converges to a unique stationary distribution, i.e., that the chain is
ergodic, see Meyn and Tweedie [2009].

In some cases it is easy to show that a transition operator has
a particular unique stationary distribution. In particular, it is clear
that π is the unique stationary distribution when a transition opera-
tor T (x→ x′) is reversible with respect to π, i.e., it satisfies the detailed
balance condition with respect to a density π(x),

T (x→ x′)π(x) = T (x′ → x)π(x′) ∀x, x′ ∈ X , (2.36)

which is a pointwise condition over X ×X . Integrating over x on both
sides gives: ∫

X
T (x→ x′)π(x) dx =

∫
X
T (x′ → x)π(x′) dx

= π(x′)
∫
X
T (x′ → x) dx

= π(x′),

which is precisely the required condition from (2.35). We can inter-
pret (2.36) as stating that, for a reversible Markov chain starting from
its stationary distribution, any transition x→ x′ is equilibrated by the
corresponding reverse transition x′ → x. Many MCMC methods are
based on deriving reversible transition operators.

For a thorough introduction to Markov chains, see Robert and
Casella [2004, Chapter 6] and Meyn and Tweedie [2009].

2.2.4 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) methods simulate a Markov chain
for which the stationary distribution is equal to a target distribution
of interest, and use the simulated samples to form Monte Carlo es-
timates of expectations. That is, consider simulating a Markov chain



2.2. Markov Chain Monte Carlo inference 17

with unique stationary density π(x), as in Section 2.2.3, and collecting
its trajectory into a set of samples {Xi}ni=1. These collected samples can
be used to form a Monte Carlo estimate for a function f of a random
variable X with density π(x) via

E[f(X)] =
∫
X
f(x)π(x) dx ≈ 1

n

n∑
i=1

f(Xi). (2.37)

Even though this Markov chain Monte Carlo estimate is not con-
structed from independent samples, it can asymptotically satisfy
analogs of the Law of Large Numbers (LLN) and Central Limit Theo-
rem (CLT) that were used to justify ordinary Monte Carlo methods in
Section 2.2.2. We sketch these important results here.

The MCMC analog of the LLN states that

lim
n→∞

1
n

n∑
i=1

f(Xi) =
∫
X
f(x)π(x) dx (a.s.) (2.38)

for all functions f that are absolutely integrable with respect to π, i.e.
all f : X → R that satisfy

∫
X |f(x)|π(x) dx < ∞. To quantify the

asymptotic variance of MCMC estimates, the analog of the CLT must
take into account both the Markov dependency structure among the
samples used in the Monte Carlo estimate and also the initial state
in which the chain was started. However, under mild conditions on
both the Markov chain and the function f , the sample average for any
initial distribution π0 is asymptotically normal in distribution (with
appropriate scaling):

lim
n→∞

P
(

1√
n

n∑
n=1

(f(Xi)− µ) < α

)
= P(Z < α), (2.39)

Z ∼ N
(
0, σ2

)
, (2.40)

σ2 = Varπ[f(X0)] + 2
∞∑
t=1

Covπ[f(X0), f(Xt)] (2.41)

where µ =
∫
X f(x)π(x) dx and where Varπ and Covπ denote the vari-

ance and covariance operators with the chain (Xi) initialized in sta-
tionarity with π0 = π. Thus standard error in the MCMC estimate also



18 Background

scales asymptotically as 1√
n
, with a constant that depends on the au-

tocovariance function of the stationary version of the chain. See Meyn
and Tweedie [2009, chapter 17] and Robert and Casella [2004, section
6.7] for precise statements of both the LLN and CLT for Markov chain
Monte Carlo estimates and for conditions on the Markov chain which
guarantee that these theorems hold.

These results show that the asymptotic behavior of MCMC esti-
mates of the form (2.37) is generally comparable to that of ordinary
Monte Carlo estimates as discussed in Section 2.2.2. However, in the
non-asymptotic regime MCMC estimates differ from ordinary Monte
Carlo estimates in an important respect: there is a transient bias due to
initializing the Markov chain out of stationarity. That is, the initial dis-
tribution π0 from which the first iterate is sampled is generally not the
chain’s stationary distribution π, since if it were then ordinary Monte
Carlo could be performed directly. While the marginal distribution of
each Markov chain iterate converges to the stationary distribution, the
effects of initialization on the initial iterates of the chain contribute an
error term to Eq. (2.37) in the form of a transient bias.

This transient bias does not factor into the asymptotic behavior
described by the MCMC analogs of the LLN and the CLT; asymptoti-
cally, it decreases at a rate of at least O( 1

n) and is hence dominated by
the Monte Carlo standard error which decreases only at rate O( 1√

n
).

However, its effects can be significant in practice, especially in machine
learning. Whenever a sampled chain seems “unmixed” because its iter-
ates are too dependent on the initialization, errors in MCMC estimates
are dominated by this transient bias.

The simulation in Figure 2.1 illustrates these error terms in MCMC
estimates and how they can behave as more Markov chain samples are
collected. The LLN and CLT for MCMC describe the regime on the far
right of the plot: the total error can be driven arbitrarily small because
the MCMC estimates are asymptotically unbiased, and the total error is
asymptotically dominated by the Monte Carlo standard error. However,
before reaching the asymptotic regime, the error is often dominated by
the transient initialization bias. Several of the new methods we survey
can be understood as attempts to alter the traditional MCMC tradeoffs,



2.2. Markov Chain Monte Carlo inference 19

k⇡
0
T

n
�
⇡
k T

V

iteration n (log scale)

es
ti
m

at
or

er
ro

r
(l
og

sc
al

e)
k⇡

0
T

n
�
⇡
k T

V

wall-clock time (log scale)

es
ti
m

at
or

er
ro

r
(l
og

sc
al

e)

Transient bias Standard error Total

Figure 2.1: A simulation illustrating error terms in MCMC estima-
tor (2.37) as a function of the number of Markov chain iterations
(log scale). The marginal distributions of the Markov chain iterates
converge to the target distribution (top panel), while the errors in
MCMC estimates due to transient bias and Monte Carlo standard
error are eventually driven arbitrarily small at rates of O( 1

n ) and
O( 1√

n
), respectively (bottom panel).



20 Background

as we discuss further in Chapter 6.
Transient bias can be traded off against Monte Carlo standard error

by choosing different subsets of Markov chain samples in the MCMC
estimator. As an extreme choice, instead of using the MCMC estima-
tor (2.37) with the full set of Markov chain samples {Xi}ni=1, transient
bias can be minimized by forming estimates using only the last Markov
chain sample:

E[f(X)] ≈ f(Xn). (2.42)

However, this choice of MCMC estimator maximizes the Monte Carlo
standard error, which asymptotically cannot be decreased below the
posterior variance of the estimand. A practical choice is to form MCMC
estimates using the last dn/2e Monte Carlo samples, resulting in an
estimator

E[f(X)] ≈ 1
dn/2e

n∑
i=bn/2c

f(Xi). (2.43)

With this choice, once the marginal distribution of the Markov chain
iterates approaches the stationary distribution the error due to tran-
sient bias is reduced at up to exponential rates. See Figure 2.2 for an
illustration. With any choice of MCMC estimator, transient bias can
be asymptotically decreased at least as fast as O( 1

n), and potentially
much faster, while MCSE can decrease only as fast as O( 1√

n
).

Using these ideas, MCMC algorithms provide a general means for
estimating posterior expectations of interest: first construct an algo-
rithm to simulate an ergodic Markov chain that admits the intended
posterior density as its stationary distribution, and then simply run
the simulation, collect samples, and form Monte Carlo estimates from
the samples. The task then is to design an algorithm to simulate from
such a Markov chain with the intended stationary distribution. In the
following sections, we briefly review two canonical procedures for con-
structing such algorithms: Metropolis-Hastings and Gibbs sampling.
For a thorough treatment, see Robert and Casella [2004] and Brooks
et al. [2011, Chapter 1].



2.2. Markov Chain Monte Carlo inference 21

k⇡
0
T

n
�
⇡
k T

V

iteration n (log scale)

es
ti
m

at
or

er
ro

r
(l
og

sc
al

e)

Transient bias Standard error Total

Figure 2.2: A simulation illustrating error terms in MCMC estima-
tor (2.43) as a function of the number of Markov chain iterations (log
scale). Because the first half of the Markov chain samples are not used
in the estimate, the error due to transient bias is reduced much more
quickly than in Figure 2.1 at the cost of shifting up the standard error
curve.



22 Background

Algorithm 1 Metropolis-Hastings for posterior sampling
Input: Initial state θ0, number of iterations T , joint density p(θ,x),

proposal density q(θ′ | θ)
Output: Samples θ1, . . . , θT

for t in 0, . . . , T − 1 do
θ′ ∼ q(θ′ | θt) . Generate proposal

α(θ, θ′)← min
(

1, p(θ
′,x)q(θt | θ′)

p(θt,x)q(θ′ | θt)

)
. Acceptance probability

u ∼ Unif(0, 1) . Set stochastic threshold
if α(θ, θ′) > u then

θt+1 ← θ′ . Accept proposal
else

θt+1 ← θt . Reject proposal

2.2.5 Metropolis-Hastings (MH) sampling

In the context of Bayesian posterior inference, the Metropolis-Hastings
(MH) algorithm simulates a reversible Markov chain over a state
space Θ that admits the posterior density p(θ |x) as its stationary
distribution. The algorithm depends on a user-specified proposal den-
sity, q(θ′|θ), which can be evaluated numerically and sampled from effi-
ciently, and also requires that the joint density p(θ, x) can be evaluated
(up to proportionality). The MH algorithm then generates a sequence
of states θ1, . . . , θT ∈ Θ according to Algorithm 1.

In each iteration, a proposal for the next state θ′ is drawn from the
proposal distribution, conditioned on the current state θ. The proposal
is stochastically accepted with probability given by the acceptance prob-
ability,

α(θ, θ′) = min
(

1, p(θ
′, x)q(θ | θ′)

p(θ, x)q(θ′ | θ)

)
, (2.44)

via comparison to a random variate u drawn uniformly from the inter-
val [0, 1]. If u < α(θ, θ′), then the next state is set to the proposal, oth-
erwise, the proposal is rejected and the next state is set to the current
state. MH is a generalization of the Metropolis algorithm [Metropolis
et al., 1953], which requires the proposal distribution to be symmet-
ric, i.e., q(θ′ | θ) = q(θ | θ′), in which case the acceptance probability is



2.2. Markov Chain Monte Carlo inference 23

simply

min
(

1, p(θ
′, x)

p(θ, x)

)
. (2.45)

Hastings [1970] later relaxed this by showing that the proposal distri-
bution could be arbitrary.

One can show that the stationary distribution is indeed p(θ |x)
by showing that the MH transition operator satisfies detailed bal-
ance (2.36). The MH transition operator density is a two-component
mixture corresponding to the ‘accept’ event and the ‘reject’ event:

T (θ → θ′) = α(θ, θ′)q(θ′ |x) + (1− β(θ))δθ(θ′) (2.46)

β(θ) =
∫

Θ
α(θ, θ′)q(θ′ | θ) dθ′. (2.47)

To show detailed balance, it suffices to show the two balance conditions

α(θ, θ′)q(θ′ | θ)p(θ |x) = α(θ′, θ)q(θ | θ′)p(θ′ |x) (2.48)
(1− β(θ))δθ(θ′)p(θ |x) = (1− β(θ′))δθ′(θ)p(θ′ |x). (2.49)

To show (2.48) we write

α(θ, θ′)q(θ′ | θ)p(θ |x) = min
(

1, p(θ
′, x)q(θ | θ′)

p(θ, x)q(θ′ | θ)

)
q(θ′ | θ)p(θ |x)

= min
(
q(θ′ | θ)p(θ |x), p(θ′, x)q(θ | θ′)p(θ |x)

p(θ, x)

)
= min

(
q(θ′ | θ)p(θ |x), p(θ′ |x)q(θ | θ′)

)
= min

(
q(θ′ | θ)p(θ, x)p(θ

′ |x)
p(θ′, x) , p(θ

′ |x)q(θ | θ′)
)

= min
(

1, p(θ, x)q(θ′ | θ)
p(θ′, x)q(θ | θ′)

)
q(θ | θ′)p(θ′ |x).

(2.50)

To show (2.49), we need to verify that

(1− β(θ))p(θ |x) = (1− β(θ′))p(θ′ |x) , (2.51)

and we can use the same manipulation as in (2.50) under the integral



24 Background

Algorithm 2 Gibbs sampling
Input: X Markov on graph G with nodes {1, 2, . . . , N}, Markov blan-
kets MBG(i) and subroutines to sample Xi |XMBG(i) for each i ∈ V

Output: Samples {x̂(t)}
Initialize x = (x1, x2, . . . , xN )
for t = 1, 2, . . . do

for i = 1, 2, . . . , N do
xi ← sample Xi |XMBG(i) = xMBG(i)

x̂(t) ← (x1, x2, . . . , xN )

sign:

(1− β(θ))p(θ |x) =
(

1−
∫
α(θ, θ′)q(θ′ | θ) dθ′

)
p(θ |x)

=
(

1−
∫
α(θ′, θ)q(θ | θ′) dθ

)
p(θ′ |x)

= (1− β(θ′))p(θ′ |x). (2.52)

See Robert and Casella [2004, Section 7.3] for a more detailed treat-
ment of the Metropolis-Hastings algorithm.

2.2.6 Gibbs sampling

Given a collection of n random variables X = {Xi : i ∈ [n]}, the
Gibbs sampling algorithm iteratively samples each variable conditioned
on the sampled values of the others. When the random variables are
Markov on a graph G = (V,E), the conditioning can be reduced to
each variable’s respective Markov blanket, as in Algorithm 2. In the
context of Bayesian inference, the posterior of interest may correspond
to conditioning on some subset of the random variables, fixing them to
observed values.

A variant of the systematic scan of Algorithm 2, in which nodes
are traversed in a fixed order for each outer iteration, is the random
scan, in which nodes are traversed according to a random permutation
sampled for each outer iteration. An advantage of the random scan
(and other variants) is that the chain becomes reversible and therefore



2.3. Mean field variational inference 25

simpler to analyze [Robert and Casella, 2004, Section 10.1.2]. With the
conditional independencies implied by a graph, some sampling steps
may be performed in parallel.

The Gibbs sampling algorithm can be analyzed as a special case
of the Metropolis-Hastings algorithm, where the proposal distribution
is based on the conditional distributions and the acceptance probabil-
ity is always one. If the Markov chain produced by a Gibbs sampling
algorithm is ergodic, then the stationary distribution is the target dis-
tribution of X [Robert and Casella, 2004, Theorem 10.6]. The Markov
chain for a Gibbs sampler can fail to be ergodic if, for example, the
support of the target distribution is disconnected [Robert and Casella,
2004, Example 10.7]. A sufficient condition for Gibbs sampling to be er-
godic is that all conditional densities exist and are positive everywhere
[Robert and Casella, 2004, Theorem 10.8].

For a more detailed treatment of Gibbs sampling theory, see Robert
and Casella [2004, Chapters 6 and 10].

2.3 Mean field variational inference

In mean field, and variational inference more generally, the task is to
approximate an intractable distribution, such as a complex posterior,
with a distribution from a tractable family so that the posterior can
be efficiently interrogated for estimations of interest. In this section we
define the mean field optimization problem and derive the standard
coordinate optimization algorithm. We also give some basic results on
the relationship between mean field and both graphical model and ex-
ponential family structure. For concreteness and simpler notation, we
work mostly with undirected graphical models; the results extend im-
mediately to directed models.

Mean field inference makes use of several densities and distribu-
tions, and so we use a subscript notation for expectations to clarify the
measure used in the integration when it cannot easily be inferred from
context. Given a function f and a random variable X with range X and
density p with respect to a base measure ν, we write the expectation



26 Background

of f as
Ep(X) [f(X)] =

∫
X
f(x)p(x)ν(dx). (2.53)

Proposition 2.4 (Mean field variational inequality). For a probability
density p with respect to a base measure ν of the form

p(x) = 1
Z
p̄(x) with Z ,

∫
p̄(x)ν(dx), (2.54)

where p̄ is the unnormalized density, for all densities q with respect
to ν we have

logZ = L[q] + KL(q‖p) ≥ L[q] (2.55)

where

L[q] , Eq(X)

[
log p̄(X)

q(X)

]
= Eq(X) [log p̄(X)] + H[q] (2.56)

KL(q‖p) , Eq(X)

[
log q(X)

p(X)

]
. (2.57)

Here, H[q] is the differential entropy of q.

Proof. To show the equality, with X ∼ q we write

L[q] + KL(q‖p) = Eq(X)

[
p̄(X)
q(X)

]
+ Eq(X)

[
log q(X)

p(X)

]
(2.58)

= Eq(X)

[
log p̄(X)

p(X)

]
(2.59)

= logZ. (2.60)

The inequality follows from the property KL(q‖p) ≥ 0, known as
Gibbs’s inequality, which follows from Jensen’s inequality and the fact
that the logarithm is concave:

−KL(q‖p) = Eq(X)

[
log q(X)

p(X)

]
≤ log

∫
q(x)p(x)

q(x)ν(dx) = 0 (2.61)

with equality if and only if q = p (ν-a.e.).

We call the negative log of p̄ in (2.54) the energy and L[q] the vari-
ational lower bound, and say L[q] decomposes into the entropy minus
the average energy as in (2.56). For two densities q and p with respect



2.3. Mean field variational inference 27

to the same base measure, KL(q‖p) is the Kullback-Leibler divergence
from q to p, used as a measure of dissimilarity between pairs of densi-
ties [Amari and Nagaoka, 2007].

The variational inequality given in Proposition 2.4 is useful in in-
ference because if we wish to approximate an intractable p with a
tractable q by minimizing KL(q‖p), we can equivalently choose q to
maximize L[q], which is possible to evaluate since it does not include
the partition function Z.

In the context of Bayesian inference, p is usually an intractable
posterior distribution of the form p(θ|x, α), p̄ is the unnormalized
joint distribution p̄(θ) = p(θ|α)p(x|θ), and Z is the marginal like-
lihood p(x|α) =

∫
p(x|θ)p(θ|α)ν(dθ), which plays a central role in

Bayesian model selection and the minimum description length (MDL)
criterion [MacKay, 2002, Chapter 28] [Hastie et al., 2001, Chapter 7].

Given that graphical model structure can affect the complexity of
probabilistic inference [Koller and Friedman, 2009] it is natural to con-
sider families q that factor according to tractable graphs.

Definition 2.3 (Mean field variational inference). Let p be the density
with respect to ν for a collection of random variables X = (Xi : i ∈ V ),
and let

Q , {q : q(x) ∝
∏
C∈C

qC(xC)} (2.62)

be a family of densities with respect to ν that factorize according to a
graph G = (V,E) with C being the set of maximal cliques of G. Then
the mean field optimization problem is

q∗ = arg max
q∈Q

L[q] (2.63)

where L[q] is defined as in (2.56).

Note that this optimization problem is not in general convex1and
so one can only expect to find a local optimum of the objective [Wain-
wright and Jordan, 2008]. However, when the model distribution is an
exponential family the objective is concave in each qC individually and
hence an optimization procedure that updates each factor in turn, while

1In the sense of maximizing a concave objective over a convex set.



28 Background

holding the rest constant, will converge to a local optimum [Wainwright
and Jordan, 2008] [Bishop, 2006, Section 10.1.1] [Murphy, 2012, Sec-
tion 22.3]. We call such a coordinate ascent procedure on (2.63) a mean
field algorithm.

For approximating families in a factored form, we can derive a
generic update to be used in a mean field algorithm.

Proposition 2.5 (Mean field update). Given a mean field objective as
in Definition 2.3, the optimal update to a factor qA fixing the other
factors defined by q∗A = arg maxqA L[q] is

q∗A(xA) ∝ exp{E[log p̄(xA, XAc)]} (2.64)

where the expectation is over XAc ∼ qAc with

qAc(xAc) ∝
∏

C∈C\A
qC(xC) . (2.65)

Proof. Dropping terms constant with respect to qA, we write

q∗A = arg min
qA

KL(q‖p) (2.66)

= arg min
qA

EqA [log qA(XA)] + EqA [EqAc [log p̄(X)]] (2.67)

= arg min
qA

KL(qA‖p̃A) (2.68)

where p̃A(xA) ∝ exp{EqAc [log p̄(xA, XAc)]}. Therefore, we achieve the
unique (ν-a.e.) minimum by setting qA = p̃A.

Finally, we note the simple form of updates for exponential family
conjugate pairs.

Proposition 2.6 (Mean field and conjugacy). If xi appears in p̄ only in
an exponential family conjugate pair (p1, p2) where

p1(xi|xπG(i)) ∝ exp{〈η(xπG(i)), t(xi)〉} (2.69)
p2(xcG(i)|xi) = exp{〈t(xi), (t(xcG(i)), 1)〉} (2.70)

then the optimal factor qi(xi) is in the prior family with natural pa-
rameter

η̃ , Eq[η(XπG(i))] + Eq[(t(XcG(i)), 1)]. (2.71)



2.4. Stochastic gradient optimization 29

Proof. The result follows from substituting (2.69) and (2.70)
into (2.64).

See Wainwright and Jordan [2008, Chapter 5] for a convex analysis
perspective on mean field algorithms in graphical models composed of
exponential families.

2.4 Stochastic gradient optimization

In this section we briefly review some basic ideas in stochastic gradient
optimization. In particular, the basic algorithm we use in this paper is
given in Algorithm 3 and sufficient conditions for its convergence to a
local extreme point are given in Theorem 2.1.

Given a dataset ȳ = {ȳ(k)}Kk=1, where each ȳ(k) is a data minibatch,
consider the optimization problem

φ∗ = arg max
φ

f(φ) (2.72)

where the objective function f decomposes according to

f(φ) =
K∑
k=1

g(φ, ȳ(k)). (2.73)

In the context of variational Bayesian inference, the objective f may
be a variational lower bound on the model evidence and φ may be
the parameters of the variational family. In MAP inference, f may be
proportional to the posterior density and φ may be its parameters.

Using the decomposition of f , we can compute unbiased Monte
Carlo estimates of its gradient. In particular, if the random index k̂

is sampled from {1, 2, . . . ,K}, denoting the probability of sampling
index k as pk > 0, we have

∇φf(φ) =
K∑
k=1

pk
1
pk
∇φg(φ, ȳ(k)) = Ek̂

[
1
pk̂
∇φg(φ, ȳ(k̂))

]
. (2.74)

Thus by considering a Monte Carlo approximation to the expectation
over k̂, we can generate stochastic approximate gradients of the objec-
tive f using only a single ȳ(k) at a time.



30 Background

Algorithm 3 Stochastic gradient ascent
Input: f : Rn → R of the form (2.74), sequences ρ(t) and G(t)

Initialize φ(0) ∈ Rn

for t = 0, 1, 2, . . . do
k̂(t) ← sample index k with probability pk, for k = 1, 2, . . . ,K
φ(t+1) ← φ(t) + ρ(t) 1

pk̂
G(t)∇φg(φ(t), ȳ(k̂(t)))

A stochastic gradient ascent algorithm uses these approximate gra-
dients to perform updates and find a local optimum to the optimization
problem. At each iteration, such an algorithm samples a data mini-
batch, computes a gradient with respect to that minibatch, and takes
a step in that direction. In particular, for a sequence of stepsizes ρ(t)

and a sequence of positive definite matrices G(t), a typical stochastic
gradient ascent algorithm is given in Algorithm 3.

Stochastic gradient algorithms have very general convergence guar-
antees, requiring only weak conditions on the step size sequence and
even the accuracy of the gradients themselves. We summarize a com-
mon set of sufficient conditions in Theorem 2.1. Proofs of this result,
along with more general versions, can be found in Bertsekas and Tsit-
siklis [1989] and Bottou [1998]. Note also that while the construction
here has assumed that the stochasticity in the gradients arises only
from randomly subsampling a finite sum, more general versions al-
low for other sources of stochasticity, typically requiring only bounded
variance (and even allowing biased gradients) Bertsekas and Tsitsiklis
[1989, Section 7.8].

Theorem 2.1. Given a function f : Rn → R of the form (2.73), if

1. there exists a constant C0 such that f(φ) ≤ C0 for all φ ∈ Rn,

2. there exists a constant C1 such that

‖∇f(φ)−∇f(φ′)‖2 ≤ C1‖φ− φ′‖2 ∀φ, φ′ ∈ Rn,

3. there are positive constants C2 and C3 such that

∀t C2I ≺ G(t) ≺ C3I,



2.4. Stochastic gradient optimization 31

4. and the stepsize sequence ρ(t) satisfies
∞∑
t=0

ρ(t) =∞ and
∞∑
t=0

(ρ(t))2 <∞,

then Algorithm 3 converges to a local stationary point in the sense that

lim inf
t→∞

‖∇f(φ(t))‖ = 0 (2.75)

with probability 1.

While stochastic optimization theory provides convergence guaran-
tees, there is no general theory to analyze rates of convergence for non-
convex problems such as those that commonly arise in posterior infer-
ence. Indeed, the empirical rate of convergence often depends strongly
on the variance of the stochastic gradient updates and on the choice
of step size sequence. There are automatic methods to tune or adapt
the sequence of stepsizes [Snoek et al., 2012, Ranganath et al., 2013],
though we do not discuss them here. To make a single-pass algorithm,
the minibatches can be sampled without replacement.



3
MCMC with data subsets

In MCMC sampling for Bayesian inference, the task is to simulate a
Markov chain that admits as its stationary distribution the posterior
distribution of interest. While there are many standard procedures for
constructing and simulating from such Markov chains, when the dataset
is large many of these algorithms’ updates become computationally
expensive. This growth in complexity naturally suggests the question
of whether there are MCMC procedures that can generate approximate
posterior samples without using the full dataset in each update. In
this chapter, we focus on recent MCMC sampling schemes that scale
Bayesian inference by operating on only subsets of data at a time.

3.1 Factoring the joint density

In most Bayesian inference problems, the fundamental object of interest
is the posterior density, which for fixed data is proportional to the
product of the prior and the likelihood:

π(θ |x) ∝ π(θ,x) = π0(θ)π(x | θ). (3.1)

In this survey we are often concerned with posteriors where the
data x = {xn}Nn=1 are conditionally independent given the model pa-

32



3.2. Adaptive subsampling for Metropolis–Hastings 33

rameters θ, and hence the likelihood can be decomposed into a product
of terms:

π(θ |x) ∝ π0(θ)π(x | θ) = π0(θ)
N∏
n=1

π(xn | θ). (3.2)

When N is large, this factorization can be exploited to construct
MCMC algorithms in which the updates depend only on subsets of
the data.

In particular, we can use subsets of data to form an unbiased Monte
Carlo estimate of the log likelihood and consequently the log joint den-
sity. The log likelihood is a sum of terms:

log π(x | θ) =
N∑
n=1

log π(xn | θ), (3.3)

and we can approximate this sum using a random subset of m < N

terms
log π(x | θ) ≈ N

m

m∑
n=1

log π(x∗n | θ), (3.4)

where {x∗n}mn=1 is a uniformly random subset of {xn}Nn=1. This approx-
imation is an unbiased estimator and yields an unbiased estimate of
the log joint density:

log π(θ)π(x | θ) ≈ log π0(θ) + N

m

m∑
n=1

log π(x∗n | θ). (3.5)

Several of the methods reviewed in this chapter exploit this estimator
to perform MCMC updates.

3.2 Adaptive subsampling for Metropolis–Hastings

In traditional Metropolis–Hastings (MH), we evaluate the joint density
to decide whether to accept or reject a proposal. As noted by Ko-
rattikara et al. [2014], because the value of the joint density depends
on the full dataset, when N is large this is an unappealing amount of
computation to reach a binary decision. In this section, we survey ideas
for using approximate MH tests that depend on only a subset of the



34 MCMC with data subsets

full dataset. The resulting approximate MCMC algorithms proceed in
each iteration by reading only as much data as required to satisfy some
estimated error tolerance.

While there are several variations, the common idea is to model
the probability that the outcome of such an approximate MH test
differs from the exact MH test. This probability model allows us to
construct an approximate MCMC sampler, outlined in Section 3.2.2,
where the user specifies some tolerance for the error in an MH test
and the amount of data evaluated is controlled by an adaptive stopping
rule. Different models for the MH test error lead to different stopping
rules. Korattikara et al. [2014] use a normal model to construct a t-
statistic hypothesis test, which we describe in Section 3.2.3. Bardenet
et al. [2014] instead use concentration inequalities, which we describe
in Section 3.2.4. Given an error model and resulting stopping rule, both
schemes rely on an MH test based on a Monte Carlo estimate of the
log joint density, which we summarize in Section 3.2.1. Our notation
in this section follows Bardenet et al. [2014].

Bardenet et al. [2014] observe that similar ideas have been devel-
oped both in the context of simulated annealing1 by the operations
research community [Bulgak and Sanders, 1988, Alkhamis et al., 1999,
Wang and Zhang, 2006], and in the context of MCMC inference for
factor graphs [Singh et al., 2012].

3.2.1 An approximate MH test based on a data subset

In the Metropolis–Hastings algorithm (§2.2.5), the proposal is stochas-
tically accepted when

π(θ′ |x)q(θ | θ′)
π(θ |x)q(θ′ | θ) > u, (3.6)

where u ∼ Unif(0, 1). Rearranging and using log probabilities gives

log
[
π(x | θ′)
π(x | θ)

]
> log

[
u
q(θ′ | θ)π0(θ)
q(θ | θ′)π0(θ′)

]
. (3.7)

1Simulated annealing is a stochastic optimization heuristic that is operationally
similar to MH.



3.2. Adaptive subsampling for Metropolis–Hastings 35

Scaling both sides by 1/N gives an equivalent threshold,

Λ(θ, θ′) > ψ(u, θ, θ′), (3.8)

where on the left, Λ(θ, θ′) is the average log likelihood ratio,

Λ(θ, θ′) = 1
N

N∑
n=1

log
[
π(xn | θ′)
π(xn | θ)

]
≡ 1
N

N∑
n=1

`n, (3.9)

where
`n = log π(xn | θ′)− log π(xn | θ), (3.10)

and on the right,

ψ(u, θ, θ′) = 1
N

log
[
u
q(θ′ | θ)π0(θ)
q(θ | θ′)π0(θ′)

]
. (3.11)

We can form an approximate threshold by subsampling the `n.
Let {`∗n}mn=1 be a subsample of size m < N , without replacement,
from {`n}Nn=1. This gives the following approximate test:

Λ̂m(θ, θ′) > ψ(u, θ, θ′), (3.12)

where
Λ̂m(θ, θ′) = 1

m

m∑
n=1

log
[
π(x∗n | θ′)
π(x∗n | θ)

]
≡ 1
m

m∑
n=1

`∗n . (3.13)

This subsampled average log likelihood ratio Λ̂m(θ, θ′) is an unbiased
estimate of the average log likelihood ratio Λ(θ, θ′). However, an error
is made in the event that the approximate test (3.12) disagrees with
the exact test (3.8), and the probability of such an error event depends
on the distribution of Λ̂m(θ, θ′) and not just its mean.

Note that because the proposal θ′ is usually a small perturbation
of θ, we expect log π(xn | θ′) to be similar to log π(xn | θ). In this case,
we expect the log likelihood ratios `n have a smaller variance compared
to the variance of log π(xn | θ) across data terms.

3.2.2 Approximate MH with an adaptive stopping rule

A nested sequence of data subsets, sampled without replacement, that
converges to the complete dataset gives us a sequence of approximate



36 MCMC with data subsets

Algorithm 4 Approximate MH with an adaptive stopping rule
Input: Initial state θ0, number of iterations T , data x = {xn}Nn=1,
posterior π(θ |x), proposal q(θ′ | θ)
Output: Samples θ1, . . . , θT
for t in 0, . . . , T − 1 do

θ′ ∼ q(θ′ | θt) . Generate proposal
u ∼ Unif(0, 1) . Draw random number

ψ(u, θ, θ′)← 1
N

log
[
u
q(θ′ | θ)π0(θ)
q(θ | θ′)π0(θ′)

]
Λ̂(θ, θ′)← AvgLogLikeRatioEstimate(θ, θ′, ψ(u, θ, θ′))
if Λ̂(θ, θ′) > ψ(u, θ, θ′) then . Approximate MH test

θt+1 ← θ′ . Accept proposal
else

θt+1 ← θt . Reject proposal

MH tests that converges to the exact MH test. Modeling the error of
such an approximate MH test gives us a mechanism for designing an
approximate MH algorithm in which, at each iteration, we incremen-
tally read more data until an adaptive stopping rule informs us that
our error is less than some user-specified tolerance. Algorithm 4 out-
lines this approach. The function AvgLogLikeRatioEstimate com-
putes Λ̂(θ, θ′) according to an adaptive stopping rule that depends on
an error model, i.e., a way to approximate or bound the probability
that the approximate outcome disagrees with the full-data outcome:

P
[
((Λ̂m(θ, θ′) > ψ(u, θ, θ′)) 6= ((Λ(θ, θ′) > ψ(u, θ, θ′))

]
. (3.14)

We describe two possible error models in Sections 3.2.3 and 3.2.4.
A practical issue with adaptive subsampling is choosing the sizes of

the data subsets. One approach, taken by Korattikara et al. [2014], is to
use a fixed batch size b and read b more data points at a time. Bardenet
et al. [2014] instead geometrically increase the total subsample size, and
also discuss connections between adaptive stopping rules and related
ideas such as bandit problems, racing algorithms and boosting.



3.2. Adaptive subsampling for Metropolis–Hastings 37

3.2.3 Using a t-statistic hypothesis test

Korattikara et al. [2014] propose an approximate MH acceptance prob-
ability that uses a parametric test of significance as its error model.
By assuming a normal model for the log likelihood estimate Λ̂(θ, θ′),
a t-statistic hypothesis test then provides an estimate of whether the
approximate outcome agrees with the full-data outcome, i.e., the ex-
pression in Equation (3.14). This leads to an adaptive framework as
in Section 3.2.2 where, at each iteration, the data are processed incre-
mentally until the t-test satisfies some user-specified tolerance ε.

Let us model the `n as i.i.d. from a normal distribution with
bounded variance σ2:

`n ∼ N (µ, σ2) . (3.15)

The mean estimate µ̂m for µ based on the subset of size m is equal
to Λ̂m(θ, θ′):

µ̂m = Λ̂m(θ, θ′) = 1
m

m∑
n=1

`∗n . (3.16)

The error estimate σ̂m for σ may be derived from sm/
√
m, where sm is

the empirical standard deviation of the m subsampled `n terms, i.e.,

sm =
√

m

m− 1
(
Λ̂2
m(θ, θ′)− Λ̂m(θ, θ′)2

)
, (3.17)

where
Λ̂2
m(θ, θ′) = 1

m

m∑
n=1

(`∗n)2. (3.18)

To obtain a confidence interval, we multiply this estimate by the finite
population correction, giving:

σ̂m = sm√
m

√
N −m
N − 1 . (3.19)

If m is large enough for the CLT to hold, the test statistic

t = Λ̂m(θ, θ′)− ψ(u, θ, θ′)
σ̂m

(3.20)



38 MCMC with data subsets

Algorithm 5 Estimate of the average log likelihood ratio. The adap-
tive stopping rule uses a t-statistic hypothesis test.

Parameters: batch size b, user-defined error tolerance ε
function AvgLogLikeRatioEstimate(θ, θ′, ψ(u, θ, θ′))

m, Λ̂(θ, θ′), Λ̂2(θ, θ′)← 0, 0, 0
while True do

c← min(b,N −m)

Λ̂(θ, θ′)← 1
m+ c

(
mΛ̂(θ, θ′) +

m+c∑
n=m+1

log π(xn | θ′)
π(xn | θ)

)

Λ̂2(θ, θ′)← 1
m+ c

(
mΛ̂2(θ, θ′) +

m+c∑
n=m+1

[
log π(xn | θ′)

π(xn | θ)

]2)
m← m+ c

s←
√

m

m− 1
(
Λ̂2(θ, θ′)− Λ̂(θ, θ′)2

)
σ̂ ← s√

m

√
N −m
N − 1

ρ← 1− φm−1

(∣∣∣∣∣ Λ̂(θ, θ′)− ψ(u, θ, θ′)
σ̂

∣∣∣∣∣
)

if ρ > ε or m = N then
return Λ̂(θ, θ′)

follows a Student’s t-distribution with m− 1 degrees of freedom
when Λ(θ, θ′) = ψ(u, θ, θ′). The tail probability for |t| then gives the
probability that the approximate and actual outcomes agree, and thus

ρ = 1− φm−1(|t|) (3.21)

is the probability that they disagree, where φm−1(·) is the CDF of
the Student’s t-distribution with m− 1 degrees of freedom. The t-test
thus gives an adaptive stopping rule, i.e., for any user-provided toler-
ance ε ≥ 0, we can incrementally increase m until ρ ≤ ε. We illustrate
this approach in Algorithm 5.



3.2. Adaptive subsampling for Metropolis–Hastings 39

3.2.4 Using concentration inequalities

Bardenet et al. [2014] propose an adaptive subsampling method that
is mechanically similar to using a t-test but instead uses concentration
inequalities. In addition to a bound on the error (of the approximate
acceptance probability) that is local to each iteration, concentration
bounds yield a bound on the total variation distance between the ap-
proximate and true stationary distributions.

As in Section 3.2.3, we evaluate an approximate MH threshold based
on a data subset of size m, given in Equation (3.12). We bound the
probability that the approximate binary outcome is incorrect via con-
centration inequalities that characterize the quality of Λ̂m(θ, θ′) as an
estimate for Λ(θ, θ′). Such a concentration inequality is a probabilistic
statement that, for δm ∈ (0, 1) and some constant cm,

P
(∣∣∣Λ̂m(θ, θ′)− Λ(θ, θ′)

∣∣∣ ≤ cm) ≥ 1− δm. (3.22)

For example, in Hoeffding’s inequality without replacement [Serfling,
1974]

cm = Cθ,θ′

√
2
m

(
1− m− 1

N

)
log

( 2
δm

)
(3.23)

where

Cθ,θ′ = max
1≤n≤N

∣∣log π(xn | θ′)− log π(xn | θ)
∣∣ = max

1≤n≤N
|`n|, (3.24)

using `n as in Equation (3.10). Alternatively, if the empirical standard
deviation sm of the m subsampled `∗n terms is small, then the empirical
Bernstein bound,

cm = sm

√
2 log(3/δm)

m
+ 6Cθ,θ′ log(3/δm)

m
, (3.25)

is tighter [Audibert et al., 2009], where sm is given in Equation (3.17).
While Cθ,θ′ can be obtained via all the `n, this is precisely the compu-
tation we want to avoid. Therefore, the user must provide an estimate
of Cθ,θ′ .

Bardenet et al. [2014] use a concentration bound to construct an
adaptive stopping rule based on a strategy called empirical Bernstein



40 MCMC with data subsets

ψ Λ̂m Λ

2cm

Figure 3.1: Reproduction of Figure 2 from Bardenet et al. [2014].
If |Λ̂m(θ, θ′)− ψ(u, θ, θ′)| > cm, then the adaptive stopping rule using
a concentration bound is satisfied and we use the approximate MH
test based on Λ̂m(θ, θ′).

stopping [Mnih et al., 2008]. Let cm be a concentration bound as in
Equation (3.23) or (3.25) and let δm be the associated error. This con-
centration bound states that |Λ̂m(θ, θ′)− Λ(θ, θ′)| ≤ cm with probabil-
ity 1− δm. If |Λ̂m(θ, θ′)− ψ(u, θ, θ′)| > cm, then the approximate MH
test agrees with the exact MH test with probability 1− δm. We repro-
duce a helpful illustration of this scenario from Bardenet et al. [2014]
in Figure 3.1. If instead |Λ̂m(θ, θ′)− ψ(u, θ, θ′)| ≤ cm, then we want to
increase m until this is no longer the case. Let M be the stopping time,
i.e., the number of data points evaluated using this criterion,

M = min
(
N, inf

m≥1

∣∣∣Λ̂m(θ, θ′)− ψ(u, θ, θ′)
∣∣∣ > cm

)
. (3.26)

We can set δm according to a user-defined parameter ε ∈ (0, 1) so
that ε gives an upper bound on the error of the approximate acceptance
probability. Let p > 1 and set

δm = p− 1
pmp

ε, thus
∑
m≥1

δm ≤ ε. (3.27)

A union bound argument gives

P

 ⋂
m≥1

{∣∣∣Λ̂m(θ, θ′)− Λ(θ, θ′)
∣∣∣ ≤ cm}

 ≥ 1− ε, (3.28)

under sampling without replacement. Hence, with probability 1− ε,
the approximate MH test based on Λ̂M (θ, θ′) agrees with the exact
MH test. In other words, the stopping rule for computing Λ̂m(θ, θ′) in
Algorithm 4 is satisfied once we observe |Λ̂m(θ, θ′)− ψ(u, θ, θ′)| > cm.



3.2. Adaptive subsampling for Metropolis–Hastings 41

We illustrate this approach in Algorithm 6, using Hoeffding’s inequality
without replacement.

In their actual implementation, Bardenet et al. [2014] modify δm
to reflect the number of batches processed instead of the subsample
size m. For example, suppose we use the concentration bound in Equa-
tion (3.23), i.e., Hoeffding’s inequality without replacement. Then after
processing a subsample of size m in k batches, the adaptive stopping
rule checks whether |Λ̂m(θ, θ′)− ψ(u, θ, θ′)| > cm, where

cm = Cθ,θ′

√
2
m

(
1− m− 1

N

)
log

( 2
δk

)
(3.29)

and
δk = p− 1

pkp
ε. (3.30)

Also, as mentioned in Section 3.2.2, Bardenet et al. [2014] geometrically
increase the subsample size by a factor γ. In their experiments, they
use the empirical Bernstein-Serfling bound [Bardenet and Maillard,
2015]. For the hyperparameters, they set p = 2, γ = 2, and ε = 0.01,
and remark that they empirically found their algorithm to be robust
to the choice of ε.

3.2.5 Error bounds on the stationary distribution

In this and the next subsection, we reproduce some theoretical results
from Korattikara et al. [2014] and Bardenet et al. [2014]. After set-
ting up some notation, we emphasize the most general aspects of these
results, which apply to pairs of transition kernels whose differences
are bounded, and thus are not specific to adaptive subsampling pro-
cedures. The central theorem is an upper bound on the difference be-
tween the stationary distributions of such pairs of kernels in the case
of Metropolis–Hastings. Its proof depends on the ability to bound the
difference in the acceptance probabilities, at each iteration, of the two
MH transition kernels.

Preliminaries and notation. Let P and Q be probability measures
(distributions) with Radon–Nikodym derivatives (densities) fP and fQ,



42 MCMC with data subsets

Algorithm 6 Estimate of the average log likelihood ratio. The adap-
tive stopping rule uses Hoeffding’s inequality without replacement.

Parameters: batch size b, user-defined error tolerance ε, estimate
of Cθ,θ′ = maxn |`n|, p > 1
function AvgLogLikeRatioEstimate(θ, θ′, ψ(u, θ, θ′))

m, Λ̂(θ, θ′)← 0, 0
while True do

c← min(b,N −M)

Λ̂(θ, θ′)← 1
m+ c

(
mΛ̂(θ, θ′) +

m+c∑
n=m+1

log π(xn | θ′)
π(xn | θ)

)
m← m+ c

δ ← p− 1
pmp

ε

c← Cθ,θ′

√
2
m

(
1− m− 1

N

)
log

(2
δ

)
if
∣∣∣Λ̂(θ, θ′)− ψ(u, θ, θ′)

∣∣∣ > c or m = N then
return Λ̂(θ, θ′)

respectively, and absolutely continuous with respect to measure ν. The
total variation distance between P and Q is

‖P −Q‖TV ≡
1
2

∫
θ∈Θ

dν(θ)|fP (θ)− fQ(θ)|. (3.31)

For any transition kernel T , let T k denote the kernel obtained via k
iterations of T . Let T denote a transition kernel with stationary distri-
bution π(θ |x). Let T̃ denote an approximation to T , with stationary
distribution π̃. When T is a MH transition kernel, let q(θ′ | θ) denote
its proposal, and let α(θ, θ′) denote its acceptance probability, given
current and proposed states θ and θ′, respectively, i.e.,

α(θ, θ′) = min
(

1, π(θ′)q(θ | θ′)
π(θ)q(θ′ | θ)

)
. (3.32)

In this case, T̃ is an approximate MH transition kernel with the same
proposal q(θ′ | θ), and let α̃(θ, θ′) denote its acceptance probability.
Throughout this section, we specify when T̃ is constructed from T



3.2. Adaptive subsampling for Metropolis–Hastings 43

via an adaptive stopping rule; some of the results are more general. Let

E(θ, θ′) = α̃(θ, θ′)− α(θ, θ′) (3.33)

be the acceptance probability error of the approximate MH test, with
respect to the exact test. Finally, let

Emax = sup
θ,θ′
|E(θ, θ′)| (3.34)

be the worst case absolute acceptance probability error.

Theoretical results. The theorem below provides an upper bound on
the total variation distance between the stationary distributions of T
and T̃ ; the bound is linear in Emax.

Theorem 3.1 (Total variation bound under uniform geometric ergodic-
ity [Bardenet et al., 2014]). Let T be uniformly geometrically ergodic,
i.e., there exists an integer h <∞, probability measure ν on (Θ,B(Θ)),
and constant λ ∈ [0, 1) such that for all θ ∈ Θ and B ∈ B(Θ),

T h(θ,B) ≥ (1− λ)ν(B), (3.35)

and thus there exists a constant A < ∞ such that for all θ ∈ Θ
and k > 0,

‖T k(θ, ·)− π‖TV ≤ Aλbk/hc. (3.36)

It follows that there exists a constant C < ∞ such that for all θ ∈ Θ
and k > 0,

‖T̃ k(θ, ·)− π̃‖TV ≤ C
(
1− (1− ε)h(1− λ)

)bk/hc
. (3.37)

Moreover,

‖π − π̃‖TV ≤
AhEmax
1− λ . (3.38)

The upper bound in Equation (3.38) depends on the worst case
acceptance probability error. For adaptive subsampling schemes, this
depends on the choice of adaptive procedure.



44 MCMC with data subsets

We briefly outline a proof from Korattikara et al. [2014] of a sim-
ilar theorem that exploits a stronger assumption on T . Specifically,
assume T satisfies the contraction condition,

‖PT − π‖TV ≤ η‖P − π‖TV, (3.39)

for all probability distributions P and some constant η ∈ [0, 1). We can
combine the contraction condition with a bound on the one-step error
between T and T̃ , defined as ‖PT̃ −PT‖TV, to bound ‖π− π̃‖TV. Note
that this result does not require T to be a MH kernel.

For approximate MH with an adaptive stopping rule, Emax, the
maximum acceptance probability error, gives an upper bound on the
one-step error. Korattikara et al. [2014] show how to calculate an up-
per bound on Emax when using a t-test. Using concentration inequalities
leads to a simpler bound: by construction, the user-defined error toler-
ance, ε, directly gives an upper bound on Emax [Bardenet et al., 2014].

Finally, we note that an adaptive subsampling schemes using a
concentration inequality enables an upper bound on the stopping
time [Bardenet et al., 2014].

3.3 Sub-selecting data via a lower bound on the likelihood

Maclaurin and Adams [2014] introduce Firefly Monte Carlo (FlyMC),
an auxiliary variable MCMC sampling procedure that operates on only
subsets of data in each iteration. At each iteration, the algorithm dy-
namically selects what data to evaluate based on the random indicators
included in the Markov chain state. In addition, it generates samples
from the exact target posterior rather than an approximation. However,
FlyMC requires a lower bound on the likelihood with a particular “col-
lapsible” structure (essentially an exponential family lower bound) and
is therefore not as generally applicable. The algorithm’s performance
depends on the tightness of the bound; it can achieve impressive gains
in performance when model structure allows.

FlyMC samples from an augmented posterior that eliminates po-
tentially many likelihood factors. Define

Ln(θ) = p(xn | θ) (3.40)



3.3. Sub-selecting data via a lower bound on the likelihood 45

and let Bn(θ) be a strictly positive lower bound on Ln(θ),
i.e., 0 < Bn(θ) ≤ Ln(θ). For each datum, we introduce a binary aux-
iliary variable zn ∈ {0, 1} conditionally distributed according to a
Bernoulli distribution,

p(zn |xn, θ) =
[
Ln(θ)−Bn(θ)

Ln(θ)

]zn [Bn(θ)
Ln(θ)

]1−zn
, (3.41)

where the zn are independent for different n. When the bound is tight,
i.e., Bn(θ) = Ln(θ), then zn = 0 with probability 1. More generally, a
tighter bound results in a higher probability that zn = 0. Augmenting
the density with z = {zn}Nn=1 gives:

π̃(θ, z |x) ∝ π(θ |x)p(z |x, θ)

= π0(θ)
N∏
n=1

π(xn | θ)p(zn |xn, θ). (3.42)

Using Equations (3.40) and (3.41), we can now write:

π̃(θ, z |x) ∝ π0(θ)
N∏
n=1

Ln(θ)
[
Ln(θ)−Bn(θ)

Ln(θ)

]zn [Bn(θ)
Ln(θ)

]1−zn

= π0(θ)
N∏
n=1

(Ln(θ)−Bn(θ))znBn(θ)1−zn

= π0(θ)
∏

n:zn=1
(Ln(θ)−Bn(θ))

∏
n:zn=0

Bn(θ). (3.43)

Thus for any fixed configuration of z we can evaluate the joint density
using only the likelihood terms Ln(θ) where zn = 1 and the bound
values Bn(θ) for each n = 1, 2, . . . , N .

While Equation (3.43) still involves a product of N terms, if the
product of the bound terms

∏
n:zn=0Bn(θ) can be evaluated without

reading each corresponding data point then the joint density can be
evaluated reading only the data xn for which zn = 1. In particular,
if the form of Bn(θ) is an exponential family density, then the prod-
uct

∏
n:zn=0Bn(θ) can be evaluated using only a finite-dimensional suf-

ficient statistic for the data {xn : zn = 0}. Thus by exploiting lower
bounds in the exponential family, FlyMC can reduce the amount of



46 MCMC with data subsets

data required at each iteration of the algorithm while maintaining the
exact posterior as its stationary distribution. Maclaurin and Adams
[2014] show an application of this methodology to Bayesian logistic
regression.

FlyMC presents three main challenges. The first is constructing a
collapsible lower bound, such as an exponential family, that is suf-
ficiently tight. The second is designing an efficient implementation.
Maclaurin and Adams [2014] discuss these issues and, in particular,
design a cache-like data structure for managing the relationship be-
tween the N indicator values and the data. Finally, it is likely that the
inclusion of these auxiliary variables slows the mixing of the Markov
chain, but Maclaurin and Adams [2014] only provide empirical evidence
that this effect is small relative to the computational savings from using
data subsets.

3.4 Stochastic gradients of the log joint density

In this section, we review recent efforts to develop MCMC algorithms
inspired by stochastic optimization techniques. This is motivated by
the existence of, first, MCMC algorithms that can be thought of as the
sampling analogues of optimization algorithms, and second, scalable
stochastic versions of these optimization algorithms.

Traditional gradient ascent or descent performs optimization by
iteratively computing and following a local gradient [Dennis and Schn-
abel, 1983]. In Bayesian MAP inference, the objective function is typi-
cally a log joint density and the update rule for gradient ascent is given
by

θt+1 = θt + εt
2

(
∇ log π(θt,x)

)
(3.44)

for t = 1, . . . ,∞. As discussed in Section 2.4, stochastic gradient de-
scent (SGD) is simple modification of gradient descent that exploits
situations where the objective function decomposes into a sum of many
terms. While the traditional gradient descent update depends on all the



3.4. Stochastic gradients of the log joint density 47

data, i.e.,

θt+1 = θt + εt
2

(
∇ log π0(θt) +

N∑
n=1
∇ log π(xn | θt)

)
, (3.45)

SGD forms an update based on only a data subset,

θt+1 = θt + εt
2

(
∇ log π0(θt) + N

m

m∑
n=1
∇ log π(xn | θt)

)
. (3.46)

The iterates converge to a local extreme point of the log joint density in
the sense that limt→∞∇ log π(θt|x) = 0 if the step size sequence {εt}∞t=1
satisfies ∞∑

t=1
εt =∞ and

∞∑
t=1

ε2t <∞. (3.47)

A common choice of step size sequence is εt = α(β + t)−γ for
some β > 0 and γ ∈ (0.5, 1].

Welling and Teh [2011] propose stochastic gradient Langevin dy-
namics (SGLD), an approximate MCMC procedure that combines
SGD with a simple kind of Langevin dynamics (Langevin Monte
Carlo) [Neal, 1994]. They extend the Metropolis-adjusted Langevin al-
gorithm (MALA) that uses noisy gradient steps to generate proposals
for a Metropolis–Hastings chain [Roberts and Tweedie, 1996]. At iter-
ation t, the MH proposal is

θ′ = θt + ε

2

(
∇ log π(θt,x)

)
+ ηt, (3.48)

where the injected noise ηt ∼ N (0, ε) is Gaussian. Notice that the
scale of the noise is

√
ε, i.e., is constant and set by the gradient step

size parameter. The MALA proposal is thus a stochastic gradient step,
constructed by adding noise to a step in the direction of the gradient.

SGLD modifies the Langevin dynamics in Equation (3.48) by using
stochastic gradients based on data subsets, as in Equation (3.46), and
requiring that the step size parameter satisfy Equation (3.47). Thus,
at iteration t, the proposal is

θ′ = θt + εt
2

(
∇ log π0(θt) + N

m

m∑
n=1
∇ log π(xn | θt)

)
+ ηt, (3.49)



48 MCMC with data subsets

Algorithm 7 Stochastic gradient Langevin dynamics (SGLD).
Input: Initial state θ0, number of iterations T , data x, grad log prior
∇ log π0(θ), grad log likelihood ∇ log π(x | θ), batch size m, step size
tuning parameters (e.g., α, β, γ)
Output: Samples θ1, . . . , θT
J = N/m

for τ in 0, . . . , T/J − 1 do
x← Permute(x) . For sampling without replacement
for k in 0, . . . , J − 1 do

t = τJ + k

εt ← α(β + t)−γ . Example step size
ηt ∼ N (0, εt) . Draw noise to inject

θ′ ← θt + εt
2

∇ log π0(θt) + N

m

km+m∑
n=km+1

∇ log π(xn | θt)

+ ηt

θt+1 ← θ′ . Accept proposal with probability 1

where ηt ∼ N (0, εt). Notice that the injected noise decays with the
gradient step size parameter, but at a slower rate. Specifically, if εt
decays as t−γ , then ηt decays as t−γ/2. As in MALA, the SGLD proposal
is a stochastic gradient step, where the noise comes from subsampling
as well as the injected noise.

An actual Metropolis–Hastings algorithm would accept or reject the
proposal in Equation (3.49) by evaluating the full (log) joint density
at θ′ and θt, but this is precisely the computation we wish to avoid.
Welling and Teh [2011] observe that as εt → 0, θ′ → θt in both Equa-
tions (3.48) and (3.49). In this limit, the probability of accepting the
proposal converges to 1, but the chain stops completely. The authors
suggest that εt can be decayed to a value that is large enough for effi-
cient sampling, yet small enough for the acceptance probability to es-
sentially be 1. These assumptions lead to a scheme where εt > ε∞ > 0,
for all t, and all proposals are accepted, therefore the acceptance proba-
bility is never evaluated. We show this scheme in Algorithm 7. Without
the stochastic MH acceptance step, however, asymptotic samples are
no longer guaranteed to represent the target distribution.



3.5. Summary 49

Adaptive subsampling FlyMC SGLD

Approach Approximate MH test Auxiliary variables Optimization plus noise

Requirements Error model, e.g., t-test Likelihood lower bound Gradients, i.e., ∇ log π(θ,x)

Data access pattern Mini-batches Random Mini-batches

Hyperparameters Batch size,
error tolerance per iteration None

Batch size,
error tolerance,
annealing schedule

Asymptotic bias Bounded TV None Bounded weak error

Table 3.1: Summary of recent MCMC methods for Bayesian infer-
ence that operate on data subsets. Error refers to the total variation
distance between the stationary distribution of the Markov chain and
the target posterior distribution.

In more recent work, Patterson and Teh [2013] apply SGLD to Rie-
mann manifold Langevin dynamics [Girolami and Calderhead, 2011]
and Chen et al. [2014] combine the idea of SGD with Hamiltonian
Monte Carlo (HMC), an improved generalization of Langevin dynam-
ics [Neal, 1994, 2010]. Finally, we note that all the methods in this
section require gradient information that might not be readily com-
putable.

3.5 Summary

In this chapter, we have surveyed three recent approaches to scal-
ing MCMC that operate on subsets of data. Below and in Table 3.1,
we summarize and compare adaptive subsampling approaches (§3.2),
FlyMC (§3.3), and SGLD (§3.4) along several axes.

Approaches. Adaptive subsampling approaches replace the
Metropolis–Hastings (MH) test, a function of all the data, with
an approximate test that depends on only a subset. FlyMC is an
auxiliary variable method that stochastically replaces likelihood
computations with a collapsible lower bound. Stochastic gradient
Langevin dynamics (SGLD) replaces gradients in a Metropolis-
adjusted Langevin algorithm (MALA) with stochastic gradients based
on data subsets and eliminates the Metropolis–Hastings test.



50 MCMC with data subsets

Generality, requirements, and assumptions. Each of the methods ex-
ploits assumptions or additional problem structure. Adaptive subsam-
pling methods require an error model that accurately represents the
probability that an approximate MH test will disagree with the exact
MH test. A normal model [Korattikara et al., 2014] or concentration
bounds [Bardenet et al., 2014] represent natural choices; under certain
conditions, tighter concentration bounds may apply. FlyMC requires a
strictly positive collapsible lower bound on the likelihood, essentially an
exponential family lower bound, which may not in general be available.
SGLD requires the log gradients of the prior and likelihood.

Data access patterns. While all the methods use subsets of data,
their access patterns differ. Adaptive subsampling and SGLD require
randomization to avoid issues of bias due to data order, but this ran-
domization can be achieved by permuting the data before each pass
and hence these algorithms allow data access that is mostly sequential.
In contrast, FlyMC operates on random subsets of data determined by
the Markov chain itself, leading to a random access pattern. However,
subsets from one iteration to the next tend to be correlated, and moti-
vate implementation details such as the proposed cache data structure.

Hyperparameters. FlyMC does not introduce additional hyperpa-
rameters that require tuning. Both adaptive subsampling methods and
SGLD introduce hyperparameters that can significantly affect perfor-
mance. Both are mini-batch methods, and thus have the batch size as a
tuning parameter. In adaptive subsampling methods, the stopping cri-
terion is evaluated potentially more than once before it is satisfied. This
motivates schemes that geometrically increase the amount of data pro-
cessed whenever the stopping criterion is not satisfied, which introduces
additional hyperparameters. Adaptive subsampling methods addition-
ally provide a single tuning parameter that allows the user to control
the error at each iteration. Finally, since these adaptive methods de-
fine an approximate MH test, they implicitly also require that the user
specify a proposal distribution. For SGLD, the user must specify an
annealing schedule for the step size parameter; in particular, it should



3.6. Discussion 51

converge to a small positive value so that the injected noise term dom-
inates, while not being too large compared to the scale of the posterior
distribution.

Error. FlyMC is exact in the sense that the target posterior distri-
bution is a marginal of its augmented state space. The adaptive sub-
sampling approaches and SGLD are approximate methods in that nei-
ther has a stationary distribution equal to the target posterior. The
adaptive subsampling approaches bound the error of the MH test at
each iteration, and for MH transition kernels with uniform ergodicity
this one-step error bound leads to an upper bound on the total varia-
tion distance between the approximate stationary distribution and the
target posterior distribution. The theoretical analysis of SGLD is less
clear [Sato and Nakagawa, 2014].

3.6 Discussion

Data subsets. The methods surveyed in this chapter achieve com-
putational gains by using data subsets in place of an entire dataset of
interest. The adaptive subsampling algorithms (§3.2) are more success-
ful when a small subsample leads to an accurate estimator for the exact
MH test’s accept/reject decision. Intuitively, such an estimator is easier
to construct when the log posterior values at the proposed and current
states are significantly different. This tends to be true far away from
the mode(s) of the posterior, e.g., in the tails of a distribution that
decay exponentially fast, compared to the area around a mode, which
is locally more flat. Thus, these algorithms tend to evaluate more data
when the chain is in the vicinity of a mode, and less data when the
chain is far away (which tends to be the case for an arbitrary initial
condition). SGLD (§3.4) exhibits somewhat related behavior. Recall
that SGLD behaves more like SGD when the update rule is dominated
by the gradient term, which tends to be true during the initial exe-
cution phase. Similar to SGD, the chain progresses toward a mode at
a rate that depends on the accuracy of the stochastic gradients. For
a log posterior target, stochastic gradients tend to be more accurate



52 MCMC with data subsets

estimators of true gradients far away from the mode(s). In contrast,
the MAP-tuned version of FlyMC (§3.3) requires the fewest data eval-
uations when the chain is close to the MAP, since by design, the lower
likelihood bounds are tightest there. Meanwhile, the untuned version
of FlyMC tends to exhibit the opposite behavior.

Adaptive proposal distributions. The Metropolis-Hastings algorithm
requires the user to specify a proposal distribution. Fixing proposal
distribution can be problematic, because the behavior of MH is sen-
sitive to the proposal distribution and can furthermore change as the
chain converges. A common solution, employed e.g., by Bardenet et al.
[2014], is to use an adaptive MH scheme [Haario et al., 2001, Andrieu
and Moulines, 2006]. These algorithms tune the proposal distribution
during execution, using information from the samples as they are gen-
erated, in a way that provably converges asymptotically. Often, it is
desirable for the proposal distribution to be close to the target. This
motivates adaptive schemes that fit a distribution to the observed sam-
ples and use this fitted model as the proposal distribution. For example,
a simple online procedure can update the mean µ and covariance Σ of
a multidimensional Gaussian model as follows:

µt+1 = µt + γt+1(θt+1 − µt) t ≥ 0
Σt+1 = Σk + γt+1((θt+1 − µt)(θt+1 − µt)> − Σt),

where t indexes the MH iterations and γt+1 controls the speed with
which the adaptation vanishes. An appropriate choice is γt = t−α

for α ∈ [1/2, 1). The tutorial by Andrieu and Thoms [2008] provides a
review of this and other, more sophisticated, adaptive MH algorithms.

Combining methods. The subsampling-based methods in this chap-
ter are conceptually modular, and some may be combined. For example,
it might be of interest to consider a ‘tunable’ version of FlyMC that
achieves even greater computational efficiency at the cost of its orig-
inal exactness. For example, we might use an adaptive subsampling
scheme (§3.2) to evaluate only a subset of terms in Equation (3.43);
this subset would need to represent terms corresponding to both possi-
ble values of zn. As another example, Korattikara et al. [2014] suggest



3.6. Discussion 53

using adaptive subsampling as a way to ‘fix up’ SGLD. Recall that
the original SGLD algorithm completely eliminates the MH test and
blindly accepts all proposals, in order to avoid evaluating the full pos-
terior. A reasonable compromise is to instead evaluate a fraction of the
data within the adaptive subsampling framework, since this bounds the
per-iteration error.

Unbiased likelihood estimators. The estimator in Equation (3.4)
based on a data subset is an unbiased estimator for the log likelihood;
to be explicit,

exp
{
N

m

m∑
n=1

log π(x∗n | θ)
}

(3.50)

is not an unbiased estimate of the likelihood. While it is possible to
transform Equation (3.50) into an unbiased likelihood estimate, e.g., us-
ing a Poisson estimator [Wagner, 1987, Papaspiliopoulos, 2009, Fearn-
head et al., 2010], it is not necessarily non-negative, which is a re-
quirement to incorporate the estimator into a Metropolis-Hastings al-
gorithm. In general, we cannot derive estimators that are both unbiased
and nonnegative [Jacob and Thiery, 2015, Lyne et al., 2015]. Pseudo-
marginal MCMC algorithms,2 first introduced by Lin et al. [2000],
rely on non-negative unbiased likelihood estimators to construct unbi-
ased MCMC procedures [Andrieu and Roberts, 2009]. In this context,
methods for constructing unbiased non-negative likelihood estimators
include importance sampling [Beaumont, 2003] and particle filters [An-
drieu et al., 2010, Doucet et al., 2015].

2Pseudo-marginal MCMC is also known as exact-approximate sampling.



4
Parallel and distributed MCMC

MCMC procedures that take advantage of parallel computing resources
form another broad approach to scaling Bayesian inference. Because the
computational requirements of inference often scale with the amount
of data involved, and because large datasets may not even fit on a
single machine, these approaches often focus on data parallelism. In this
chapter we consider several approaches to scaling MCMC by exploiting
parallel computation, either by adapting classical MCMC algorithms
or by defining new simulation dynamics that are inherently parallel.

One way to use parallel computing resources is to run multiple se-
quential MCMC algorithms at once. However, running identical chains
in parallel does not reduce the transient bias in MCMC estimates of
posterior expectations, though it would reduce their variance. Instead
of using parallel computation only to collect more MCMC samples and
thus reduce only estimator variance without improving transient bias,
it is often preferable to use computational resources to speed up the
simulation of the chain itself. Section 4.1 surveys several methods that
use parallel computation to speed up the execution of MCMC proce-
dures, including both basic methods and more recent ideas.

Alternatively, instead of adapting serial MCMC procedures to ex-

54



4.1. Parallelizing standard MCMC algorithms 55

ploit parallel resources, another approach is to design new approximate
algorithms that are inherently parallel. Section 4.2 summarizes some
recent ideas for simulations that can be executed in a data-parallel
manner and have their results aggregated or corrected to represent
posterior samples.

4.1 Parallelizing standard MCMC algorithms

An advantage to parallelizing standard MCMC algorithms is that they
retain their theoretical guarantees and analyses. Indeed, a common goal
is to produce identical samples under serial and parallel execution,
so that parallel resources enable speedups without introducing new
approximations. This section first summarizes some basic opportunities
for parallelism in MCMC and then surveys the speculative execution
framework for MH.

4.1.1 Conditional independence and graph structure

The MH algorithm has a straightforward opportunity for parallelism.
In particular, if the target posterior can be written as

π(θ |x) ∝ π0(θ)π(x | θ) = π0(θ)
N∏
n=1

π(xn | θ), (4.1)

then when the number of likelihood terms N is large it may be ben-
eficial to parallize the evaluation of the product of likelihoods. The
communication between processors is limited to transmitting the value
of the parameter and the scalar values of likelihood products. This ba-
sic parallelization, which naturally fits in a bulk synchronous parallel
(BSP) computational model, exploits conditional independence in the
probabilistic model, namely that the data are indepdendent given the
parameter.

Gibbs sampling algorithms can exploit more fine-grained condi-
tional independence structure, and are thus a natural fit for graphical
models which express such structure. Given a graphical model and a
corresponding graph coloring with K colors that partitions the set of
random variables into K groups, the random variables in each color



56 Parallel and distributed MCMC

⇡

zi

yi

✓k

N

K

(a) A mixture model (b) An undirected grid

Figure 4.1: Graphical models and graph colorings can expose oppor-
tunities for parallelism in Gibbs samplers. (a) In this directed graph-
ical model for a discrete mixture, each label (red) can be sampled in
parallel conditioned on the parameters (blue) and data (gray) and
similarly each parameter can be resampled in parallel conditioned on
the labels. (b) This undirected grid has a classical “red-black” color-
ing, emphasizing that the variables corresponding to red nodes can be
resampled in parallel given the values of black nodes and vice-versa.

group can be resampled in parallel while conditioning on the values in
the other K − 1 groups [Gonzalez et al., 2011]. Thus graphical mod-
els provide a natural perspective on opportunities for parallelism. See
Figure 4.1 for some examples.

These opportunities for parallelism, while powerful in some cases,
are limited by the fact that they require frequent global synchroniza-
tion and communication. Indeed, at each iteration it is often the case
that every element of the dataset is read by some processor and many
processors must mutually communicate. The methods we survey in the
remainder of this chapter aim to mitigate these limitations by adjusting
the allocation of parallel resources or by reducing communication.

4.1.2 Speculative execution and prefetching

Another class of parallel MCMC algorithms uses speculative parallel
execution to accelerate individual chains. This idea is called prefetching
in some of the literature and appears to have received only limited



4.1. Parallelizing standard MCMC algorithms 57

θt

θt+1
0

θt+2
00

θt+3
000 θt+3

001

θt+2
01

θt+3
010 θt+3

011

θt+1
1

θt+2
10

θt+3
100 θt+3

101

θt+2
11

θt+3
110 θt+3

111

Figure 4.2: Metropolis–Hastings conceptualized as a binary tree.
Nodes at depth d correspond to iteration t + d, where the root is
at depth 0, and branching to the right/left indicates that the pro-
posal is accepted/rejected. Each subscript is a sequence, of length d,
of 0’s and 1’s, corresponding to the history of rejected and accepted
proposals with respect to the root.

attention.
As shown in Algorithm 1, the body of a MH implementation is

a loop containing a single conditional statement and two associated
branches. We can thus view the possible execution paths as a binary
tree, illustrated in Figure 4.2. The vanilla version of parallel prefetching
speculatively evaluates all paths in this binary tree on parallel proces-
sors [Brockwell, 2006]. The sampled path will be exactly one of these,
so with J processors this approach achieves a speedup of log2 J with
respect to single core execution, ignoring communication and book-
keeping overheads.

Naïve prefetching can be improved by observing that the two
branches in Algorithm 1 are not taken with equal probability. For typ-
ical algorithm tunings, the reject branch tends to be more probable;
a classic result for the optimal MH acceptance rate in the Gaussian
case is 0.234 [Roberts et al., 1997], so prefetching scheduling policies
can be built around the expectation of rejection. Angelino et al. [2014]
provides a thorough review of these strategies.

Parallel predictive prefetching makes more efficient use of parallel



58 Parallel and distributed MCMC

resources by dynamically predicting the outcome of each MH test [An-
gelino et al., 2014]. In the case of Bayesian inference, these predictions
can be constructed in the same manner as the approximate MH al-
gorithms based on subsets of data, as discussed in Section 3.2.2. Fur-
thermore, these predictions can be made in the context of an error
model, e.g., with the concentration inequalities used by Bardenet et al.
[2014]. This yields a straightforward and rational mechanism for allo-
cating parallel cores to computations most likely to fall along the true
execution path.

Algorithms 8 and 9 sketch pseudocode for an implementation of
parallel predictive prefetching that follows a master-worker pattern.
See Angelino [2014] for a formal description of the algorithm and im-
plementation details.

4.2 Defining new data-parallel dynamics

In this section we survey two ideas for performing inference using new
data-parallel dynamics. These algorithms define new dynamics in the
sense that their iterates do not form ergodic Markov chains which ad-
mit the posterior distribution as an invariant distribution, and thus
they do not qualify as classical MCMC schemes. Instead, while some
of the updates in these algorithms resemble standard MCMC updates,
the overall dynamics are designed to exploit parallel and distributed
computation. A unifying theme of these new methods is to perform
local computation on data while controlling the amount of global syn-
chronization or communication.

One such family of ideas involves the definition of subposteriors,
defined using only subsets of the full dataset. Inference in the subpos-
teriors can be performed in parallel, and the results are then globally
aggregated into an approximate representation of the full posterior.
Because the synchronization and communication costs—as well as the
approximation quality—are determined by the aggregation step, sev-
eral such aggregation procedures have been proposed. In Section 4.2.1
we summarize some of these proposals.

Another class of data-parallel dynamics does not define indepen-



4.2. Defining new data-parallel dynamics 59

Algorithm 8 Parallel predictive prefetching master process
repeat

Receive message from worker j
if worker j wants work then

Find highest utility node ρ in tree with work left to do
Send worker j the computational state of ρ

else if message contains state θρ at proposal node ρ then
Record state θρ at ρ

else if message contains update at ρ then
Update estimate of π(θρ |x) at ρ
for node α in {ρ and its descendants} do

Update utility of α
if utility of α below threshold and worker k at α then

Send worker k message to stop current computation
if posterior computation at ρ and its parent complete then

Know definitively whether to accept or reject θρ
Delete subtree corresponding to branch not taken
if node ρ is the root’s child then

repeat
Trim old root so that new root points to child
Output state at root, the next state in the chain

until posterior computation at root’s child incomplete
until master has output T Metropolis–Hastings chain states
Terminate all worker processes

dent subposteriors but instead, motivated by Gibbs sampling, focuses
on simulating from local conditional distributions with out-of-date in-
formation. In standard Gibbs sampling, updates can be parallelized
in models with conditional independence structure (Section 4.1), but
without such structure the Gibbs updates may depend on the full
dataset and all latent variables, and thus must be performed sequen-
tially. These sequential updates can be especially expensive with large
or distributed datasets. A natural approximation to consider is to run
the same local Gibbs updates in parallel with out-of-date global infor-



60 Parallel and distributed MCMC

Algorithm 9 Parallel predictive prefetching worker process
repeat

Send master request for work
Receive work assignment at node ρ from master
if the corresponding state θρ has not yet been generated then

Generate proposal θρ
repeat

Advance the computation of π(θρ |x)
Send update at ρ to master
if receive message to stop current computation then

break
until computation of π(θρ |x) is complete

until terminated by master

mation and only infrequent communication. While such a procedure
loses the theoretical guarantees provided by standard Gibbs sampling
analysis, some empirical and theoretical results are promising. We refer
to this broad class of methods as Hogwild Gibbs algorithms, and we
survey some particular algorithms and analyses in Section 4.2.2.

4.2.1 Aggregating from subposteriors

Suppose we want to divide the evaluation of the posterior across J
parallel cores. We can divide the data into J partition ele-
ments, x(1), . . . ,x(J), also called shards, and factor the posterior into J
corresponding subposteriors, as

π(θ |x) =
J∏
j=1

π(j)(θ |x(j)), (4.2)

where

π(j)(θ |x(j)) = π0(θ)1/J ∏
x∈x(j)

π(x | θ), j = 1, . . . , J. (4.3)

The contribution from the original prior is down-weighted so that
the posterior is equal to the product of the J subposteriors,



4.2. Defining new data-parallel dynamics 61

i.e., π(θ |x) =
∏J
j=1 π

(j)(θ |x(j)). Note that a subposterior is not the
same as the posterior formed from the corresponding partition, i.e.,

π(j)(θ |x(j)) 6= π(θ |x(j)) = π0(θ)
∏

x∈x(j)

π(x | θ). (4.4)

Embarrassingly parallel consensus of subposteriors

Once a large dataset has been partitioned across multiple machines, a
natural alternative is to try running MCMC inference on each parti-
tion element separately and in parallel. This yields samples from each
subposterior in Equation 4.3, but there is no obvious choice for how to
combine them in a coherent fashion to form approximate samples of the
full posterior. In this section, we survey various proposals for forming
such a consensus solution from the subposterior samples. Algorithm 10
outlines the structure of consensus strategies for embarrassingly paral-
lel posterior sampling. This terminology, used by Huang and Gelman
[2005] and Scott et al. [2013], invokes related notions of consensus, no-
tably those that have existed for decades in the optimization literature
on data-parallel algorithms in decentralized or distributed settings. We
discuss this topic briefly in Section 4.2.1.

Below, we present two recent consensus strategies for combining
subposterior samples, through weighted averaging and density estima-
tion, respectively. The earlier report by Huang and Gelman [2005] pro-
poses four consensus strategies, based either on normal approximations
or importance resampling; the authors focus on Gibbs sampling for hi-
erarchical models and do not evaluate any actual parallel implementa-
tions. Another consensus strategy is the recently proposed variational
consensus Monte Carlo (VCMC) algorithm, which casts the consensus
problem within a variational Bayes framework [Rabinovich et al., 2015].

Throughout this section, Gaussian densities provide a useful refer-
ence point and motivate some of the consensus strategies. Consider the
jointly Gaussian model

θ ∼ N (0,Σ0) (4.5)
x(j) | θ ∼ N (θ,Σj). (4.6)



62 Parallel and distributed MCMC

Algorithm 10 Embarrassingly parallel consensus of subposteriors
Input: Initial state θ0, number of samples T , data partitions
x(1), . . . ,x(J), subposteriors π(1)(θ |x(1)), . . . , π(J)(θ |x(J))
Output: Approximate samples θ̂1, . . . , θ̂T
for j = 1, 2, . . . , J in parallel do

Initialize θj,0
for t = 1, 2, . . . , T do

Simulate MCMC sample θj,t from subposterior π(j)(θ |x(j))
Collect θj,1, . . . , θj,T

θ̂1, . . . , θ̂T ← ConsensusSamples({θj,1, . . . , θj,T }Jj=1)

The joint density is:

p(θ,x) = p(θ)
J∏
j=1

p(x(j) | θ)

∝ exp
{
−1

2θ
>Σ−1

0 θ

} J∏
j=1

exp
{
−1

2
(
x(j) − θ

)>
Σ−1
J

(
x(j) − θ

)}

∝ exp

−1
2θ
>

Σ−1
0 +

J∑
j=1

Σ−1
j

 θ +

 J∑
j=1

Σ−1
j x(j)

> θ
 .

Thus the posterior is Gaussian:

θ |x ∼ N (µ,Σ), (4.7)

where

Σ =

Σ−1
0 +

J∑
j=1

Σ−1
j

−1

(4.8)

µ = Σ

 J∑
j=1

Σ−1
j x(j)

 . (4.9)

To arrive at an expression for the subposteriors, we begin by factoring
the joint distribution into an appropriate product:

p(θ,x) ∝
J∏
j=1

fj(θ), (4.10)



4.2. Defining new data-parallel dynamics 63

where

fj(θ) = p(θ)1/Jp(x(j) | θ)

= exp
{
−1

2θ
>(Σ−1

0 /J)θ
}

exp
{
−1

2
(
x(j) − θ

)>
Σ−1
j

(
x(j) − θ

)}
∝ exp

{
−1

2θ
>
(
Σ−1

0 /J + Σ−1
j

)
θ +

(
Σ−1
j x(j)

)>
θ

}
.

Thus the subposteriors are also Gaussian:

θj ∼ N
(
µ̃j , Σ̃j

)
∝ fj(θ) (4.11)

where

Σ̃j =
(
Σ−1

0 /J + Σ−1
j

)−1
(4.12)

µ̃j =
(
Σ−1

0 /J + Σ−1
j

)−1 (
Σ−1
j x(j)

)
. (4.13)

Weighted averaging of subposterior samples

One approach is to combine the subposterior samples via weighted av-
eraging [Scott et al., 2013]. For simplicity, we assume that we obtain T
samples in Rd from each subposterior, and let {θj,t}Tt=1 denote the sam-
ples from the jth subposterior. The goal is to construct T consensus
posterior samples {θ̂t}Tt=1, that (approximately) represent the full pos-
terior, from the JT subposterior samples, where each θ̂t combines sub-
posterior samples {θj,t}Jj=1. We associate with each subposterior j a
matrix Wj ∈ Rd×d and assume that each consensus posterior sample is
a weighted1 average:

θ̂t =
J∑
j=1

Wjθj,t . (4.14)

The challenge now is to design an appropriate set of weights.
Following Scott et al. [2013], we consider the special case of Gaus-

sian subposteriors, as in Equation 4.11. Our presentation is slightly
different, as we also account for the effect of having a prior. We also
drop the subscript t from our notation for simplicity. Let {θj}Jj=1 be

1Our notation differs slightly from that of Scott et al. [2013] in that our
weights Wj are normalized.



64 Parallel and distributed MCMC

a set of draws from the J subposteriors. Each θj is an independent
Gaussian and thus θ̂ =

∑J
j=1Wjθj is Gaussian. From Equation 4.13,

its mean is

E[θ̂] =
J∑
j=1

WjE[θj ] =
J∑
j=1

Wjµ̃j

=
J∑
j=1

Wj

(
Σ−1

0 /J + Σ−1
j

)−1 (
Σ−1
j x(j)

)
. (4.15)

Thus, if we choose

Wj = Σ
(
Σ−1

0 /J + Σ−1
j

)
=

Σ−1
0 +

J∑
j=1

Σ−1
j

−1(
Σ−1

0 /J + Σ−1
j

)
(4.16)

where Σ is the posterior covariance in Equation 4.8, then

E[θ̂] = Σ

 J∑
j=1

Σ−1
j x(j)

 = µ, (4.17)

where µ is the posterior mean in Equation 4.9. A similar calculation
shows that Cov(θ̂) = Σ.

Thus for the Gaussian model, θ̂ is distributed according to the pos-
terior distribution, indicating that Equation 4.16 gives the appropriate
weights. Each weight matrix Wj is a function of Σ0, the prior covari-
ance, and the subposterior covariances {Σj}Jj=1. We can form a Monte
Carlo estimate of each Σj using the empirical sample covariance Σ̄j .
Algorithm 11 summarizes this consensus approach with weighted av-
eraging. While this weighting is optimal in the Gaussian setting, Scott
et al. [2013] shows it to be effective in some non-Gaussian models. Scott
et al. [2013] also suggests weighting each dimension of a sample θ by
the reciprocal of its marginal posterior variance, effectively restricting
the weight matrices Wj to be diagonal.

Subposterior density estimation

Another consensus strategy relies on density estimation [Neiswanger
et al., 2014]. First, use the subposterior samples to separately fit a



4.2. Defining new data-parallel dynamics 65

Algorithm 11 Consensus of subposteriors via weighted averaging.
Parameters: Prior covariance Σ0
function ConsensusSamples({θj,1, . . . , θj,T }Jj=1)

for j = 1, 2, . . . , J do
Σ̄j ← Sample covariance of {θj,1, . . . , θj,T }

Σ←

Σ−1
0 +

J∑
j=1

Σ̄−1
j

−1

for j = 1, 2, . . . , J do
Wj ← Σ

(
Σ−1

0 /J + Σ̄−1
j

)
. Compute weight matrices

for t = 1, 2, . . . , T do

θ̂t ←
J∑
j=1

Wjθj,t . Compute weighted averages

return θ̂1, . . . , θ̂T

density estimator, π̃(j)(θ |x(j)), to each subposterior. The product of
these density estimators then represents a density estimator for the
full posterior target, i.e.,

π(θ |x) ≈ π̃(θ |x) =
J∏
j=1

π̃(j)(θ |x(j)) . (4.18)

Finally, one can sample from this posterior density estimator using
MCMC; ideally, this density is straightforward to obtain and sample.
In general, however, density estimation can yield complex models that
are not amenable to efficient sampling.

Neiswanger et al. [2014] explore three density estimation approaches
of various complexities. Their first approach assumes a parametric
model and is therefore approximate. Specifically, they fit a Gaussian to
each set of subposterior samples, yielding

π̃(θ |x) =
J∏
j=1
N (µ̄j , Σ̄j), (4.19)

where µ̄j and Σ̄j are the empirical mean and covariance, respectively,
of the samples from the jth subposterior. This product of Gaussians



66 Parallel and distributed MCMC

Algorithm 12 Consensus of subposteriors via fits to Gaussians.
function ConsensusSamples({θj,1, . . . , θj,T }Jj=1)

for j = 1, 2, . . . , J do
µ̄j ← Sample mean of {θj,1, . . . , θj,T }
Σ̄j ← Sample covariance of {θj,1, . . . , θj,T }

Σ̂J ←

 J∑
j=1

Σ̄−1
j

−1

. Covariance of product of Gaussians

µ̂J ← Σ̂J

 J∑
j=1

Σ̄−1
j µ̄j

 . Mean of product of Gaussians

for t = 1, 2, . . . , T do
θ̂t ∼ N (µ̂J , Σ̂J) . Sample from fitted Gaussian

return θ̂1, . . . , θ̂T

simplifies to a single Gaussian N (µ̂J , Σ̂J), where

Σ̂J =

 J∑
j=1

Σ̄−1
j

−1

(4.20)

µ̂J = Σ̂J

 J∑
j=1

Σ̄−1
j µ̄j

 . (4.21)

These parameters are straightforward to compute and the overall den-
sity estimate can be sampled with reasonable efficiency and even in
parallel, if desired. Algorithm 12 summarizes this consensus strategy
based on fits to Gaussians.

In the case when the model is jointly Gaussian, the parametric den-
sity estimator we form is N (µ̂J , Σ̂J), with µ̂J and Σ̂J given in Equa-
tions 4.21 and 4.20, respectively. In this special case, the estimator ex-
actly represents the Gaussian posterior. However, recall that we could
have instead written the exact posterior directly as N (µ,Σ), where µ
and Σ are in Equations 4.9 and 4.8, respectively. Thus, computing the
exact posterior is more or less as expensive as computing the density es-
timator, i.e., J local matrix inversions (or corresponding linear system
solves).



4.2. Defining new data-parallel dynamics 67

The second approach proposed by Neiswanger et al. [2014] is to use
a nonparametric kernel density estimate (KDE) for each subposterior.
Suppose we obtain T samples {θj,t}Tt=1 from the jth subposterior, then
its KDE with bandwidth parameter h has the following functional form:

π̃(j)(θ |x(j)) = 1
T

T∑
t=1

1
hd
K

(‖θ − θj,t‖
h

)
, (4.22)

i.e., the KDE is a mixture of T kernels, each centered at one of the
samples. If we use T samples from each subposterior, then the den-
sity estimator for the full posterior is a complicated function with T J
terms, since it the a product of J such mixtures, and is therefore very
challenging to sample from. Neiswanger et al. [2014] use a Gaussian
KDE for each subposterior, and from this derive a density estimator
for the full posterior that is a mixture of T J Gaussians with unnor-
malized mixture weights. They also consider a third, semi-parametric
approach to density estimation given by the product of a parametric
(Gaussian) model and a nonparametric (Gaussian KDE) correction. As
the number of samples T →∞, the nonparametric and semi-parametric
density estimates exactly represent the subposterior densities and are
therefore asymptotically exact. Unfortunately, their complex mixture
representations grow exponentially in size, rendering them somewhat
unwieldy in practice.

Weierstrass samplers

The consensus strategies surveyed so far are embarrassingly parallel.
These methods obtain samples from each subposterior independently
and in parallel, and from these attempt to construct samples that (ap-
proximately) represent the posterior post-hoc. The methods in this
section proceed similarly, but introduce some amount of information
sharing between the parallel samplers. This communication pattern is
reminiscent of the alternating direction method of multipliers (ADMM)
algorithm for data-parallel convex optimization; for a detailed treat-
ment of ADMM, see the review by Boyd et al. [2011].

Weierstrass samplers [Wang and Dunson, 2013] are named for the



68 Parallel and distributed MCMC

Weierstrass transform:

Whf(θ) =
∫ ∞
−∞

1√
2πh

exp
{
−(θ − ξ)2

2h2

}
f(ξ)dξ , (4.23)

which was introduced by Weierstrass [1885]. The transformed func-
tionWhf(θ) is the convolution of a one-dimensional function f(θ) with
a Gaussian density of standard deviation h, and so converges pointwise
to f(θ) as h→ 0,

lim
h→0

Whf(θ) =
∫ ∞
−∞

δ(θ − ξ)f(ξ)dξ = f(θ),

where δ(τ) is the Dirac delta function. For h > 0, Whf(θ) can be
thought of as a smoothed approximation to f(θ). Equivalently, if f(θ)
is the density of a random variable θ, then Whf(θ) is the density of a
noisy measurement of θ, where the noise is an additive Gaussian with
zero mean and standard deviation h.

Wang and Dunson [2013] analyzes a more general class of Weier-
strass transforms by defining a multivariate version and also allowing
non-Gaussian kernels:

W
(K)
h f(θ1, . . . , θd) =

∫ ∞
−∞

f(ξ1, . . . , ξd)
d∏
i=1

h−1
i Ki

(
θi − ξi
hi

)
dξi.

For simplicity, we restrict our attention to the one-dimensional Weier-
strass transform.

Weierstrass samplers use Weierstrass transforms on subposterior
densities to define an augmented model. Let fj(θ) denote the j-th sub-
posterior,

fj(θ) = π(j)(θ |x(j)) = π0(θ)1/J ∏
x∈x(j)

π(x | θ), (4.24)



4.2. Defining new data-parallel dynamics 69

so that the full posterior can be approximated as

π(θ |x) ∝
J∏
j=1

fj(θ) ≈
J∏
j=1

Whfj(θ)

=
J∏
j=1

∫ 1√
2πh

exp
{
−(θ − ξj)2

2h2

}
fj(ξj)dξj

∝
∫ J∏

j=1
exp

{
−(θ − ξj)2

2h2

}
fj(ξj)dξj . (4.25)

The integrand of (4.25) defines the joint density of an augmented model
that includes the ξ = {ξj}Jj=1 as auxiliary variables:

πh(θ, ξ |x) ∝
J∏
j=1

exp
{
−(θ − ξj)2

2h2

}
fj(ξj). (4.26)

The posterior of interest can then be approximated by the marginal
distribution of θ in the augmented model,∫

πh(θ, ξ |x)dξ ≈ π(θ |x) (4.27)

with pointwise equality in the limit as h→ 0. Thus by running MCMC
in the augmented model, producing Markov chain samples of both θ

and ξ, we can generate approximate samples of the posterior. Further-
more, the augmented model is more amenable to parallelization due to
its conditional independence structure: conditioned on θ, the subpos-
terior parameters ξ are rendered independent.

The same augmented model construction can be motivated without
explicit reference to the Weierstrass transform of densities. Consider the
factor graph model of the posterior in Figure 4.3a, which represents the
definition of the posterior in terms of subposterior factors,

π(θ |x) ∝
J∏
j=1

fj(θ). (4.28)

This model can be equivalently expressed as a model where each sub-
posterior depends on an exact local copy of θ. That is, writing ξj as



70 Parallel and distributed MCMC

✓
f1(✓) f2(✓)

f3(✓)

(a) Factor graph for π(θ |x) in terms of subposterior factors fj(θ).

✓

f1(⇠1) f2(⇠2)

f3(⇠3)

⇠1 ⇠2

⇠3

 (⇠1, ✓)  (⇠2, ✓)

 (⇠3, ✓)

(b) Factor graph for the Weierstrass augmented model π(θ, ξ |x).

Figure 4.3: Factor graphs defining the augmented model of the
Weierstrass sampler.



4.2. Defining new data-parallel dynamics 71

the local copy of θ for subposterior j, the posterior is the marginal of
a new augmented model given by

π(θ, ξ |x) ∝
J∏
j=1

fj(ξj)δ(ξj − θ) . (4.29)

This new model can be represented by the factor graph in Figure 4.3b,
with potentials ψ(ξj , θ) = δ(ξj − θ). Finally, rather than taking the ξj
to be exact local copies of θ, we can instead relax them to be noisy
Gaussian measurements of θ:

πh(θ, ξ |x) ∝
J∏
j=1

fj(ξj)ψh(ξj , θ) (4.30)

ψh(ξj , θ) = exp
{
−(θ − ξj)2

2h2

}
. (4.31)

Thus the potentials ψh(ξj , θ) enforce some consistency across the noisy
local copies of the parameter but allow them to be decoupled, where
the amount of decoupling depends on h. With smaller values of h the
approximate model is more accurate, but the local copies are more
coupled and hence sampling in the augmented model is less efficient.

We can construct a Gibbs sampler for the joint distribu-
tion π(θ, ξ |x) in Equation 4.25 by alternately sampling from p(θ | ξ)
and p(ξj | θ,x(j)), for j = 1, . . . , J . It follows from Equation 4.25 that

p(θ | ξ1, . . . , ξj ,x) ∝
J∏
j=1

exp
{
−(θ2 − 2θξj)

2h2

}
. (4.32)

Rearranging terms gives

p(θ | ξ1, . . . , ξj ,x) ∝ exp
{
−(θ − ξ̄)2

2h2/J

}
, (4.33)

where ξ̄ = J−1∑J
j=1 ξj . The remaining Gibbs updates follow from

Equation 4.25, which directly yields

p(ξj | θ,x(j)) ∝ exp
{
−(θ − ξj)2

2h2

}
fj(ξj), j = 1, . . . , J. (4.34)



72 Parallel and distributed MCMC

Algorithm 13 Weierstrass Gibbs sampling. For simplicity, θ ∈ R.
Input: Initial state θ0, number of samples T , data partitions
x(1), . . . ,x(J), subposteriors f1(θ), . . . , fJ(θ), tuning parameter h
Output: Samples θ1, . . . , θT
Initialize θ0
for t = 0, 1, . . . , T − 1 do

Send θt to each processor
for j = 1, 2, . . . , J in parallel do

ξj,t+1 ∼ p(ξj,t+1 | θt,x(j)) ∝ N (ξj,t+1 | θt, h2) fj(ξj,t+1)
Collect ξ1,t+1, . . . , ξJ,t+1

ξ̄t+1 = 1
J

J∑
j=1

ξj,t+1

θt+1 ∼ N (θt+1 | ξ̄t+1, h
2/J)

This Gibbs sampler allows for parallelism but requires communica-
tion at every round. A straightforward parallel implementation, shown
in Algorithm 13, generates the updates for ξ1, . . . , ξJ in parallel, but
the update for θ depends on the most recent values of all the ξj . Wang
and Dunson [2013] describes an approximate variant of the full Gibbs
procedure that avoids frequent communication by only occasionally
updating θ. In other efforts to exploit parallelism while avoiding com-
munication, the authors propose alternate Weierstrass samplers based
on importance sampling and rejection sampling.

4.2.2 Hogwild Gibbs

Instead of designing new data-parallel algorithms from scratch, an-
other approach is to take an existing MCMC algorithm and execute
its updates in parallel at the expense of accuracy or theoretical guar-
antees. In particular, Hogwild Gibbs algorithms take a Gibbs sampling
algorithm (§2.2.6) with interdependent sequential updates (e.g., due to
collapsed parameters or lack of graphical model structure) and simply
run the updates in parallel anyway, using only occasional communica-
tion and out-of-date (stale) information from other processors. Because
these strategies take existing algorithms and let the updates run ‘hog-



4.2. Defining new data-parallel dynamics 73

wild’ in the spirit of Hogwild! stochastic gradient descent in convex
optimization [Recht et al., 2011], we refer to these methods as Hogwild
Gibbs.

Similar approaches have a long history. Indeed, Gonzalez et al.
[2011] attributes a version of this strategy, Synchronous Gibbs, to the
original Gibbs sampling paper [Geman and Geman, 1984]. However,
these strategies have seen renewed interest, particularly due to exten-
sive empirical work on Approximate Distributed Latent Dirichlet Al-
location (AD-LDA) [Newman et al., 2007, 2009, Asuncion et al., 2008,
Liu et al., 2011, Ihler and Newman, 2012], which showed that running
collapsed Gibbs sampling updates in parallel allowed for near-perfect
parallelism without a loss in predictive likelihood performance. With
the growing challenge of scaling MCMC both to not only big datasets
but also big models, it is increasingly important to understand when
and how these approaches may be useful.

In this section, we first define some variations of Hogwild Gibbs
based on examples in the literature. Next, we survey the empirical
results and summarize the current state of theoretical understanding.

Defining Hogwild Gibbs variants

Here we define some Hogwild Gibbs methods and related schemes,
such as the stale synchronous parameter server. In particular, we con-
sider bulk-synchronous parallel and asynchronous variations. We also
fix some notation used for the remainder of the section.

For all of the Hogwild Gibbs algorithms, as with standard Gibbs
sampling, we are given a collection of n random variables, {xi : i ∈ [n]}
where [n] , {1, 2, . . . , n}, and we assume that we can sample from the
conditional distributions xi|x¬i, where x¬i denotes {xj : j 6= i}. For
the Hogwild Gibbs algorithms, we also assume we have K processors,
each of which is assigned a set of variables on which to perform MCMC
updates. We represent an assignment of variables to processors by fixing
a partition {I1, I1, . . . , IK} of [n], so that the kth processor performs
updates on the state values indexed by Ik.



74 Parallel and distributed MCMC

Algorithm 14 Bulk-synchronous parallel (BSP) Hogwild Gibbs
Input: Joint distribution over x = (x1, . . . , xn), partition {I1, . . . , IK}
of {1, 2, . . . , n}, iteration schedule q(t, k)
Initialize x̄(1)

for t = 1, 2, . . . do
for k = 1, 2, . . . ,K in parallel do

x̄
(t+1)
Ik ← LocalGibbs(x̄(t), Ik, q(t, k))

Synchronize
function LocalGibbs(x̄, I, q)

for j = 1, 2, . . . , q do
for i ∈ I in order do

x̄i ← sample xi |x¬i = x̄¬i
return x̄

Bulk-synchronous parallel Hogwild Gibbs

A bulk-synchronous parallel (BSP) Hogwild Gibbs algorithm assigns
variables to processors and alternates between performing paral-
lel processor-local updates and global synchronization steps. During
epoch t, the kth processor performs q(t, k) MCMC updates, such as
Gibbs updates, on the variables {xi : i ∈ Ik} without communicating
with the other processors; in particular, these updates are computed
using out-of-date values for all {xj : j 6∈ Ik}. After all processors have
completed their local updates, all processors communicate the updated
state values in a global synchronization step and the system advances
to the next epoch. We summarize this Hogwild Gibbs variant in Al-
gorithm 14, in which the local MCMC updates are taken to be Gibbs
updates.

Several special cases of the BSP Hogwild Gibbs scheme have been
of interest. The Synchronous Gibbs scheme of Gonzalez et al. [2011]
associates one variable with each processor, so that |Ik| = 1 for each
k = 1, 2, . . . ,K (in which case we may take q = 1 since no local iter-
ations are needed with a single variable). One may also consider the
case where the partition is arbitrary and q is very large, in which case
the local MCMC iterations may converge and exact block samples are



4.2. Defining new data-parallel dynamics 75

drawn on each processor using old statistics from other processors for
each outer iteration. Finally, note that setting K = 1 and q(t, k) = 1
reduces to standard Gibbs sampling on a single processor.

Asynchronous Hogwild Gibbs

Another Hogwild Gibbs pattern involves performing updates asyn-
chronously. That is, processors might communicate only by sending
messages to one another instead of by a global synchronization. Ver-
sions of this Hogwild Gibbs pattern has proven effective both for col-
lapsed latent Dirichlet allocation topic model inference [Asuncion et al.,
2008], and for Indian Buffet Process inference [Doshi-Velez et al., 2009].
A version was also explored in the Gibbs sampler of the Stale Syn-
chronous Parameter (SSP) server of Ho et al. [2013], which placed an
upper bound on the staleness of the entries of the state vector on each
processor.

There are many possible communication strategies in the asyn-
chronous setting, and so we follow a version of the random commu-
nication strategy employed by Asuncion et al. [2008]. In this approach,
after performing some number of local updates, a processor sends its
updated state information to a set of randomly-chosen processors and
receives updates from other processors. The processor then updates its
state representation and performs another round of local updates. A
version of this asynchronous Hogwild Gibbs strategy is summarized in
Algorithm 15.

Theoretical analysis

Despite its empirical successes, theoretical understanding of Hogwild
Gibbs algorithms is limited. There are two settings in which some anal-
ysis has been offered: first, in a variant of AD-LDA, i.e., Hogwild Gibbs
applied to Latent Dirichlet Allocation models, and second in the jointly
Gaussian case.

The work of Ihler and Newman [2012] provides some understand-
ing of the effectiveness of a variant of AD-LDA by bounding in terms
of run-time quantities the one-step error probability induced by pro-



76 Parallel and distributed MCMC

Algorithm 15 Asynchronous Hogwild Gibbs
Initialize x̄(1)

for each processor k = 1, 2, . . . ,K in parallel do
for t = 1, 2, . . . do

x̄
(t+1)
Ik ← LocalGibbs(x̄(t), Ik, q(t, k))

Send x̄(t+1)
Ik to K ′ randomly-chosen processors

for each k′ 6= k do
if update x̄Ik′ received from processor k′ then

x̄
(t+1)
Ik′

← x̄Ik′
else

x̄
(t+1)
Ik′

← x̄
(t)
Ik′

ceeding with sampling steps in parallel, thereby allowing an AD-LDA
user to inspect the computed error bound after inference [Ihler and
Newman, 2012, Section 4.2]. In experiments, the authors empirically
demonstrate very small upper bounds on these one-step error proba-
bilities, e.g., a value of their parameter ε = 10−4 meaning that at least
99.99% of samples are expected to be drawn just as if they were sampled
sequentially. However, this per-sample error does not necessarily pro-
vide a direct understanding of the effectiveness of the overall algorithm
because errors might accumulate over sampling steps; indeed, under-
standing this potential error accumulation is of critical importance in
iterative systems. Furthermore, the bound is in terms of empirical run-
time quantities, and thus it does not provide guidance on which other
models the Hogwild strategy may be effective. Ihler and Newman [2012,
Section 4.3] also provides approximate scaling analysis by estimating
the order of the one-step bound in terms of a Gaussian approximation
and some distributional assumptions.

The jointly Gaussian case is more tractable for analysis [Johnson
et al., 2013, Johnson, 2014]. In particular, Johnson [2014, Theorem
7.6.6] shows that for the BSP Hogwild Gibbs process to be stable,
i.e., to form an ergodic Markov chain and have a well-defined station-
ary distribution, for any variable partition and any iteration schedule it
suffices for the model’s joint Gaussian precision matrix to satisfy a gen-



4.3. Summary 77

eralized diagonal dominance condition. Because the precision matrix
contains the coefficients of the log potentials in a Gaussian graphical
model, the diagonal dominance condition captures the intuition that
Hogwild Gibbs should be stable when variables do not interact too
strongly. Johnson [2014, Proposition 7.6.8] gives a more refined condi-
tion for the case where the number of processor-local Gibbs iterations
is large.

When a bulk-synchronous parallel Gaussian Hogwild Gibbs pro-
cess defines an ergodic Markov chain and has a stationary distribution,
Johnson [2014, Chapter 7] also provides an understanding of how that
stationary distribution relates to the model distribution. Because both
the model distribution and the Hogwild Gibbs process stationary dis-
tribution are Gaussian, accuracy can be measured in terms of the mean
vector and covariance matrix. Johnson [2014, Proposition 7.6.1] shows
that the mean of a stable Gaussian Hogwild Gibbs process is always
correct. Johnson [2014, Propositions 7.7.2 and 7.7.3] identify a tradeoff
in the accuracy of the process covariance matrix as a function of the
number of processor-local Gibbs iterations: at least when the proces-
sor interactions are sufficiently weak, more processor-local iterations
between synchronization steps increase the accuracy of the covariances
among variables within each processor but decrease the accuracy of the
covariances between variables on different processors. Johnson [2014,
Proposition 7.7.4] also gives a more refined error bound as well as an
inexpensive way to correct covariance estimates for the case where the
number of processor-local Gibbs iterations is large.

4.3 Summary

Many ideas for parallelizing MCMC have been proposed, exhibiting
many tradeoffs. These ideas vary in generality, in faithfulness to the
posterior, and in the parallel computation architectures for which they
are best suited. Here we summarize the surveyed methods, emphasizing
their relative strengths on these criteria. See Table 4.1 for an overview.



78
Paralleland

distributed
M
CM

C

Parallel density
evaluation (§4.1.1) Prefetching (§4.1.2) Consensus (§4.2.1) Weierstrass (§4.2.1) Hogwild Gibbs (§4.2.2)

Requirements Conditional independence None Approximate factorization Approximate factorization Weak dependencies across
processors

Parallel model BSP Speculative execution MapReduce BSP BSP and asynchronous mes-
sage passing variants

Communication Each iteration Master scheduling Once Tuneable Tuneable

Design choices None Scheduling policy Data partition,
consensus algorithm

Data partition,
synchronization frequency,
Weierstrass h

Data partition,
communication frequency

Computational
overheads

None Scheduling, bookkeeping Consensus step Auxiliary variable sampling None

Approximation
error

None None Depends on number of proces-
sors and consensus algorithm

Depends on number of proces-
sors and Weierstrass h

Depends on number of proces-
sors and staleness

Table 4.1: Summary of recent approaches to parallel MCMC.



4.3. Summary 79

Simulating independent Markov chains Independent instances of se-
rial MCMC algorithms can be run in an embarrassingly parallel man-
ner, requiring only minimal communication between processors to en-
sure distinct initializations and to collect samples. This approach can
reduce Monte Carlo variance by increasing the number of samples col-
lected in any time budget, achieving an ideal parallel speedup, but does
nothing to accelerate the warm-up period of the chains during which
the transient bias is eliminated (see Section 2.2.4 and Chapter 6). That
is, using parallel resources to run independent chains does nothing to
improve mixing unless there is some mechanism for information shar-
ing as in Nishihara et al. [2014]. In addition, running an independent
MCMC chain on each processor requires each processor to access the
full dataset, which may be problematic for especially large datasets.
These considerations motivate both subposterior methods and Hogwild
Gibbs.

Direct parallelization of standard updates Some MCMC algorithms
applied to models with particular structure allow for straightforward
parallel implementation. In particular, when the likelihood is factor-
ized across data points, the computation of the Metropolis–Hastings
acceptance probability can be parallelized. This strategy lends itself to
a bulk-synchronous parallel (BSP) computational model. Parallelizing
MH in this way yields exact MCMC updates and can be effective at re-
ducing the mixing time required by serial MH, but it requires a simple
likelihood function and its implementation requires frequent synchro-
nization and communication, mitigating parallel speedups unless the
likelihood function is very expensive.

Gibbs sampling also presents an opportunity for direct paralleliza-
tion for particular graphical model structures. In particular, given
a graph coloring of the graphical model, variables corresponding to
nodes assigned a particular color are conditionally mutually indepen-
dent and can be updated in parallel without communication. How-
ever, frequent synchronization and significant communication can be
required to transmit sampled values to neighbors after each update.
Relaxing both the strict conditional independence requirements and



80 Parallel and distributed MCMC

synchronization requirements motivates Hogwild Gibbs.

Prefetching and speculative execution The prefetching algorithms
studied in Section 4.1.2 use speculative execution to transform tra-
ditional (serial) Metropolis–Hastings into a parallel algorithm with-
out incurring approximate updates or requiring any model structure.
The implementation naturally follows a master-worker pattern, where
the master allocates (possibly speculative) computational work, such
as proposal generation or (partial) density evaluation, to worker pro-
cessors. Ignoring overheads, basic prefetching algorithms achieve at
least logarithmic speedup in the number of processors available. More
sophisticated scheduling by the master, such as predictive prefetch-
ing [Angelino et al., 2014], can increase speedup significantly. While
this method is very general and yields the same iterates as serial MH,
the speedup can be limited.

Subposterior consensus and Weierstrass samplers Subposterior
methods, such as the consensus Monte Carlo algorithms and the Weier-
strass samplers of Section 4.2.1, allow for data parallelism and minimal
communication because each subposterior Markov chain can be allo-
cated to a processor and simulation can proceed independently. Com-
munication is required only for final sample aggregation in consensus
Monte Carlo or the periodic resampling of the global parameter in
the Weierstrass sampler. In consensus Monte Carlo, the quality of the
approximate inference depends on both the effectiveness of the aggre-
gation strategy and the extent to which dependencies in the posterior
can be factorized into subposteriors. The Weierstrass samplers directly
trade off approximation quality and the amount of decoupling between
subposteriors.

The consensus Monte Carlo approach originated at Google [Scott
et al., 2013] and naturally fits the MapReduce programming model,
allowing it to be executed on large computational clusters. Recent work
has extended consensus Monte Carlo and provides tools for designing
simple consensus strategies [Rabinovich et al., 2015], but the generality
and approximation quality of subposterior methods remain unclear.



4.4. Discussion 81

The Weierstrass sampler fits well into a BSP model.

Hogwild Gibbs Hogwild Gibbs of Section 4.2.2 also allows for data
parallelism but avoids factorizing the posterior as in consensus Monte
Carlo or instantiating coupled copies of a global parameter as in the
Weierstrass sampler. Instead, processor-local sampling steps (such as
local Gibbs updates) are performed with each processor treating other
processors’ states as fixed at stale values; processors can communicate
updated states less frequently, either via synchronous or asynchronous
communication. Hogwild Gibbs variants span a range of parallel com-
putation paradigms from fully synchronous BSP to fully asynchronous
message-passing. While Hogwild Gibbs has proven effective in practice
for several models, its applicability and approximation tradeoffs remain
unclear.

4.4 Discussion

The ideas surveyed in this chapter suggest several challenges and ques-
tions.

More parallelism means less accuracy The new data-parallel meth-
ods surveyed here, namely consensus Monte Carlo, the Weierstrass sam-
plers, and Hogwild Gibbs, do not generate samples that are asymptot-
ically distributed according to the target posterior. Instead, each gen-
erates samples that are asymptotically distributed according to a dis-
tribution that is meant to approximate the target posterior. While the
nature of these approximations differ, each has a tradeoff between par-
allelism and accuracy: increasing parallelism by using more processors
decreases the faithfulness of the asymptotic posterior approximation.
This tradeoff may be inherent to most data-parallel MCMC schemes,
though parallel predictive prefetching strategies do not suffer the same
drawback.

How to split up data? The performance of data-parallel methods may
be significantly affected by the data partitioning that assigns data sub-
sets to processors. In the case of Hogwild Gibbs, it is probably best to



82 Parallel and distributed MCMC

choose a data partition that minimizes the strength of cross-processor
dependence. Similarly, in the case of subposterior methods, some fac-
torizations may be more effective than others. Since data paritioning
is likely to have significant practical effects for all of these methods, it
may be fruitful to develop and analyze general heuristics for assigning
data to processors.

Analysis of approximation quality and tradeoffs The works surveyed
in this chapter introduce several alternative approximations. While
each is well motivated, it is unclear how to choose the most appro-
priate method for a given model, or how to think about and compare
the various approximations and tradeoffs. A more unified perspective
is necessary, through empirical comparison or through analyzing their
application to simple models that are tractable for analysis.



5
Scaling variational mean field algorithms

Variational inference is a standard paradigm for posterior inference
in Bayesian models. Because variational methods pose inference as an
optimization problem, ideas in scalable optimization can in principle
yield scalable posterior inference algorithms. In this chapter, we con-
sider such scalable algorithms mainly in the context of mean field vari-
ational inference, which is often called variational Bayes.

These scalable variational inference algorithms can be compared to
the algorithms of Chapters 3 and 4 in the same way that variational
methods are usually compared to MCMC. That is, because inference is
typically performed in a family of distributions that does not include
the exact posterior, it can be said that variational methods do not
fully instantiate the Bayesian computation that MCMC methods do
(at least, when given unbounded computation time). Indeed, MAP in-
ference, in which the posterior is represented only as a single atom, is an
extreme case of variational inference. More generally, mean field vari-
ational families typically provide only unimodal approximations, and
additionally cannot represent some posterior correlations near particu-
lar modes. As a result, MCMCmethods can provide better performance
even when the Markov chain only explores a single mode in a reasonable

83



84 Scaling variational mean field algorithms

number of iterations.
Despite these potential shortcomings, variational inference is widely

used in machine learning because the computational advantage over
MCMC can be significant. This computational advantage is particu-
larly salient in the context of scaling inference to large datasets. The
big data context may also inform the relative cost of performing in-
ference in a constrained variational family rather than attempting to
represent the posterior exactly: when the posterior is concentrated, a
variational approximation may suffice. While such questions may ul-
timately need to be explored empirically on a case-by-case basis, the
scalable variational inference methods surveyed in this chapter provide
the tools for such an exploration.

In this chapter we summarize two patterns of scalable variational
inference. First, in Section 5.1, we discuss the application of stochas-
tic gradient optimization methods to mean field variational inference
problems. Second, in Section 5.2, we describe an alternative approach
that instead leverages the idea of incremental posterior updating to
develop an inference algorithm with minibatch-based updates.

5.1 Stochastic optimization and variational inference

Stochastic gradient optimization is a powerful tool for scaling opti-
mization algorithms to large datasets, and it has been applied to mean
field variational inference problems to great effect. While many tradi-
tional algorithms for optimizing mean field objective functions, includ-
ing both gradient-based and coordinate optimization methods, require
re-reading the entire dataset in each iteration, the stochastic gradient
framework allows each update to be computed with respect to mini-
batches of the dataset while providing very general asymptotic conver-
gence guarantees.

In this section we first summarize the stochastic variational infer-
ence (SVI) framework of Hoffman et al. [2013], which applies to models
with complete-data conjugacy. Next, we discuss alternatives and exten-
sions which can handle more general models at the cost of updates with
greater variance and, hence, slower convergence.



5.1. Stochastic optimization and variational inference 85

z(k) y(k)

k = 1, 2, . . . , K

�

Figure 5.1: Prototypical graphical model for stochastic variational
inference (SVI). The global latent variables are represented by φ and
the local latent variables by z(k).

5.1.1 SVI for complete-data conjugate models

This section follows the development in Hoffman et al. [2013]. It de-
pends on results from stochastic gradient optimization theory; see Sec-
tion 2.4 for a review. For notational simplicity we consider each mini-
batch to consist of only a single observation; the generalization to mini-
batches of arbitrary sizes is immediate.

Many common probabilistic models are hierarchical: they can be
written in terms of global latent variables (or parameters), local latent
variables, and observations. That is, many models can be written as

p(φ, z, y) = p(φ)
K∏
k=1

p(z(k) |φ)p(y(k) | z(k), φ) (5.1)

where φ denotes global latent variables, z = {z(k)}Kk=1 denotes local la-
tent variables, and y = {y(k)}Kk=1 denotes observations. See Figure 5.1
for a graphical model. Given such a class of models, the mean field vari-
ational inference problem is to approximate the posterior p(φ, z | ȳ) for
fixed data ȳ with a distribution of the form q(φ)q(z) = q(φ)

∏
k q(z(k))

by finding a local minimum of the KL divergence from the approx-
imating distribution to the posterior or, equivalently, finding a local
maximum of the marginal likelihood lower bound

L[q(φ)q(z)] , Eq(φ)q(z)

[
log p(φ, z, ȳ)

q(φ)q(z)

]
≤ log p(ȳ). (5.2)

Hoffman et al. [2013] develops a stochastic gradient ascent algo-
rithm for such models that leverages complete-data conjugacy. Gra-



86 Scaling variational mean field algorithms

dients of L with respect to the parameters of q(φ) have a conve-
nient form if we assume the prior p(φ) and each complete-data like-
lihood p(z(k), y(k) |φ) are a conjugate pair of exponential family densi-
ties. That is, if we have

log p(φ) = 〈ηφ, tφ(φ)〉 − logZφ(ηφ) (5.3)
log p(z(k), y(k) |φ) = 〈ηzy(φ), tzy(z(k), y(k))〉 − logZzy(ηzy(φ)) (5.4)

then conjugacy identifies the statistic of the prior with the natural
parameter and log partition function of the likelihood via

tφ(φ) = (ηzy(φ), − logZzy(ηzy(φ)) , (5.5)

so that

p(φ, z(k), ȳ(k)) ∝ exp
{
〈ηφ + (tzy(z(k), ȳ(k)), 1), tφ(φ)〉

}
. (5.6)

Conjugacy implies the optimal variational factor q(φ) has the same
form as the prior; that is, without loss of generality we can write q(φ)
in the same form as (5.3),

q(φ) = exp {〈η̃φ, tφ(φ)〉 − logZφ(η̃φ)} , (5.7)

for some variational parameter η̃φ.
Given this conjugacy structure, we can find a simple expression for

the gradient of L with respect to the global variational parameter η̃φ,
optimizing out the local variational factor q(z). That is, we write the
variational objective over global parameters as

L(η̃φ) = max
q(z)
L[q(φ)q(z)] . (5.8)

Writing the optimal parameters of q(z) as η̃∗z , note that when q(z) is
partially optimized to a stationary point of L, so that ∂L

∂η̃∗z
= 0 at η̃∗z ,

the chain rule implies that the gradient with respect to the global
variational parameters simplifies:

∂L
∂η̃φ

(η̃φ) = ∂L
∂η̃φ

(η̃φ, η̃∗z) + ∂L
∂η̃∗z

∂η̃∗z
∂η̃φ

(η̃φ, η̃∗z) (5.9)

= ∂L
∂η̃φ

(η̃φ, η̃∗z) . (5.10)



5.1. Stochastic optimization and variational inference 87

Because the optimal local factor q(z) can be computed with local mean
field updates for a fixed value of the global variational parameter η̃φ,
we need only find an expression for the gradient ∇η̃φL(η̃φ) in terms of
the optimized local factors.

To find an expression for the gradient ∇η̃φL(φ̃φ) that exploits con-
jugacy structure, using (5.6) we can substitute

p(φ, z, ȳ) ∝ exp
{
〈ηφ +

∑
k

(tzy(z(k), ȳ(k)), 1), tφ(φ)〉
}
, (5.11)

into the definition of L in (5.2). Using the optimal form of q(φ), we
have

L(η̃φ) = Eq(φ)q(z)

[
〈ηφ +

∑
k

tzy(z(k), ȳ(k))− η̃φ, tφ(φ)〉
]

+ logZφ(η̃φ) + const. (5.12)

= 〈ηφ +
∑
k

Eq(z(k))[tzy(z
(k), ȳ(k))]− η̃φ, Eq(φ)[tφ(φ)]〉

+ logZφ(η̃φ) + const , (5.13)

where the constant does not depend on η̃φ. Using the identity for nat-
ural exponential families that

∇ logZφ(η̃φ) = Eq(φ)[tφ(φ)], (5.14)

we can write the same expression as

L(η̃φ) =〈ηφ +
∑
k

Eq(z(k))[tzy(z
(k), ȳ(k))]− η̃φ, ∇ logZφ(η̃φ)〉

+ logZφ(η̃φ) + const . (5.15)

Thus we can compute the gradient of L(η̃φ) with respect to the global
variational parameters η̃φ as

∇η̃φL(η̃φ) = 〈∇2 logZφ(η̃φ), ηφ +
∑
k

Eq(z(k))[tzy(z
(k), ȳ(k))]− η̃φ〉

− ∇ logZφ(η̃φ) +∇ logZφ(η̃φ) (5.16)

= 〈∇2 logZφ(η̃φ), ηφ +
∑
k

Eq(z(k))[tzy(z
(k), ȳ(k))]− η̃φ〉



88 Scaling variational mean field algorithms

where the first two terms come from applying the product rule.
The matrix ∇2 logZφ(η̃φ) is the Fisher information of the varia-

tional family, since

− Eq(φ)
[
∇2
η̃φ

log q(φ)
]

= ∇2 logZφ(η̃φ). (5.17)

In the context of stochastic gradient ascent, we can cancel the multipli-
cation by the matrix ∇2 logZφ(η̃φ) simply by choosing the sequence of
positive definite matrices in Algorithm 3 to be G(t) , ∇2 logZφ(η̃(t)

φ )−1.
This choice yields a stochastic natural gradient ascent algorithm [Amari
and Nagaoka, 2007], where the updates are stochastic approximations
to the natural gradient

∇̃η̃φL = ηφ +
∑
k

Eq(z(k))[tzy(z
(k), ȳ(k))]− η̃φ. (5.18)

Natural gradients effectively include a second-order quasi-Newton cor-
rection for local curvature in the variational family, making the updates
invariant to reparameterization of the variational family and thus often
improving performance of the algorithm. More importantly, at least for
the case of complete-data conjugate families considered here, natural
gradient steps are in fact easier to compute than ‘flat’ gradient steps
in either the natural parameterization or moment parameterization of
the variational family q(φ).

Therefore a stochastic natural gradient ascent algorithm on the
global variational parameter η̃φ proceeds at iteration t by sampling a
minibatch ȳ(k) and taking a step of some size ρ(t) in an approximate
natural gradient direction via

η̃φ ← (1− ρ(t))η̃φ + ρ(t)
(
ηφ +KEq(z(k))[t(z

(k), ȳ(k))]
)

(5.19)

where we have assumed the minibatches are of equal size to simplify
notation. The local variational factor q(z(k)) is computed using a local
mean field update on the data minibatch and the global variational
factor. That is, if q(z(k)) is not further factorized in the mean field
approximation, it is computed according to

q(z(k)) ∝ exp
{
Eq(φ)[log p(z(k) |φ)p(ȳ(k) | z(k), φ)]

}
. (5.20)

We summarize the general SVI algorithm in Algorithm 16.



5.1. Stochastic optimization and variational inference 89

Algorithm 16 Stochastic Variational Inference (SVI)

Initialize global variational parameter η̃(0)
φ

for t = 0, 1, 2, . . . do
k̂ ← sample index k with probability pk > 0, for k = 1, 2, . . . ,K
q(z(k̂))← LocalMeanField(η̃(t), ȳ(k̂))
η̃

(t+1)
φ ← (1− ρ(t))η̃(t)

φ + ρ(t)
(
ηφ + 1

pk̂
E
q(z(k̂))

[
t(z(k̂), ȳ(k̂))

])

5.1.2 Stochastic gradients with general nonconjugate models

The development of SVI in the preceding section assumes that p(φ)
and p(z, y |φ) are a conjugate pair of exponential families. This as-
sumption led to a particularly convenient form for the natural gradient
of the mean field variational objective and hence an efficient stochas-
tic gradient ascent algorithm. However, when models do not have this
conjugacy structure, more general algorithms are required.

In this section we review Black Box Variational Inference (BBVI),
which is a stochastic gradient algorithm for variational inference that
can be applied at scale [Ranganath et al., 2014]. The “black box” name
suggests its generality: while the stochastic variational inference of Sec-
tion 5.1.1 requires particular model structure, BBVI only requires that
the model’s log joint distribution can be evaluated. It also makes few
demands of the variational family, since it only requires that the fam-
ily can be sampled and that the gradient of its log joint with respect
to the variational parameters can be computed efficiently. With these
minimal requirements, BBVI is not only useful in the big-data setting
but also a tool for handling nonconjugate variational inference more
generally. Because BBVI uses Monte Carlo approximation to compute
stochastic gradient updates, it fits naturally into a stochastic gradi-
ent optimization framework, and hence it has the additional benefit of
yielding a scalable algorithm simply by adding minibatch sampling to
its updates at the cost of increasing their variance. In this subsection
we review the general BBVI algorithm and then compare it to the SVI
algorithm of Section 5.1.1. For a review of Monte Carlo estimation, see
Section 2.2.2.



90 Scaling variational mean field algorithms

We consider a general model p(θ, y) = p(θ)
∏K
k=1 p(y(k) | θ) includ-

ing parameters θ and observations y = {y(k)}Kk=1 divided into K mini-
batches. The distribution of interest is the posterior p(θ | y) and we
write the variational family as q(θ) = q(θ | η̃θ), where we suppress the
particular mean field factorization structure of q(θ) from the notation.
The mean field variational lower bound is then

L = Eq(θ)
[
log p(θ, y)

q(θ)

]
. (5.21)

Taking the gradient with respect to the variational parameter η̃θ and
expanding the expectation into an integral, we have

∇η̃θL = ∇η̃θ
∫
q(θ) log p(θ, y)

q(θ) dθ (5.22)

=
∫
∇η̃θ

[
log p(θ, y)

q(θ)

]
q(θ)dθ +

∫
log p(θ, y)

q(θ) ∇η̃θq(θ)dθ (5.23)

where we have moved the gradient into the integrand and applied the
product rule to yield two terms. The first term is identically zero:∫

∇η̃θ

[
log p(θ, y)

q(θ)

]
q(θ)dθ = −

∫ 1
q(θ)∇η̃θ [q(θ)] q(θ)dθ (5.24)

= −
∫
∇η̃θq(θ)dθ (5.25)

= −∇η̃θ
∫
q(θ)dθ = 0 (5.26)

where we have used ∇η̃θ log p(θ, y) = 0. To write the second term of
(5.23) in a form that allows convenient Monte Carlo approximation, we
first note the identity

∇η̃θ log q(θ) =
∇η̃θq(θ)
q(θ) =⇒ ∇η̃θq(θ) = q(θ)∇η̃θ log q(θ) (5.27)

and hence we can write the second term of (5.23) as∫
log p(θ, y)

q(θ) ∇η̃θq(θ)dθ =
∫

log p(θ, y)
q(θ) ∇η̃θ [log q(θ)] q(θ)dθ (5.28)

= Eq(θ)
[
log p(θ, y)

q(θ) ∇η̃θ log q(θ)
]

(5.29)

≈ 1
|S|

∑
θ̂∈S

log p(θ̂, y)
q(θ̂)

∇η̃θ log q(θ̂) (5.30)



5.1. Stochastic optimization and variational inference 91

where in the final line we have written the expectation as a Monte
Carlo estimate using a set of samples S, where θ̂ iid∼ q(θ) for θ̂ ∈ S.
Notice that the gradient is written as a weighted sum of gradients of
the variational log density with respect to the variational parameters,
where the weights depend on the model log joint density.

The BBVI algorithm uses the Monte Carlo estimate (5.30) to com-
pute stochastic gradient updates. This gradient estimator is also known
as the score function estimator [Kleijnen and Rubinstein, 1996, Gelman
and Meng, 1998]. The variance of these updates, and hence the conver-
gence of the overall stochastic gradient algorithm, depends both on the
sizes of the gradients of the variational log density and on the variance
of q(θ). Large variance in the gradient estimates can lead to very slow
optimization, and so Ranganath et al. [2014] proposes and evaluates
two variance reduction schemes, including a control variate method as
well as a Rao-Blackwellization method that can exploit factorization
structure in the variational family.

To provide a scalable version of BBVI, gradients can be fur-
ther approximated by subsampling minibatches of data. That is,
using log p(θ, y) = log p(θ) +

∑K
k=1 log p(y(k) | θ) we write (5.29) and

(5.30) as

∇η̃θL = Ek̂
[
Eq(θ)

[(
log p(θ)

q(θ) +K log p(y(k̂) | θ̂)
)
∇η̃θ log q(θ)

]]
(5.31)

≈ 1
|S|

∑
θ̂∈S

(
log p(θ̂)

q(θ̂)
+KEk̂

[
log p(y(k̂) | θ̂)

])
∇η̃θ log q(θ̂) (5.32)

with the minibatch index k̂ distributed uniformly over {1, 2, . . . ,K}
and the minibatches are assumed to be the same size for simpler nota-
tion. This subsampling over minibatches further increases the variance
of the updates and thus may further limit the rate of convergence of
the algorithm. We summarize this version of the BBVI algorithm in
Algorithm 17.

It is instructive to compare the fully general BBVI algorithm ap-
plied to hierarchical models to the SVI algorithm of Section 5.1.1; this
comparison not only shows the benefits of exploiting conjugacy struc-
ture but also suggests a potential Rao-Blackwellization scheme. Tak-



92 Scaling variational mean field algorithms

Algorithm 17 Minibatch Black-Box Variational Inference (BBVI)

Initialize η̃(0)
θ

for t = 0, 1, 2, . . . do
S ← {θ̂s} where θ̂s ∼ q( · | η̃(t)

θ )
k̂ ∼ Uniform({1, 2, . . . ,K})
η̃

(t+1)
θ ← η̃

(t)
θ + 1

|S|
∑
θ̂∈S

(
log p(θ̂)

q(θ̂) +K log p(y(k̂) | θ̂)
)
∇η̃θ log q(θ̂)

ing θ = (φ, z) and q(θ) = q(φ)q(z) and starting from (5.22) and (5.29),
we can write the gradient as

∇η̃θL = Eq(φ)q(z)

[
log p(φ, z, y)

q(φ)q(z)∇η̃φ log q(φ)q(z)
]

(5.33)

≈ 1
|S|

∑
φ̂∈S

(
Eq(z) log p(φ̂, z, y)

q(φ̂)
− Eq(z) log q(z)

)
∇η̃φ log q(φ̂)

(5.34)

where S is a set of samples with φ̂
iid∼ q(φ) for φ̂ ∈ S. Thus if the

entropy of the local variational distribution q(z) and the expectations
with respect to q(z) of the log density log p(φ̂, z, y) can be computed
without resorting to Monte Carlo estimation, then the resulting update
would likely have a lower variance than the BBVI update that requires
sampling over both q(φ) and q(z).

This comparison also makes clear the advantages of exploiting con-
jugacy in SVI: when the updates of Section 5.1.1 can be used, nei-
ther q(φ) nor q(z) needs to be sampled. Furthermore, while BBVI uses
stochastic gradients in its updates, the SVI algorithm of Section 5.1.1
uses stochastic natural gradients, adapting to the local curvature of the
variational family. Computing stochastic natural gradients in BBVI
would require both computing the Fisher information matrix of the
variational family and solving a linear system with it.

5.1.3 Exploiting reparameterization for some nonconjugate models

While the score function estimator developed for BBVI in Section 5.1.2
is sufficiently general to handle essentially any model, some noncon-



5.1. Stochastic optimization and variational inference 93

jugate models admit convenient stochastic gradient estimators that
can have lower variance. In particular, in settings where the latent
variables are continuous (or any discrete latent variables that can be
marginalized efficiently) samples from some variational distributions
can be reparameterized in a way that enables an alternative stochastic
gradient estimator. This technique is related to non-centered reparam-
eterizations [Papaspiliopoulos et al., 2007] and has recently been called
the reparameterization trick [Kingma andWelling, 2014, Rezende et al.,
2014].

The reparameterization trick applies when samples θ̂ ∼ q(θ),
where q(θ) has parameter η̃θ, can be written as

θ̂ = f(η̃θ, ε) (5.35)

where ε ∼ p(ε) is a random variable with a distribution p(ε) that does
not depend on η̃θ and where ∇η̃θf(η̃θ, ε) can be computed efficiently
for almost every value of ε. In this case, we can compute stochastic
estimates of the gradient of the variational objective by first writing a
Monte Carlo approximation of the objective function itself:

L = Eq(θ)
[
log p(θ, y)

q(θ)

]
≈ 1
|S|

∑
ε̂∈S

log p(f(η̃θ, ε̂), y)
q(f(η̃θ, ε̂))

(5.36)

where ε̂ iid∼ p(ε) for each ε̂ ∈ S. Alternatively, when the variational
entropy term Eq(θ) log q(θ) can be computed efficiently, e.g., if the vari-
ational distribution is a Gaussian, only the energy term needs to be
approximated via Monte Carlo:

L ≈ −Eq(θ) log q(θ) + 1
|S|

∑
ε̂∈S

log p(f(η̃θ, ε̂), y). (5.37)

This Monte Carlo approximation is a differentiable unbiased esti-
mate of L as a function of the variational parameter η̃θ, and so we can
form a Monte Carlo estimate of the gradient of the variational objective
simply by differentiating it:

∇η̃θL ≈ −∇η̃θEq(θ) log q(θ) + 1
|S|

∑
ε̂∈S
∇η̃θ log p(f(η̃θ, ε̂), y). (5.38)



94 Scaling variational mean field algorithms

This estimator often has lower variance than the fully general score
function estimator [Kingma and Welling, 2014] and can be easier to
compute.

5.2 Streaming variational Bayes (SVB)

Streaming variational Bayes (SVB) provides an alternative framework
in which to derive minibatch-based scalable variational inference [Brod-
erick et al., 2013]. While the methods of Section 5.1 generally apply
stochastic gradient optimization algorithms to a fixed variational mean
field objective, SVB instead considers the streaming data setting, in
which case there may be no fixed dataset size and hence no fixed varia-
tional objective. To handle streaming data, the SVB approach is based
on the classical idea of Bayesian updating, in which a posterior is up-
dated to reflect new data as they become available. This sequence of
posteriors is approximated by a sequence of variational models, and
each variational model is computed from the previous variational model
via an incremental update on new data.

More concretely, given a prior p(θ) over a parameter θ and a (possi-
bly infinite) sequence of data minibatches y(1), y(2), . . ., each distributed
independently according to a likelihood distribution p(y(k) | θ), we con-
sider the sequence of posteriors

p(θ | y(1), . . . , y(t)), t = 1, 2, . . . . (5.39)

Given an approximation updating algorithm A one can compute a cor-
responding sequence of approximations

p(θ | y(1), · · · , y(t)) ≈ qt(θ) = A
(
y(t), qt−1(θ)

)
, t = 1, 2, . . . (5.40)

with q0(θ)p(θ). This sequential updating view naturally suggests an
online or one-pass algorithm in which the update (5.40) is applied suc-
cessively to each of a sequence of minibatches.

A sequence of such updates may also exploit parallel or distributed
computing resources. For example, the sequence of approximations may



5.2. Streaming variational Bayes (SVB) 95

be computed as

p(θ | y(1), · · · , y(Kt)) ≈ qt(θ) (5.41)

= qt−1(θ)

 Kt∏
k=Kt−1+1

A
(
y(k), qt−1(θ)

)
qt−1(θ)−1

 (5.42)

where Kt−1 + 1,Kt−1 + 2, . . . ,Kt indexes a set of data minibatches for
which each update is computed in parallel before being combined in
the final update from qt−1(θ) to qt(θ).

This combination of partial results is especially appealing when the
prior p(θ) and the family of approximating distributions q(θ) are in the
same exponential family,

p(θ) ∝ exp {〈η, t(θ)〉} q0(θ) ∝ exp {〈η̃0, t(θ)〉} (5.43)
qt(θ) = A(y(k), qt−1(θ)) ∝ exp {〈η̃t, t(θ)〉} (5.44)

for a prior natural parameter η and a sequence of variational param-
eters η̃t. In the exponential family case, the updates (5.42) can be
written

p(θ | y(1), · · · , y(Kt)) ≈ qt(θ) ∝ exp {〈η̃t, t(θ)〉} (5.45)

= exp
{
〈η̃t−1 +

∑
k

(η̃k − η̃t−1), t(θ)〉
}

(5.46)

where we may take the algorithm A to return an updated natural
parameter, η̃k = A(y(k), η̃t).

Finally, similar updates can be performed in an asynchronous dis-
tributed master-worker setting. Each worker can process a minibatch
and send the corresponding natural parameter increment to a mas-
ter process, which updates the global variational parameter and trans-
mits back the updated variational parameter along with a new data
minibatch. In symbols, we can write that a worker operating on mini-
batch y(k) for some minibatch index k computes the update increment
∆η̃k according to

∆η̃k = A(y(k), η̃τ(k)) (5.47)



96 Scaling variational mean field algorithms

Algorithm 18 Streaming Variational Bayes (SVB)
Initialize η̃0
for each worker p = 1, 2, . . . , P do

Send task (y(p), η̃0) to worker p
as workers send updates do

Receive update ∆η̃k from worker p
η̃t+1 ← η̃t + ∆η̃k
Retrieve new data minibatch index k′
Send new task (y(k′), η̃t+1) to worker p

Algorithm 19 SVB Worker Process
repeat

Receive task (y(k), η̃t) from master
∆η̃k ← A(y(k), η̃t)− η̃t
Send update ∆η̃k to master

until no tasks remain

where τ(k) is the index of the global variational parameter used in the
worker’s computation. Upon receiving an update, the master updates
its global variational parameter synchronously according to

η̃t+1 = η̃t + ∆η̃k. (5.48)

We summarize a version of this process in Algorithms 18 and 19.
A related algorithm, which we do not detail here, is Memoized Vari-

ational Inference (MVI) [Hughes and Sudderth, 2013, Hughes et al.,
2015]. While this algorithm is designed for the fixed dataset setting
rather than the streaming setting, the updates can be similar to those
of SVB. In particular, MVI optimizes the mean field objective in the
conjugate exponential family setting using the mean field coordinate
descent algorithm but with an atypical update order, in which only
some local variational factors are updated at a time. This update order
enables minibatch-based updating but, unlike the stochastic gradient
algorithms, does not optimize out the other local variational factors
not included in the minibatch and instead leaves them fixed.



5.3. Summary 97

Streaming variational inference algorithms similar to SVB have also
recently been studied in some Bayesian nonparametric mixture mod-
els [Tank et al., 2015].

5.3 Summary

Stochastic gradients vs. streaming. The methods of Section 5.1 ap-
ply stochastic optimization to variational mean field inference objec-
tives. In optimization literature and practice, stochastic gradient meth-
ods have a large body of both theoretical and empirical support, and
so such methods offer a compelling framework for scalable inference.
The streaming ideas surveyed in Section 5.2 are less well understood,
but by treating the streaming setting, rather than the setting of a large
fixed-size dataset, they may extend the reach of Bayesian modeling and
inference.

Minibatching. All of this chapter’s scalable approaches to mean field
variational inference are based on processing minibatches of data. These
algorithms arrive at this data access pattern via two routes: the first
applies stochastic gradient optimization to mean field variational infer-
ence (§5.1) and the second considers the streaming data setting (§5.2).
SVI (§5.1.1) and BBVI (§5.1.2) optimize the variational objective by re-
placing full gradient updates with stochastic gradient updates. In both
SVI and BBVI, these approximate gradients arise from randomly sam-
pling data minibatches, while in BBVI there is additional stochasticity
due to the Monte Carlo approximation required to handle nonconju-
gate structure. In contrast to SVI and BBVI, SVB (§5.2) processes
data minibatches to drive incremental posterior updates, constructing
a sequence of approximate posterior distributions that correspond to
classical sequential Bayesian updating without having a single fixed
objective to optimize.

Generality, requirements, and assumptions. As with most ap-
proaches to scaling MCMC samplers for Bayesian inference, these
minibatch-based variational inference methods depend on model struc-



98 Scaling variational mean field algorithms

ture. In SVI and scalable BBVI, minibatches map to terms in a factor-
ization of the joint probability. In SVB, minibatches map to a sequence
of likelihoods to be incorporated into the variational posterior. Some of
these methods further depend on and exploit exponential family and
conjugacy structure. SVI is based on complete-data conjugacy, while
BBVI was specifically developed for nonconjugate models. SVB is a
general framework, but in the conjugate exponential family case the
updates can be written in terms of simple updates to natural parame-
ters. A direction for future research might be to develop new methods
based on identifying and exploiting some ‘middle ground’ between the
structural requirements of SVI and BBVI, or similarly of SVB with
and without exponential family structure.

5.4 Discussion

Parallel variants. The minibatch-based variational inference methods
developed in this chapter suggest parallel and asynchronous variants.
In the case of SVB, distributed and asynchronous versions, such as the
master-worker pattern depicted by Algorithms 18 and 19, have been
empirically studied Broderick et al. [2013]. However, we lack theoret-
ical understanding about these procedures, and it is unclear how to
define and track notions of convergence or stability. Methods based on
stochastic gradients, such as SVI, can naturally be extended to exploit
parallel and asynchronous (or “Hogwild”) variants of stochastic gra-
dient ascent. In such parallel settings, these optimization-based tech-
niques benefit from powerful gradient convergence results [Bertsekas
and Tsitsiklis, 1989, Section 7.8], though tuning such algorithms is still
a challenge. Other parallel versions of these ideas and algorithms have
also been developed in Campbell and How [2014] and Campbell et al.
[2015].



6
Challenges and questions

In this review, we have examined a variety of different views on scal-
ing Bayesian inference up to large datasets and greater model com-
plexity and out to parallel compute resources. Several different themes
have emerged, from techniques that exploit subsets of data for com-
putational savings to proposals for distributing inference computations
across multiple machines. Progress is being made, but there remain
significant open questions and outstanding challenges to be tackled as
this research programme moves forward.

Trading off errors in MCMC One of the key insights underpinning
much of the recent work on scaling Bayesian inference can be framed
in terms of a kind of bias-variance tradeoff. Traditional MCMC the-
ory provides asymptotically unbiased estimators for which the error
can eventually be driven arbitrarily small. However, in practice, under
limited computational budgets the error can be significant. This error
has two components: transient bias, in which the samples produced are
too dependent on the Markov chain’s initialization, and Monte Carlo
standard error, in which the samples collected may be too few or too
highly correlated to produce good estimates.

99



100 Challenges and questions

k⇡
0
T

n
�
⇡
k T

V

wall-clock time (log scale)

es
ti
m

at
or

er
ro

r
(l
og

sc
al

e)

Transient bias Standard error Total

Figure 6.1: A simulation illustrating the error terms in traditional
MCMC estimators as a function of wall-clock time (log scale). The
marginal distributions of the Markov chain iterates converge to the
target distribution (top panel), while the errors in MCMC estimates
due to transient bias and Monte Carlo standard error are driven ar-
bitrarily small.



101

Figure 6.1 illustrates the error regimes and tradeoffs in traditional
MCMC.1 Asymptotic analysis describes the regime on the right of the
plot, after the sampler has mixed sufficiently well. In this regime, the
marginal distribution of each sample is essentially equal to the target
distribution, and the transient bias from initialization, which affects
only the early samples in the Monte Carlo sum, is washed out rapidly
at least at a O( 1

n) rate. The dominant source of error is due to Monte
Carlo standard error, which diminishes only at a O( 1√

n
) rate.

However, machine learning practitioners using MCMC often find
themselves in another regime: in the middle of the plot, the error is
decreasing but dominated instead by the transient bias. The challenge
in practice is often to get through this regime, or even to get into it at
all. When the underlying Markov chain does not mix sufficiently well or
when the transitions cannot be computed sufficiently quickly, getting to
this regime may be practically infeasible for a realistic computational
budget.

Several of the new MCMC techniques we have studied aim to ad-
dress this challenge. In particular, the parallel predictive prefetching
method of Section 4.1.2 accelerates this phase of MCMC without af-
fecting the stationary distribution. Other methods instead introduce
approximate transition operators that can be executed more efficiently.
For example, the adaptive subsampling methods of Section 3.2 and the
stochastic gradient sampler of Section 3.4 can execute updates more
efficiently by operating only on data subsets, while the Weierstrass
and Hogwild Gibbs samplers of Sections 4.2.1 and 4.2.2, respectively,
execute more quickly by leveraging data parallelism. These transition
operators are approximate in that they do not admit the exact target
distribution as a stationary distribution: instead, the stationary distri-
bution is only intended to be close to the target. Framed in terms of
Monte Carlo estimates, these approximations effectively accelerate the
execution of the chain at the cost of introducing an asymptotic bias.
Figure 6.2 illustrates this new tradeoff.

Allowing some asymptotic bias to reduce transient bias or even
Monte Carlo variance is likely to enable MCMC inference at a new

1See also Section 2.2.4



102 Challenges and questions

k⇡
0
T

n
�
⇡
k T

V

iteration n (log scale)

es
ti
m

at
or

er
ro

r
(l
og

sc
al

e)
k⇡

0
T

n
�
⇡
k T

V

wall-clock time (log scale)

es
ti
m

at
or

er
ro

r
(l
og

sc
al

e)

Transient bias Standard error Asymptotic bias Total

Figure 6.2: A simulation illustrating the new tradeoffs in some pro-
posed scalable MCMC methods. Compare to Figure 6.1. As a func-
tion of wall-clock time (log scale), the Markov chain iterations execute
more than an order of magnitude faster, and hence the marginal dis-
tributions of the Markov chain iterates converge to the stationary dis-
tribution more quickly; however, because the stationary distribution
is not the target distribution, an asymptotic bias remains (top panel).
Correspondingly, MCMC estimator error, particularly the transient
bias, can be driven to a small value more rapidly, but there is an error
floor due to the introduction of the asymptotic bias (bottom panel).



103

scale. However, both the amount of asymptotic bias introduced by these
methods and the ways in which it depends on model and algorithm pa-
rameters remain unclear. More theoretical understanding and empirical
study is necessary to guide machine learning practice.

Scaling limits of Bayesian inference Scalability in the context of
Bayesian inference is ultimately about spending computational re-
sources to better interrogate posterior distributions. It is therefore im-
portant to consider whether there are fundamental limits to what can
be achieved by, e.g., spending more money on Amazon EC2, for either
faster computers or more of them.

In parallel systems, linear scaling is ideal: twice as much compu-
tational power yields twice as much useful work. Unfortunately, even
if this lofty parallel speedup goal is achieved, the asymptotic picture
for MCMC is dim: in the asymptotic regime, doubling the number of
samples collected can only reduce the Monte Carlo standard error by a
factor of

√
2. This scaling means that there are diminishing returns to

purchasing additional computational resources, even if those resources
provide linear speedup in terms of accelerating the execution of the
MCMC algorithm.

Interestingly, variational methods may not suffer from such intrin-
sic limits. In particular, the stochastic gradient variational inference
methods surveyed in Section 5.1 can utilize optimization methods that,
at least in smooth convex settings, can converge at least at O( 1

n)
rates [Bubeck, 2015]. When these convergence properties are main-
tained for achieving local minima in non-convex problems, applying
additional computational resources would not inherently suffer from
the problem of diminishing marginal returns.

Measuring performance With all the ideas surveyed here, one thing
is clear: there are many alternatives for how to scale Bayesian inference.
How should we compare these alternative algorithms? Can we tell when
any of these algorithms work well in an absolute sense?

One standard approach for evaluating MCMC procedures is to de-
fine a set of scalar-valued test functions (or estimands of interest) and



104 Challenges and questions

compute effective sample size [Gelman et al., 2014, Section 11.5] as a
function of wall-clock time. However, in complex models designing an
appropriately comprehensive set of test functions may be difficult. Fur-
thermore, many such measures require the Markov chain to mix and do
not account for any asyptotic bias [Gorham and Mackey, 2015], hence
limiting their applicability to measuring the performance of many of
the new inference methods studied here.

To confront these challenges, one recently-proposed approach
[Gorham and Mackey, 2015] draws on Stein’s method, classically used
as an analytical tool, to design an efficiently-computable measure of dis-
crepancy between a target distribution and a set of samples. A natural
measure of discrepancy between a target density p(x) and a (weighted)
sample distribution q(x), where q(x) =

∑n
i=1wiδxi(x) for some set of

samples {xi}ni=1 and weights {wi}ni=1, is to consider their largest abso-
lute difference across a large class of test functions:

dH(q, p) = sup
h∈H
|Eqh(X)− Eph(X)| (6.1)

where H is the class of test functions. While expectations with respect
to the target density pmay be difficult to compute, by designingH such
that Eph(X) = 0 for every h ∈ H, we need only compute expectations
with respect to the sample distribution q. To meet this requirement,
instead of designingH directly, we can instead chooseH to be the image
of another function class G under an operator Tp that may depend on
p, so that H = TpG and the requirement becomes Ep(Tpg)(x) = 0 and
the discrepancy measure becomes

dTpG(q, p) = sup
g∈G
|Eq(Tpg)(X)|. (6.2)

Such operators Tp can be designed using infinitessimal generators from
continuous-time ergodic Markov processes, and Gorham and Mackey
[2015] suggest using the operator

(Tpg)(x) , 〈g(x),∇ log p(x)〉+ 〈∇,∇g(x)〉 (6.3)

which requires computing only the gradient of the target log density.
Furthermore, while the optimization in (6.2) is infinite-dimensional in
general and might have infinitely many smoothness constraints from G,



105

Gorham and Mackey [2015] shows that for the sample distribution q

the test function g need only be evaluated at the finitely-many sample
points {xi}ni=1 and that only a small number of constraints must be
enforced. This new performance metric does not require assumptions
on whether the samples are generated from an unbiased, stationary
Markov chain, and so it may provide clear ways to compare across a
broad spectrum sampling-based approximate inference algorithms.

Another recently-proposed approach attempts to estimate or bound
the KL divergence from an algorithm’s approximate posterior represen-
tation to the true posterior, at least when applied to synthetic data.
This approach, called bidirectional Monte Carlo (BDMC) [Grosse et al.,
2015], can be applied to measure the performance of both variational
mean field algorithms as well as annealed importance sampling (AIS)
and sequential Monte Carlo (SMC) algorithms. By rearranging the vari-
ational identity (2.55), we can write the KL divergence KL(q‖p) from
an approximating distribution q(z, θ) to a target posterior p(z, θ | ȳ) in
terms of the log marginal likelihood log p(ȳ) and an expectation with
respect to q(z, θ):

KL(q‖p) = log p(ȳ)− Eq(z,θ)
[
log p(z, θ | ȳ)

q(z, θ)

]
. (6.4)

Because the expectation can be readily computed in a mean field set-
ting or stochastically lower-bounded when using AIS [Grosse et al.,
2015, Section 4.1], with a stochastic upper bound on log p(ȳ) we can
use (6.4) to compute a stochastic upper bound on the KL divergence
KL(q‖p). BDMC provides a method to compute such stochastic upper
bounds on log p(ȳ) for synthetic datasets ȳ, and so may enable new per-
formance metrics that apply to both sampling-based algorithms as well
as variational mean field algorithms. However, while MCMC transition
operators are used to construct AIS algorithms, BDMC does not di-
rectly apply to evaluating the performance of such transition operators
in standard MCMC inference.

Developing performance metrics and evaluation procedures is crit-
ical to making progress. As observed in Grosse et al. [2015],

In many application areas of machine learning, especially
supervised learning, benchmark datasets have spurred rapid



106 Challenges and questions

progress in developing new algorithms and clever refine-
ments to existing algorithms. [. . . ] So far, the lack of quan-
titative performance evaluations in marginal likelihood es-
timation, and in sampling-based inference more generally,
has left us fumbling around in the dark.

By developing better ways to measure the performance of these
Bayesian inference algorithms, we will be much better equipped to com-
pare, improve, and extend them.

Acknowledgements

This work was funded in part by NSF IIS-1421780 and the Alfred P.
Sloan Foundation. E.A. is supported by the Miller Institute for Basic
Research in Science, University of California, Berkeley. M.J. is sup-
ported by a fellowship from the Harvard/MIT Joint Grants program.



References

Talal M. Alkhamis, Mohamed A. Ahmed, and Vu Kim Tuan. Simulated
annealing for discrete optimization with estimation. European Journal of
Operational Research, 116(3):530–544, 1999.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry.
American Mathematical Society, 2007.

Christophe Andrieu and Eric Moulines. On the ergodicity properties of some
adaptive MCMC algorithms. The Annals of Applied Probability, 16(3):
1462–1505, 2006.

Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach
for efficient Monte Carlo computations. Annals of Statistics, pages 697–725,
2009.

Christophe Andrieu and Johannes Thoms. A tutorial on adaptive MCMC.
Statistics and Computing, 18(4):343–373, 2008.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov
chain Monte Carlo methods. Journal of the Royal Statistical Society Series
B, 72(3):269–342, 2010.

Elaine Angelino. Accelerating Markov chain Monte Carlo via parallel predic-
tive prefetching. PhD thesis, School of Engineering and Applied Sciences,
Harvard University, 2014.

Elaine Angelino, Eddie Kohler, Amos Waterland, Margo Seltzer, and Ryan P.
Adams. Accelerating MCMC via parallel predictive prefetching. In 30th
Conference on Uncertainty in Artificial Intelligence, 2014.

107



108 References

Arthur U. Asuncion, Padhraic Smyth, and Max Welling. Asynchronous dis-
tributed learning of topic models. In Advances in Neural Information Pro-
cessing Systems 21, pages 81–88, 2008.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration-
exploitation tradeoff using variance estimates in multi-armed bandits. The-
oretical Computer Science, 410(19):1876–1902, 2009.

Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for
sampling without replacement. Bernoulli, 20(3):1361–1385, 2015.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. Towards scaling up
Markov chain Monte Carlo: An adaptive subsampling approach. In Pro-
ceedings of the 31st International Conference on Machine Learning, 2014.

Mark A. Beaumont. Estimation of population growth or decline in genetically
monitored populations. Genetics, 164(3):1139–60, 2003.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Com-
putation: Numerical Methods. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

Léon Bottou. On-line learning and stochastic approximations. In David Saad,
editor, On-line Learning in Neural Networks, pages 9–42. Cambridge Uni-
versity Press, New York, NY, USA, 1998.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends in Machine Learning,
3(1):1–122, January 2011.

A. E. Brockwell. Parallel Markov chain Monte Carlo simulation by pre-
fetching. Journal of Computational and Graphical Statistics, 15(1):246–261,
March 2006.

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, and
Michael I. Jordan. Streaming variational Bayes. In Advances in Neural
Information Processing Systems 26, pages 1727–1735, 2013.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
Markov Chain Monte Carlo. Chapman & Hall/CRC Handbooks of Modern
Statistical Methods. CRC press, 2011.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foun-
dations and Trends in Machine Learning, 8(3-4), 2015.



References 109

Akif Asil Bulgak and Jerry L. Sanders. Integrating a modified simulated an-
nealing algorithm with the simulation of a manufacturing system to opti-
mize buffer sizes in automatic assembly systems. In Proceedings of the 20th
Conference on Winter Simulation, pages 684–690, New York, NY, USA,
1988. ACM.

Trevor Campbell and Jonathan P. How. Approximate decentralized Bayesian
inference. In Uncertainty in Artificial Intelligence, 2014.

Trevor Campbell, Julian Straub, John W. Fisher III, and Jonathan P. How.
Streaming, massively parallel variational inference for Bayesian nonpara-
metrics. In Advances in Neural Information Processing Systems 28, 2015.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient Hamil-
tonian Monte Carlo. In Proceedings of the 31st International Conference
on Machine Learning, June 2014.

J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Prentice-Hall Series in
Computational Mathematics, 1983.

Finale Doshi-Velez, David A. Knowles, Shakir Mohamed, and Zoubin Ghahra-
mani. Large scale nonparametric Bayesian inference: Data parallelisation
in the Indian buffet process. In Advances in Neural Information Processing
Systems 22, pages 1294–1302, 2009.

Arnaud Doucet, Michael Pitt, Robert Kohn, and George Deligiannidis. Effi-
cient implementation of Markov chain Monte Carlo when using an unbiased
likelihood estimator. Biometrika, 102(2):295–313, 2015.

Paul Fearnhead, Omiros Papaspiliopoulos, Gareth O. Roberts, and Andrew
Stuart. Random-weight particle filtering of continuous time processes. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 72
(4):497–512, 2010.

Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From
importance sampling to bridge sampling to path sampling. Statistical sci-
ence, pages 163–185, 1998.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari,
and Donald B. Rubin. Bayesian data analysis. Chapman and Hall/CRC,
3rd edition, 2014.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, pages 721–741, 1984.

Charles J. Geyer. Practical Markov chain Monte Carlo. Statistical Science,
pages 473–483, 1992.



110 References

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology) (With Discussion), 73:123 – 214, 03/2011
2011.

Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Parallel
Gibbs sampling: From colored fields to thin junction trees. In International
Conference on Artificial Intelligence and Statistics, pages 324–332, 2011.

Jackson Gorham and Lester Mackey. Measuring sample quality with stein’s
method. In Advances in Neural Information Processing Systems, pages
226–234, 2015.

Thore Graepel, Joaquin Quñonero Candela, Thomas Borchert, and Ralf Her-
brich. Web-scale Bayesian click-through rate prediction for sponsored
search advertising in Microsoft’s Bing search engine. In Proceedings of the
27th International Conference on Machine Learning, pages 13–20, 2010.

Roger B Grosse, Zoubin Ghahramani, and Ryan P Adams. Sandwiching
the marginal likelihood using bidirectional Monte Carlo. arXiv preprint
arXiv:1511.02543, 2015.

Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive Metropo-
lis algorithm. Bernoulli, 7(2):223–242, 04 2001.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc.,
New York, NY, USA, 2001.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, April 1970.

Christian Hipp. Sufficient statistics and exponential families. Ann. Statist., 2
(6):1283–1292, 11 1974.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B. Gibbons, Gregory R. Ganger, Garth Gibson, and Eric P. Xing.
More effective distributed ML via a stale synchronous parallel parameter
server. In Advances in Neural Information Processing Systems 26, 2013.

Matthew D. Hoffman, David M. Blei, ChongWang, and John Paisley. Stochas-
tic variational inference. Journal of Machine Learning Research, 14(1):
1303–1347, May 2013.

Zaiying Huang and Andrew Gelman. Sampling for Bayesian computation
with large datasets. Technical report, Columbia University, 2005.

Michael C Hughes and Erik Sudderth. Memoized online variational inference
for Dirichlet process mixture models. In Advances in Neural Information
Processing Systems 26, pages 1133–1141, 2013.



References 111

Michael C Hughes, Dae Il Kim, and Erik B Sudderth. Reliable and scalable
variational inference for the hierarchical Dirichlet process. In Proceedings
of the Eighteenth International Conference on Artificial Intelligence and
Statistics, pages 370–378, 2015.

Alexander Ihler and David Newman. Understanding errors in approximate
distributed latent Dirichlet allocation. IEEE Transactions on Knowledge
and Data Engineering, 24(5):952–960, 2012.

Pierre E. Jacob and Alexandre H. Thiery. On nonnegative unbiased estima-
tors. Annals of Statistics, 43(2):769–784, 04 2015.

Matthew Johnson, James Saunderson, and Alan Willsky. Analyzing Hog-
wild parallel Gaussian Gibbs sampling. In Advances in Neural Information
Processing Systems 26, pages 2715–2723, 2013.

Matthew James Johnson. Bayesian Time Series Models and Scalable Infer-
ence. PhD thesis, Massachusetts Institute of Technology, 2014.

Robert W. Keener. Theoretical Statistics: Topics for a Core Course. Springer
Texts in Statistics. Springer New York, 2010.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In-
ternational Conference on Learning Representations, 2014.

Jack PC Kleijnen and Reuven Y Rubinstein. Optimization and sensitivity
analysis of computer simulation models by the score function method. Eu-
ropean Journal of Operational Research, 88(3):413–427, 1996.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in MCMC
land: Cutting the Metropolis-Hastings budget. In Proceedings of the 31th
International Conference on Machine Learning, volume 32, pages 181–189,
2014.

Neil D. Lawrence. Modelling in the context of massively missing data,
2015. URL http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/
talks/missingdata_tuebingen15.pdf.

L. Lin, K. F. Liu, and J. Sloan. A noisy Monte Carlo algorithm. Physical
Review D, 61:074505, Mar 2000.

Zhiyuan Liu, Yuzhou Zhang, Edward Y. Chang, and Maosong Sun. PLDA+:
Parallel latent Dirichlet allocation with data placement and pipeline pro-
cessing. ACM Transactions on Intelligent Systems and Technology, 2(3):
26:1–26:18, May 2011.

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/talks/missingdata_tuebingen15.pdf
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/talks/missingdata_tuebingen15.pdf


112 References

Anne-Marie Lyne, Mark Girolami, Yves Atchaé, Heiko Strathmann, and
Daniel Simpson. On Russian roulette estimates for Bayesian inference with
doubly-intractable likelihoods. Statistical Science, 30(4):443–467, 11 2015.

David J. C. MacKay. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA, 2002.

Dougal Maclaurin and Ryan P. Adams. Firefly Monte Carlo: Exact MCMC
with subsets of data. In 30th Conference on Uncertainty in Artificial Intel-
ligence, 2014.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The Journal of Chemical Physics, 21(6):1087–1092,
1953.

Sean Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability.
Cambridge University Press, New York, NY, USA, 2nd edition, 2009.

Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical Bern-
stein stopping. In Proceedings of the 25th International Conference on Ma-
chine Learning, pages 672–679, New York, NY, USA, 2008. ACM.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

Radford M. Neal. An improved acceptance procedure for the hybrid Monte
Carlo algorithm. J. Comput. Phys., 111(1):194–203, March 1994.

Radford M. Neal. MCMC using Hamiltonian dynamics. In Handbook of
Markov Chain Monte Carlo, Chapman & Hall/CRC Handbooks of Modern
Statistical Methods, pages 113–162. CRC Press, 2010.

Willie Neiswanger, ChongWang, and Eric Xing. Asymptotically exact, embar-
rassingly parallel MCMC. In 30th Conference on Uncertainty in Artificial
Intelligence, 2014.

David Newman, Padhraic Smyth, Max Welling, and Arthur U. Asuncion.
Distributed inference for latent Dirichlet allocation. In Advances in Neural
Information Processing Systems 20, pages 1081–1088, 2007.

David Newman, Arthur U. Asuncion, Padhraic Smyth, and Max Welling.
Distributed algorithms for topic models. Journal of Machine Learning Re-
search, 10:1801–1828, 2009.

Robert Nishihara, Iain Murray, and Ryan P. Adams. Parallel MCMC with
generalized elliptical slice sampling. Journal of Machine Learning Research,
15:2087–2112, 2014.



References 113

Omiros Papaspiliopoulos. A methodological framework for Monte Carlo prob-
abilistic inference for diffusion processes. Technical report, Centre for Re-
search in Statistical Methodology, University of Warwick, June 2009.

Omiros Papaspiliopoulos, Gareth O Roberts, and Martin Sköld. A general
framework for the parametrization of hierarchical models. Statistical Sci-
ence, pages 59–73, 2007.

Sam Patterson and Yee Whye Teh. Stochastic gradient Riemannian Langevin
dynamics on the probability simplex. In Advances in Neural Information
Processing Systems 26, 2013.

Maxim Rabinovich, Elaine Angelino, and Michael I. Jordan. Variational Con-
sensus Monte Carlo. In Advances in Neural Information Processing Systems
28, 2015.

Rajesh Ranganath, Chong Wang, David M. Blei, and Eric P. Xing. An adap-
tive learning rate for stochastic variational inference. In International Con-
ference on Machine Learning, volume 28, pages 298–306, 2013.

Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational
inference. In International Conference on Artificial Intelligence and Statis-
tics, pages 814–822, 2014.

Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hog-
wild!: A lock-free approach to parallelizing stochastic gradient descent. In
Advances in Neural Information Processing Systems 24, pages 693–701,
2011.

Jeffrey Regier, Andrew Miller, Jon McAuliffe, Ryan P. Adams, Matt Hoffman,
Dustin Lang, David Schlegel, and Prabhat. Celeste: Variational inference
for a generative model of astronomical images. In Proceedings of the 32nd
International Conference on Machine Learning, pages 2095–2103, 2015.

Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. In Pro-
ceedings of the 31st International Conference on Machine Learning, pages
1278–1286, 2014.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer-Verlag New York, Inc., 2004.

Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of
Langevin distributions and their discrete approximations. Bernoulli, 2(4):
341–363, 12 1996.

Gareth O. Roberts, Andrew Gelman, and Walter R. Gilks. Weak conver-
gence and optimal scaling of random walk Metropolis algorithms. Annals
of Applied Probability, 7:110–120, 1997.



114 References

Issei Sato and Hiroshi Nakagawa. Approximation analysis of stochastic gradi-
ent Langevin dynamics by using Fokker-Planck equation and Ito process.
In International Conference on Machine Learning, pages 982–990, 2014.

Steven L. Scott, Alexander W. Blocker, and Fernando V. Bonassi. Bayes and
big data: The consensus Monte Carlo algorithm. In Bayes 250, 2013.

R. J. Serfling. Probability inequalities for the sum in sampling without re-
placement. The Annals of Statistics, 2(1):39–48, 1974.

Sameer Singh, Michael L. Wick, and AndrewMcCallum. Monte Carlo MCMC:
Efficient inference by approximate sampling. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 1104–1113, 2012.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in Neural Informa-
tion Processing Systems 25, pages 2951–2959. 2012.

David H. Stern, Ralf Herbrich, and Thore Graepel. Matchbox: Large scale
online Bayesian recommendations. In Proceedings of the 18th International
Conference on World Wide Web, pages 111–120, 2009.

Alex Tank, Nicholas Foti, and Emily Fox. Streaming variational inference
for Bayesian nonparametric mixture models. In Proceedings of the Eigh-
teenth International Conference on Artificial Intelligence and Statistics,
pages 968–976, 2015.

Wolfgang Wagner. Unbiased Monte Carlo evaluation of certain functional
integrals. Journal of Computational Physics, 71(1):21–33, 1987.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential
families, and variational inference. Foundations and Trends in Machine
Learning, 1(1-2):1–305, November 2008.

Ling Wang and Liang Zhang. Stochastic optimization using simulated an-
nealing with hypothesis test. Applied Mathematics and Computation, 174
(2):1329–1342, 2006.

Xiangyu Wang and David B. Dunson. Parallel MCMC via Weierstrass sam-
pler. arXiv preprint arXiv:1312.4605, 2013.

Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkr-
licher functionen einer reellen vernderlichen. Sitzungsberichte der Königlich
Preuischen Akademie der Wissenschaften zu Berlin, 1885. (II). Erste Mit-
teilung (part 1) pp. 633–639, Zweite Mitteilung (part 2) pp. 789–805.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient
Langevin dynamics. In Proceedings of the 28th International Conference
on Machine Learning, 2011.


	1 Introduction
	1.1 Why be Bayesian with big data?
	1.2 The fidelity of approximate integration
	1.3 Outline

	2 Background
	2.1 Exponential families
	2.2 Markov Chain Monte Carlo inference
	2.2.1 Bias and variance of estimators
	2.2.2 Monte Carlo estimates from indepdent samples
	2.2.3 Markov chains
	2.2.4 Markov chain Monte Carlo (MCMC)
	2.2.5 Metropolis-Hastings (MH) sampling
	2.2.6 Gibbs sampling

	2.3 Mean field variational inference
	2.4 Stochastic gradient optimization

	3 MCMC with data subsets
	3.1 Factoring the joint density
	3.2 Adaptive subsampling for Metropolis–Hastings
	3.2.1 An approximate MH test based on a data subset
	3.2.2 Approximate MH with an adaptive stopping rule
	3.2.3 Using a t-statistic hypothesis test
	3.2.4 Using concentration inequalities
	3.2.5 Error bounds on the stationary distribution

	3.3 Sub-selecting data via a lower bound on the likelihood
	3.4 Stochastic gradients of the log joint density
	3.5 Summary
	3.6 Discussion

	4 Parallel and distributed MCMC
	4.1 Parallelizing standard MCMC algorithms
	4.1.1 Conditional independence and graph structure
	4.1.2 Speculative execution and prefetching

	4.2 Defining new data-parallel dynamics
	4.2.1 Aggregating from subposteriors
	Embarrassingly parallel consensus of subposteriors
	Weighted averaging of subposterior samples
	Subposterior density estimation
	Weierstrass samplers

	4.2.2 Hogwild Gibbs
	Defining Hogwild Gibbs variants
	Theoretical analysis


	4.3 Summary
	4.4 Discussion

	5 Scaling variational mean field algorithms
	5.1 Stochastic optimization and variational inference
	5.1.1 SVI for complete-data conjugate models
	5.1.2 Stochastic gradients with general nonconjugate models
	5.1.3 Exploiting reparameterization for some nonconjugate models

	5.2 Streaming variational Bayes (SVB)
	5.3 Summary
	5.4 Discussion

	6 Challenges and questions
	References

