Generative Supervised Learning

CS772A: Probabilistic Machine Learning
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Announcement

" Students facing issues with marking biometric attendance: Please visit Biometrics
office (located below L-16) to get the issue fixed.
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Generative Classification: A Basic |dea

" | earn the probability distribution p(x|y = k) of inputs from each class k

Yes. Possible with generative model.

We can do it by estimating class A
marginal probabilities p(y) (class

proportions in the training data) in ‘!v.‘ /

What if | expect that the
green class is more likely
for a test input because
the training data also had
@ more green examples?

our model

Then we can combine p(y) and
p(x|y) to compute p(y|x) -
conditional probability of label for
any given input

p(x|red")

x,|class

pex*lda ) n n
—Iﬁ%*lcia p(x|"green")
| Zem

Can | incorporate
this knowledge?

Going to talk about this next

= We usually assume some form for p(x|y = k) (e.g., Gaussian) and estimate the
parameters of that distribution (MLE/MAP/fully posterior)

= We then predict label of test input x, by comparing probabilities under each class

= Or can report the probability of belonging to each class (soft prediction) CS772: PML



Generative Classification

= Suppose we have training data {(x,,, v,)}Y_, from K classes

" The conditional probability of label y,, given the input x,,

Known as the “class-conditional”

p(xn, VYn = k) distribution
p(Vn = klxy) = () Probability distribution of the
n

inputs from class k

Known as “class-marginal” or The numerator (joint distribution
“Class-prior” distribution 4 yn — k) X (xnlyn — k) of x,, and y,,) summed over all
Marginal distribution of just K values of y,
the labels (not looking at the Marginal distribution

inputs) — Bernoulli/multinoulli of the input x,

= \We use the training data to estimate the class-marginal and class-conditionals
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Estimating Class Marginals

If only two classes,

= Estimating class marginals p(y = k) is usually straightforward assume Bernoull
= Since labels are discrete, we assume class marginal p(y) to be a multinoulli

These probabilities sum to 1: Yh_; 1, = 1

p(y|m) = multinoulli(y|m{, 75, ..., Tg) = II§=17T]H([y=k]

T, = p(y =k)

= Given N i.id. labelled examples {(x,,, v, )¥_1. v, € {1,2, ..., K} the MLE soln
N

MTyLE = argmgx Z log p(y,|m)

n=1

Subject to constraint YK_,m, = 1

= MLE solution is p(y = k) = m, = N, /N where N, = YXN__ [y = k]

* Thus p(y = k) = my, is simply the fraction of inputs from class k

= Can also compute MAP estimate or full posterior of 1 using a Dirichlet prigy. ...



To be estimated using the

Estimating Class-Conditionals | g reus

{x,:y, = k} from class k

» Can assume a distribution p(x|y = k) = p(x]|6;,) for inputs of each class k

= [f x is D-dimensional, p(x|8;) will be a D-dimensional distribution

, , E.g. if p(x]8y) is multivariate
= Can compute MLE/MAP estimate or full posterior of 8, | Gaussian then assume it to have

= This essentially is a density estimation problem for the class-cond. | & iagonal covariance matrix

instead of full covariance matrix
" |n principle, can use any density estimation method
Such assumptions greatly reduce the
number of parameters to be estimated

» Choice of the form of p(x|68;) depends on various factors

In such cases, we may need to regularize 8 or make

= Nature of mpuJ[ features, €9, some simplifying assumptions on p(x|8y). such as

= f x € RP can use a D-dim Gaussian N(x|pg, ) features being conditionally independent given class

= D - |
= If x € {0,1}” , can use D Bernoullis (one for each feature) =2 P(x[0i) = Il=1P(Xalbka) - nalve Bayes
C C . E ially if th ber of feat D)i | b
= Can also choose other more sophisticated distributions |asrgicv'z|ge' o nmer Coenasiiisoﬁ a>|;gvee;yu$f§ P
C : . arameters (e.g., in the Gaussian case, 8, = (U, X ), D params

= Amount of training data available (important) or s andé(gz) v for Br . Canonerfit

" [f D large and N, small, it will be difficult to get a good estimate 8y,
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Generative Classification: At Test Time

» Recall the form of the conditional distribution of the label

Class-marginal accounts for the
frequency of class k labels in
the training data

p(y* — klx*) —

Class-conditional distribution of
inputs accounts for the
shape/spread of class k

p(y. = k) X p(x.|y. = k)
p(x.)

Probability of x, belonging to class

k is proportional to the fraction of

training inputs from class k times X (4 (y* — k) X (4, (x* |y* — k)
the probability of x, under the

distribution of inputs from class k

= |f we assume the class-marginal to be uniform (p(y, = k) = 1/K) then
Basically, the probability of

p (y* — k |x*) X p (x* |y>|< — k) input under class k distribution

= The most likely label is y, = argmaxyes 2.k} PV = k|x,)
CS772: PML



Generative Classification: At Test Time

» Prediction rule is

p(y. = klx,) < p(y. = k) X p(x.|y. = k)

= |f we have point estimates for mand {8, }X_,, say & and {6, }%_,
p(y. = k) =p(y. = klft) = 7ty
p(x*ly* — k) — p(x*lék)

= |[f we have posteriors for m and {8 }x—, then 550 of 7.
p(y. = k) = p(y. = kly) = [ p(y. = klm)p(nly)dn
p(x*b’* — k) — p(x*lxk) — fp(x*lek)p(eklxk)dgk

PPD of x,
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Generative Sup. Learning: Some Comments

= A very flexible approach for classification

Incorporate info about how frequent each Incorporate info about the
class is in the training data (“class prior”) shape of each class

Dy, = klx,) = PO, = l)px.|y. = k)
2 PV = I)p(x.]y. = k)
» Can handle missing labels and missing features
" These can be treated as latent variables as estimated using methods such as EM

Consequently, can naturally
learn nonlinear boundaries, too
(without using kernel methods
or deep learning)

Will discuss this later

= Ability to handle missing labels makes it suitable for semi-supervised learning

" The choice of the class-conditional and proper estimation is important
= Can leverage advances in deep generative models to learn very flexible forms for p(x|y)

= Can also use it for regression (define p(x, y) via some distr. and obtain p(y|x) from it)

» Can also combine generative and discriminative approaches for supervised learning
CS772A: PML




Hybrids of Discriminative and Generative Models

= Both discriminative and generative models have their strengths/shortcomings

Recall prob linear

" Some aspects about discriminative models for sup. learning regression and logistic reg

= Discriminative models have usually fewer parameters (e.g., just a weight vector)
= Given “plenty” of training data, disc. models can usually outperform generative models

" Some aspects about generative models for sup. learning
= Can be more flexible (we have seen the reasons already)
= Usually have more parameters to be learned
* Modeling the inputs (learning p(x|y)) can be difficult for high-dim inputs

= Some prior work on combining discriminative and generative models. Examples:

alog p(y|z; 0) + Blog p(w; 0) p(,y,04,04) = po,(y|z)pe, (x)p(0a, 0,)
. ] Approach 2 (Lasserre et al, 2006) —
Alpgrgggh 1 (M;Cﬁllumhet p(ﬂj, y? Z) o p(y‘:r? ’Z) p(ﬂj.. Z) Coupled parameters between
& ) —mo eing the discriminative and generative models
joint p(x, y|0) using a
multi-conditional likelihood Approach 3 (Kuleshov and Ermon, 2017) — Coupling discriminative and generative models via a latent

variable z (see “Deep Hybrid Models: Bridging Discriminative and Generative Approaches”, UAI 2017)
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