
Generative Supervised Learning

CS772A: Probabilistic Machine Learning

Piyush Rai



CS772: PML

Announcement
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▪ Students facing issues with marking biometric attendance: Please visit Biometrics 
office (located below L-16) to get the issue fixed.
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Generative Classification: A Basic Idea
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▪ Learn the probability distribution 𝑝(𝑥|𝑦 = 𝑘) of inputs from each class 𝑘

           

▪We usually assume some form for 𝑝(𝑥|𝑦 = 𝑘)(e.g., Gaussian) and estimate the 
parameters of that distribution (MLE/MAP/fully posterior)

▪We then predict label of test input 𝒙∗ by comparing probabilities under each class
▪ Or can report the probability of belonging to each class (soft prediction)

𝑝(𝒙|"red")

𝑝(𝒙|"green")

𝒙∗ 𝒙∗𝒙∗

𝑝(𝒙∗|class)
𝑝(𝒙∗|class)

𝑝(𝒙∗|class)

What if I expect that the 

green class is more likely 

for a test input because 

the training data also had 

more green examples?

Can I incorporate 

this knowledge?

Yes. Possible with generative model. 

We can do it by estimating class 

marginal probabilities 𝑝(𝑦) (class 

proportions in the training data) in 

our model

Then we can combine 𝑝(𝑦) and 

𝑝(𝑥|𝑦) to compute 𝑝(𝑦|𝑥) - 

conditional probability of label for 

any given input

Going to talk about this next
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=
𝑝 𝑦𝑛 = 𝑘 × 𝑝(𝒙𝑛|𝑦𝑛 = 𝑘)

𝑝(𝒙𝑛)

Generative Classification
4

▪ Suppose we have training data { 𝒙𝑛, 𝑦𝑛 }𝑛=1
𝑁  from 𝐾 classes

▪ The conditional probability of label 𝑦𝑛 given the input 𝒙𝑛

▪We use the training data to estimate the class-marginal and class-conditionals

           

𝑝 𝑦𝑛 = 𝑘 𝑥𝑛 =
𝑝(𝒙𝑛, 𝑦𝑛 = 𝑘)

𝑝(𝑥𝑛) Probability distribution of the 

inputs from class 𝑘

Known as the “class-conditional” 

distribution

Known as “class-marginal” or 

“class-prior” distribution

Marginal distribution 

of the input 𝒙𝑛

The numerator (joint distribution 

of 𝑥𝑛 and 𝑦𝑛) summed over all 

𝐾 values of 𝑦𝑛Marginal distribution of just 

the labels (not looking at the 

inputs) – Bernoulli/multinoulli
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Estimating Class Marginals
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▪ Estimating class marginals 𝑝(𝑦 = 𝑘) is usually straightforward

▪ Since labels are discrete, we assume class marginal 𝑝(𝑦) to be a multinoulli

▪ Given 𝑁 i.i.d. labelled examples { 𝑥𝑛, 𝑦𝑛 }𝑛=1
𝑁 , 𝑦𝑛 ∈  {1,2, … , 𝐾} the MLE soln

▪MLE solution is 𝑝 𝑦 = 𝑘 =  𝜋𝑘 = 𝑁𝑘/𝑁 where 𝑁𝑘 =  σ𝑛=1
𝑁 𝕀[𝑦 = 𝑘]

▪ Thus 𝑝 𝑦 = 𝑘 =  𝜋𝑘 is simply the fraction of inputs from class 𝑘

▪ Can also compute MAP estimate or full posterior of 𝝅 using a Dirichlet prior 

𝑝 𝑦 𝝅 = multinoulli(𝑦|𝜋1, 𝜋2, … , 𝜋𝐾) =  ς𝑘=1
𝐾 𝜋𝑘

𝕀[𝑦=𝑘]
 

𝜋𝑘  =  𝑝(𝑦 = 𝑘)

𝝅𝑀𝐿𝐸 = argmax
𝝅

 ෍
𝑛=1

𝑁

log 𝑝 𝑦𝑛 𝝅)

These probabilities sum to 1: σ𝑘=1
𝐾 𝜋𝑘 = 1

Subject to constraint σ𝑘=1
𝐾 𝜋𝑘 = 1

If  only two classes, 

assume Bernoulli
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Estimating Class-Conditionals
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▪ Can assume a distribution 𝑝 𝒙 𝑦 = 𝑘 = 𝑝(𝒙|𝜃𝑘) for inputs of each class 𝑘

▪ If  𝒙 is 𝐷-dimensional, 𝑝(𝒙|𝜃𝑘) will be a 𝐷-dimensional distribution

▪ Can compute MLE/MAP estimate or full posterior of 𝜃𝑘
▪ This essentially is a density estimation problem for the class-cond.

▪ In principle, can use any density estimation method

▪ Choice of the form of 𝑝(𝒙|𝜃𝑘) depends on various factors
▪ Nature of input features, e.g., 

▪ If  𝒙 ∈ ℝ𝐷, can use a 𝐷-dim Gaussian 𝒩 𝒙 𝝁𝑘 , 𝚺𝑘

▪ If  𝒙 ∈ {0,1}𝐷 , can use 𝐷 Bernoullis (one for each feature)

▪ Can also choose other more sophisticated distributions

▪ Amount of training data available (important)

▪ If  𝐷 large and 𝑁𝑘 small, it will be difficult to get a good estimate 𝜃𝑘   

Especially if  the number of features (𝐷) is very large because 

large value of 𝐷 means 𝑘 consists of a large number of 

parameters (e.g., in the Gaussian case, 𝜃𝑘 = 𝝁𝑘, 𝚺𝑘 , 𝐷 params 

for 𝝁𝑘 and 𝑂(𝐷2) params for 𝚺𝑘 . Can overfit

To be estimated using the 

𝑁𝑘 training inputs 

{𝒙𝑛: 𝑦𝑛 = 𝑘} from class 𝑘

In such cases, we may need to regularize 𝜃𝑘 or make 

some simplifying assumptions on 𝑝 𝒙 𝜃𝑘 , such as 

features being conditionally independent given class 

e.g., 𝑝 𝒙 𝜃𝑘 =  ς𝑑=1
𝐷 𝑝(𝑥𝑑|𝜃𝑘𝑑)  - naïve Bayes

Such assumptions greatly reduce the 

number of parameters to be estimated

E.g., if  𝑝 𝒙 𝜃𝑘  is multivariate 

Gaussian then assume it to have 

a diagonal covariance matrix 

instead of full covariance matrix



CS772: PML

Generative Classification: At Test Time
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▪ Recall the form of the conditional distribution of the label

▪ If  we assume the class-marginal to be uniform (𝑝 𝑦∗ = 𝑘 = 1/𝐾) then

▪ The most likely label is 𝑦∗ =  argmax𝑘∈{1,2,…,𝐾} 𝑝 𝑦∗ = 𝑘 𝒙∗

𝑝 𝑦∗ = 𝑘 𝒙∗ =
𝑝 𝑦∗ = 𝑘 × 𝑝(𝒙∗|𝑦∗ = 𝑘)

𝑝(𝒙∗)

∝ 𝑝 𝑦∗ = 𝑘 × 𝑝(𝒙∗|𝑦∗ = 𝑘)

Class-conditional distribution of 

inputs accounts for the 

shape/spread of class 𝑘

Class-marginal accounts for the 

frequency of class 𝑘 labels in 

the training data

𝑝 𝑦∗ = 𝑘 𝒙∗ ∝ 𝑝(𝒙∗|𝑦∗ = 𝑘)

Probability of 𝑥∗ belonging to class 

𝑘 is proportional to the fraction of 

training inputs from class 𝑘 times 

the probability of 𝑥∗ under the 

distribution of inputs from class 𝑘

Basically, the probability of 

input under class 𝑘 distribution
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Generative Classification: At Test Time
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▪ Prediction rule is

▪ If  we have point estimates for 𝜋 and {θ𝑘}𝑘=1
𝐾 , say ො𝜋 and { መ𝜃𝑘}𝑘=1

𝐾

▪ If  we have posteriors for 𝜋 and {θ𝑘}𝑘=1
𝐾  then

𝑝 𝑦∗ = 𝑘 𝒙∗ ∝ 𝑝 𝑦∗ = 𝑘 × 𝑝(𝒙∗|𝑦∗ = 𝑘)

𝑝 𝑦∗ = 𝑘 = 𝑝 𝑦∗ = 𝑘 ො𝜋 = ො𝜋𝑘

𝑝 𝒙∗ 𝑦∗ = 𝑘 = 𝑝(𝒙∗| መ𝜃𝑘)

𝑝(𝑦∗ = 𝑘) =  𝑝 𝑦∗ = 𝑘 𝒚 = ∫ 𝑝 𝑦∗ = 𝑘 𝜋 𝑝 𝜋 𝒚 𝑑𝜋

𝑝 𝒙∗ 𝑦∗ = 𝑘 =  𝑝 𝒙∗ 𝑿𝑘 = ∫ 𝑝 𝒙∗ 𝜃𝑘 𝑝 𝜃𝑘 𝑿𝑘 𝑑𝜃𝑘

PPD of 𝑦∗ 

PPD of 𝒙∗ 
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Generative Sup. Learning: Some Comments

▪ A very flexible approach for classification

▪ Can handle missing labels and missing features

▪ These can be treated as latent variables as estimated using methods such as EM

▪ Ability to handle missing labels makes it suitable for semi-supervised learning

▪ The choice of the class-conditional and proper estimation is important

▪ Can leverage advances in deep generative models to learn very flexible forms for 𝑝(𝒙|𝑦)

▪ Can also use it for regression (define 𝑝(𝒙, 𝑦) via some distr. and obtain 𝑝(𝑦|𝒙) from it)

▪ Can also combine generative and discriminative approaches for supervised learning

9

𝑝 𝑦∗ = 𝑘 𝒙∗  =
𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

σ𝑘 𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

Incorporate info about how frequent each 

class is in the training data (“class prior”)

Incorporate info about the 

shape of each class

Will discuss this later

Consequently, can naturally 

learn nonlinear boundaries, too 

(without using kernel methods 

or deep learning)



CS772A: PML

Hybrids of Discriminative and Generative Models

▪ Both discriminative and generative models have their strengths/shortcomings

▪ Some aspects about discriminative models for sup. learning
▪ Discriminative models have usually fewer parameters (e.g., just a weight vector)

▪ Given “plenty” of training data, disc. models can usually outperform generative models

▪ Some aspects about generative models for sup. learning
▪ Can be more flexible (we have seen the reasons already)

▪ Usually have more parameters to be learned

▪ Modeling the inputs (learning 𝑝(𝒙|𝑦)) can be difficult for high-dim inputs

▪ Some prior work on combining discriminative and generative models. Examples:

10

Approach 1 (McCullum et 

al, 2006) – modeling the 

joint 𝑝(𝑥, 𝑦|𝜃) using a 

multi-conditional likelihood

Approach 2 (Lasserre et al, 2006) – 

Coupled parameters between 

discriminative and generative models

Approach 3 (Kuleshov and Ermon, 2017) – Coupling discriminative and generative models via a latent 

variable 𝑧 (see “Deep Hybrid Models: Bridging Discriminative and Generative Approaches“, UAI 2017)

Recall prob linear 

regression and logistic reg
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