Exponential Family Distributions
and Generative Supervised Learning

CS772A: Probabilistic Machine Learning
Piyush Rai



Announcement

" Quiz 1 on Monday Feb 2, 18:15-19:00 (45 minutes)
" Homework 1 out by end of next week
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Plan Today

" | aplace’s Approximation (derivation and some properties)
= Exponential Family Distributions
* Generative Models for Supervised Learning

CS772A: PML



Laplace’s Approximation

» Consider a posterior distribution that is intractable to compute

p(D,0) _ p(D|0)p(6)
p(D) p(D)

= | aplace approximation approximates the above using a Gaussian distribution

p(0|D) =

Tells us about the space
(curvature) of the true

Laplace Approx. posterior around HMAP

1 Gaussian /

p(6]D) =~ N (0160yap, A™) | |
Negative of the Hessian,
l.e., the second derivative

QMAP — dI'gindXg log p(@ |D) of the log joint, at Oy 4p

A = —V; logp(6]D) ‘ = —Vz log p(D, 8)

0=0pap 0=0pmap

" | aplace’s approx. is based on a second-order Taylor approx. of the posterior
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Derivation of the Laplace’s Approximation
p(D) =~ exp(log p(D, Oyap)) x (2m)P/% det(A)/?

We also get a Laplace

" [ et's write the Bayes rule as
approximation of the marginal

p(D.0) __p(D,0) _exp[logp(D,0)]  ikeinood (for free)
p(D)  [p(@,0)d8 [ expllogp(D,0)Ido L5
model evidence

= Consider second-order Taylor approximation of a function f(6) around some 6,
1
f(8) = f(8p) + (6 —6)"Vof(8y) + 5(9 —00) "V £ (60)(6 — 6)
» Assuming f(8) = logp(D, ) and By = Oppap

Constant wirt. 8

logp(D,0) = logp(D, Opap) + = (9 HMAP)Tvleg (D, Oprap) (0 — Oprap)

p(0|D) =

Same as V2log p(Oy4p|D)

p(0|D) o« exp [——(9 Orap)' (— V2108 p(D, Opap))(O — 9MAP)]

— N(QlHMAP,A_l) (WhereA _ —Vzlog p(D HMAP) — _H)
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Properties of Laplace’s Approximation

= Straightforward it posterior's derivatives (first/second) can be computed easily

E.g., a deep neural network, or even in
simpler models (e.g., logistic reg with a

" Expensive it parameter 6 is very high dimensional = [, e number of features
» Reason: We need to compute and invert Hessian of size D X D (D is the # of params)

If K local modes, then define the approx.
posterior as a mixture of K Gaussians

K
p(6|D) ~ Zk_ln(kw(ewn(fjp, HO™y

» Can do badly if the (true) posterior is multimodal

{ 3 timodal boster] Useful for deep
or muitimoddl posteriors, learning models (see paper cited below for details)

True posterior /’\ can use a mixture of ;
‘ //_\ . \ Laplace approximations* 7 ﬂ%ﬂ .

Gaussian ¢

apprlox/imation \\ \V/ |

" Used only when 8 is a real-valued vector (because of Gaussian approximation)

* Note: Even if we have a non-probabilistic model (loss function + regularization), we
can obtain an approx “posterior” for that model using the Laplace’s approximation
» Optima of the regularized loss function will be Gaussian’'s mean
" [nverse of the second derivative of the regularized loss function will be covariance matrix

*Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning (Eschenhagen et al, 2021)
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Generalized Linear Models and Exponential Family

" (Probabilistic) Linear Regression: when response y is real-valued

plx,w) = N(ylw'x, f7)
= | ogistic Regression: when response y is binary (0/1)
y

exp(w'x) | 1 1=y
1+exp(w™x)| [1+exp(w'x)

p(y|x,w) = Bernoulli[y|lo(w'x)] = [

* Both are examples of a Generalized Linear Model (GLM) | MLE/MAP of wis easy for GLMs (due

: , : T to convex objective, thanks to exp-
" The model depends on the inputs x via a linear model w' x family). Posterior usually requires
approximations if likelihood and prior

u GLM |S deflﬂed USIﬂg aﬂ GXpOﬂeﬂtIa| fam”y dIStrIbUthﬂ are not Conjugate pairs (I_aplace
T approximation or other methods used)
p(y|x,w) = ExpFam[y|f(w'x)]

» ExpFam can be any suitable distribution depending on the nature of outputs, e.g.,
" (Gaussian for reals, Bernoulli for binary, Poisson for Count, gamma for positive reals

" ExpFam distributions are more generally useful in other contexts as well
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Exp. Family (Pi

tman, Darmois, Koopman, 1930s)

" Defines a class of distributions. An Exponential Family distribution is of the form

1

p(x10) = gy h0x) R0 o(x)] = h(x) expldT6(x) ~ A)

mx € X™is therv. bei

ng modeled (X denotes some space, e.g., R or {0,1})

=9 € R%: Natural parameters or canonical parameters defining the distribution

= p(x) € R?: Sufficient statistics (another random variable)
= Knowing this quantity suffices to estimate parameter 8 from x

=7(0) = | h(x)exp
"A(8) = log Z(0):

0" ¢ (x)]dx: Partition Function

| og-partition function (also called cumulant function)

" h(x): A constant (d

oesn't depend on 6) CS772A: PML



Expressing a Distribution in Exp. Family Form

= Recall the form of exp-fam distribution p(x|0) = h(x)exp[0Tp(x) — A(6)]
= To write any exp-fam dist p() in the above form, write it as exp(log p())

exp (log Binomial(x| N, n)) = exp ('Og (N) At ”)NX)

X

X

— (2’) exp (xlog - ﬁu — Nlog(1 —M))

= Now compare the resulting expression with the exponential family form

p(x|6) = h(x)exp[0 ' p(x) — A(0)]

. o identify the natural parameters, sufficient statistics, log-partition function, etc.

—  exp (Iog (N) + xlog i+ (N — x) log(1 — ,u))
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(Univariate) Gaussian as Exponential Family

" | et’s try to write a univariate Gaussian in the exponential family form
p(x|0) = h(x)exp[0" ¢(x) — A(0)]

» Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

1 (x — p)? 1 7 1 p
N(x|p, -:72) = s exp [— 5 = Nz exp | —=x — —x*— —— —logo

(5] wo-[a] o[-

h(x) = = A(f) = £, +logo = 72+ — Liog(~26,) — L log(2n)

o

ﬁ
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Other Examples

* Many other distribution belong to the exponential family
= Bernoulli
" Beta
" Gamma
= Multinoulli/Multinomial
= Dirichlet
= Multivariate Gaussian
= . and many more ( https://en.wikipedia.org/wiki/Exponential _family )

= Note: Not all distributions belong to the exponential family, e.g.,
= Uniform distribution (x ~ Unif(a, b))
= Student-t distribution
= Mixture distributions (e.g., mixture of Gaussians)
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Log-Partition Function

* The log-partition function is A(#) = log Z(0) = log | h(x) exp[f ' ¢(x)]dx
" A(O) is also called the cumulant function
= Derivatives of A(0) can be used to generate the cumulants of the sufficient statistics

" Exercise; Assume 6 to be a scalar (thus ¢(x) is also scalar). Show that the first and
the second derivatives of A(@) are

dA

@ — Ep(x|6') [Qb(x)]

d2A ’ 2

F Ep(x|9) [Qb (X)] o [EP(-"W)[QS(X)” — var[gb(x)]

= Above result also holds when 8 and ¢ (x) are vector-valued (the “var” will be "covar”)

» Important: A(@) is a convex function of 8. Why?
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VILE for Exponential Family Distributions

" Assume data D = {xq,...,xy} drawn i.i.d. from an exp. family distribution

p(x]6) = h(x)exp[6' ¢ (x) — A(0)]

" To do MLE, we need the overall likelihood -- a product of the individual likelihoods

N

N N N -
p(D]6) = | | p(xi|6) = [H h(x,-)} exp leTZ B(x;) — NA(Q)] = [H h(x,-)] exp [9 ¢(D) — NA(Q)}

i=1

= To estimate 8 (as we'll see shortly), we only need ¢(D) = Z,/'V:1 ¢(x;) and N
= Size of ¢(D) = X1, p(x;) does not grow with N (same as the size of each ¢ (x;))

» Only exponential family distributions have finite-sized sufficient statistics
= No need to store all the data; can simply update the sufficient statistics as data comes
= Useful in probabilistic inference with large-scale data sets and “online” parameter estimation
CS772A: PML



Bayesian Inference for Expon. Family Distributions

» Already saw that the total likelihood given N i.i.d. observations D = {x4,..., Xy}
N

p(D|0) o exp |07 (D) — NA(6)

where ¢(D) = Z o (xi)

" | et's choose the following prior (note: looks similar in terms of 8 within exp)

p(0]vo, T0) = h(6) exp [9% — A(8) — Ac(o, To)]

= |gnoring the prior's log-partition function Ac(vo, 7o) = log [, h(8) exp [0 70 — 10 A(0)] db

p(B|vo, T0) o h(B) exp [9% _ yoA(G)}

= Comparing the prior's form with the likelihood, note that

" v, is like the number of "pseudo-observations” coming from the prior

" is the total sufficient statistics of the pseudo-observations (

/ vy per pseudo-obs)
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The Posterior

" [he likelihood and prior were )
p(D|6) o exp [9%(19) - NA(@)] where  ¢(D) = > 6(x)

Assume its log partition p(8|vo, T0) o h(6) exp lGT o — I/OA(G)]

function denoted as A¢(vo, To) Posterior is also

. . from the same Happens when the
* The posterior p(8|D) o p(6)p(D|0) therefore will be family as the prior .| prior is conjugate

to the likelihood

Its log partition function will be T o
i g partion frtonvilbe | p(6|D) o< h(6) exp 07 (70 + ¢(D)) — (vo + N)A(9)]

= Fvery exp family likelihood has a conjugate prior having the form above
= Posterior's hyperparams Ty, v obtained by adding “stuff” to prior's hyperparams

Number of pseudo-observations plus / Another equivalent form To = 7o/
number of actual observations o — Vot N - voTo + ¢(D)
| , p(8]D) o h(B) exp |67 (1o + N) — (0 + N)A(®)
Suff-stats of pseudo-obervations plus =~ 75" 4— 79 + @(D) vo+ N
suff-stats of actual observations / - D
126} — o+ N Qb — %
Convex comb of avg . voTo + N
suff-stats of pseudo T *—
vo+ N CS772A: PML
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Posterior Predictive Distribution

» Assume some training data D = {x4,..., Xy} from some exp-fam distribution
" Assume some test data D' = {X4,..., Xy} from the same distribution

" The posterior pred. distr. of D’

Exp. Fam. likelihood
wirt. test data

p(D'D) = [ o(D'16)p(6ID)d8

Posterior (same form as the
prior due to conjugacy)

[ 3
S
_+_
<
3
<)
+
)
Q.
D

N/
= / [H h(i;)] exp [OTd)(D’) - N’A(e)] h(6) exp {(f(m + ¢(D)) — (vo + N)A(0) —

‘#

constant w.r.t. 6

" This gets further simplified into

~~~~~

p(D'|D) = [l} h(i;)} ““““““ exp [A(U6 + N, 76 + ¢(D))]

=~

exp [Ac(vo + N, 7o + ¢(D))] CS772A: PML
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Posterior Predictive Distribution L

marginal likelihood has
closed form expression

*Since A, = logZ. or Z, = exp(A.) we can write the PPD as | working with xp-

p(D'|D) = [H h(x;)

i=1

family distributions

Z(vo+ N+ N, 7o+ ¢(D) + ¢(D’))
Z(vo + N, 70 + ¢(D))

— [H h(x; :I exp [Ac(vo + N+ N', 79 + ¢(D) + ¢(D’)) — Ac(vo + N, To + ¢(D))]

» Therefore the posterior predictive is proportional to

= Ratio of two partition functions of two “posterior distributions” (one with N + N’ examples and
the other with N examples)

= Exponential of the difference of the corresponding log-partition functions

* Note that the form of Z. (and A.) will simply depend on the chosen conjugate prior

= Very useful result. Also holds for N = 0
= In this case p(D’) = [ p(D'|0)p(6)d8 is simply the marginal likelihood of test data D’
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summary

" Exp. family distributions are very useful for modeling diverse types of data/parameters
= Conjugate priors to exp. family distributions make parameter updates very simple
= Other guantities such as posterior predictive can be computed in closed form

» Useful in designing generative classification models. Choosing class-conditional from
exponential family with conjugate priors helps in parameter estimation

= Useful in designing generative models for unsupervised learning

» Used in designing Generalized Linear Models: Model p(y|x) using exp. fam distribution
" Linear regression (with Gaussian likelihood) and logistic regression are GLMs

= Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs

sampling, and especially variational inference)
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Generative Supervised Learning

In the discriminative approach

= The conditional distribution p(y|x) can also be defined as for learning p(y1). we didn't

model the inputs x but treated

Requires modeling the |
them as "given”

joint distribution of the
p(ylx) — p(x' y) inputs and outputs
p(x)
= Generative sup. learning is usually more work because p(x, y) has to be estimated

" However, there are some benetfits as well. For example, for classitication

Can incorporate knowledge of the distribution

p(y) is called the “class-prior” or | | Can incorporate knowledge of frequency
("shape”) of each class in training data

“class-marginal” distribution ("size") of each class in training data
Can assume simple/sophisticated types

p(x’ y) _ p(y)p(x |y) of distributions for the “class-conditional”

distribution p(x|y) and learned them

X) = =
p (yl ) p (x) p (X) using the training data of each class
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Generative Supervised Learning oW

Note: Estimating p(x|y) can be
Marginal probability of Probability (density) of difficult especially if x is high-

" The generative classification model belonging o class k| | input x under casok || dimensional and we don't have
enough data from each class
Probability of belonging to = =
class k, conditioned on the p(y =k |x) — p(y k)p(xly k) A way to handle this is to assume simpler forms for
input x Zk p(y — k)p(x|y = k) p(x|y) (e.g., Gaussian with diagonal/spherical covar —

naive Bayes) but it might sacrifice accuracy too

= We need to learn p(y) and p(x|y) here given training data (X, y) = {(x,,, V) }n=1

= Class prior/marginal distribution p(y) will always be a discrete distribution, e.g.,
» Fory € {0,1}, p(y) = p(y|r) = Bernoulli(y|m) with T € (0,1) > me=1
" Fory € {1,2,..,K}, p(y) = p(y|) = multinoulli(y|m) where T = [m4, ..., ]

= Class conditional distribution p(x|y) will depend on the nature of inputs, e.g.,
= For x € R?, p(x|y = k) can be a multivariate Gaussian (one per class) | o cn use Beta or Diichiet

(we have already seen these
examples)

Note: When estimating 8y . we p (x | y — k) — p (xl Hk) — N (x | ll"l'k Zk) Will need appropriate prior
only need inputs from class k ) distributions for 1 and {8, }5_,
Xi = {xn: yn =k}

= Can estimate m and {8, }5-, using (X, y) via point est. or fully Bayesian infer,
k=1 9 E i Pt



Generative Classification: Making Predictions

= Once mand {0, }s_, are learned, we are ready to make prediction for any test input x,
= Two ways to make the prediction

= Approach 1: If we have point estimates for 7 and {0, }£_,. say # and {8, }%_,. Then

= k|7 X, é R Compute for every value
p(y _l )}9( | f) e ﬁkp(x*lgk) of k and normalize
2Py = k|)p(x|6k)
= Approach 2: If we have the full posterior for  and {0, }x_,. Then PPD of .

= [nstead of using p(y, = k|#), we will use p(y, = kly) = [ p(y, = k|n)p(n|y)dr
= [nstead of using p(x.]0x), we will use p(x.1X,) = | p(x.10:)p (04| X)) dO, — PP of x.
= Using these quantities, the prediction will be made as

p(y. = kly)p(x.|Xy)
Y P = kly)p(x.|X})

p(y. = klx,) =

Compute for every value
of k and normalize

X p(y. = k|y)p(x.|Xy)

Note that we aren't using a single

"best” value of the params m and 6,
unlike Approach 1 CS772A: PML
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Generative Sup. Learning: Some Comments

= A very flexible approach for classification

Incorporate info about how frequent each Incorporate info about the
class is in the training data (“class prior”) shape of each class

Dy, = klx,) = PO, = l)px.|y. = k)
2 PV = I)p(x.]y. = k)
» Can handle missing labels and missing features
" These can be treated as latent variables as estimated using methods such as EM

Consequently, can naturally
learn nonlinear boundaries, too
(without using kernel methods
or deep learning)

Will discuss this later

= Ability to handle missing labels makes it suitable for semi-supervised learning

" The choice of the class-conditional and proper estimation is important
= Can leverage advances in deep generative models to learn very flexible forms for p(x|y)

= Can also use it for regression (define p(x, y) via some distr. and obtain p(y|x) from it)

» Can also combine generative and discriminative approaches for supervised learning
CS772A: PML




Hybrids of Discriminative and Generative Models

= Both discriminative and generative models have their strengths/shortcomings

Recall prob linear

" Some aspects about discriminative models for sup. learning regression and logistic reg

= Discriminative models have usually fewer parameters (e.g., just a weight vector)
= Given “plenty” of training data, disc. models can usually outperform generative models

" Some aspects about generative models for sup. learning
= Can be more flexible (we have seen the reasons already)
= Usually have more parameters to be learned
* Modeling the inputs (learning p(x|y)) can be difficult for high-dim inputs

= Some prior work on combining discriminative and generative models. Examples:

alog p(y|z; 0) + Blog p(w; 0) p(,y,04,04) = po,(y|z)pe, (x)p(0a, 0,)
. ] Approach 2 (Lasserre et al, 2006) —
Alpgrgggh 1 (M;Cﬁllumhet p(ﬂj, y? Z) o p(y‘:r? ’Z) p(ﬂj.. Z) Coupled parameters between
& ) —mo eing the discriminative and generative models
joint p(x, y|0) using a
multi-conditional likelihood Approach 3 (Kuleshov and Ermon, 2017) — Coupling discriminative and generative models via a latent

variable z (see “Deep Hybrid Models: Bridging Discriminative and Generative Approaches”, UAI 2017)
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