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Announcement

▪Quiz 1 on Monday Feb 2, 18:15-19:00 (45 minutes)

▪Homework 1 out by end of next week
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Plan Today

▪Laplace’s Approximation (derivation and some properties)

▪Exponential Family Distributions

▪Generative Models for Supervised Learning
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Laplace’s Approximation

▪ Consider a posterior distribution that is intractable to compute

▪ Laplace approximation approximates the above using a Gaussian distribution

▪ Laplace’s approx. is based on a second-order Taylor approx. of the posterior
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Negative of the Hessian, 

i.e., the second derivative 

of the log joint, at 𝜃𝑀𝐴𝑃 

𝑝 𝜃 𝒟 =
𝑝(𝒟, 𝜃)

𝑝(𝒟)
=

𝑝(𝒟|𝜃)𝑝 𝜃

𝑝(𝒟)

𝑝 𝜃 𝒟 ≈ 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1)

Tells us about the space 

(curvature) of the true 

posterior around 𝜃𝑀𝐴𝑃 

𝚲 = − ∇𝜃
2  log 𝑝 𝜃 𝒟 ቚ

𝜃=𝜃𝑀𝐴𝑃

= −∇𝜃
2  log 𝑝(𝒟, 𝜃) ቚ

𝜃=𝜃𝑀𝐴𝑃

𝜃𝑀𝐴𝑃 =  argmax𝜃 log 𝑝(𝜃|𝒟)
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Derivation of the Laplace’s Approximation

▪ Let’s write the Bayes rule as

▪ Consider second-order Taylor approximation of a function 𝑓 𝜃  around some 𝜃0

▪ Assuming 𝑓 𝜃 =  log 𝑝(𝒟, 𝜃) and 𝜃0 = 𝜃𝑀𝐴𝑃

▪ , 

Purely 
quadra
tic in 𝜃

𝑝 𝜃 𝒟 =
𝑝(𝒟, 𝜃)

𝑝(𝒟)
=

𝑝(𝒟, 𝜃)

∫ 𝑝 𝒟, 𝜃 𝑑𝜃
=

exp[log 𝑝 𝒟, 𝜃 ]

∫ exp[log 𝑝 𝒟, 𝜃 ]𝑑𝜃

𝑓 𝜃 ≈ 𝑓 𝜃0 + 𝜃 − 𝜃0
⊤∇𝜃𝑓 𝜃0 +

1

2
𝜃 − 𝜃0

⊤∇𝜃
2 𝑓(𝜃0) 𝜃 − 𝜃0

log 𝑝(𝒟, 𝜃) ≈ log 𝑝(𝒟, 𝜃𝑀𝐴𝑃) +
1

2
𝜃 − 𝜃𝑀𝐴𝑃

⊤∇𝜃
2 log 𝑝(𝒟, 𝜃𝑀𝐴𝑃) 𝜃 − 𝜃𝑀𝐴𝑃

Constant w.r.t. 𝜃
Same as ∇2log 𝑝(𝜃𝑀𝐴𝑃|𝒟)

𝑝 𝒟 ≈  exp log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 × 2𝜋 𝐷/2 det 𝚲 1/2

We also get a Laplace 

approximation of the marginal 

likelihood (for free!)

Note: Sometimes marginal 

likelihood is also called 

model evidence

𝑝 𝜃 𝒟 ∝  exp −
1

2
𝜃 − 𝜃𝑀𝐴𝑃

⊤(−∇𝜃
2 log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 ) 𝜃 − 𝜃𝑀𝐴𝑃

=  𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1) (where 𝚲 =  −∇𝜃
2 log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 = −𝐇)
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Properties of Laplace’s Approximation

▪ Straightforward if  posterior’s derivatives (first/second) can be computed easily

▪ Expensive if  parameter 𝜃 is very high dimensional
▪ Reason: We need to compute and invert Hessian of size 𝐷 × 𝐷 (𝐷 is the # of params)

▪ Can do badly if  the (true) posterior is multimodal

▪ Used only when 𝜃 is a real-valued vector (because of Gaussian approximation)

▪ Note: Even if  we have a non-probabilistic model (loss function + regularization), we 
can obtain an approx “posterior” for that model using the Laplace’s approximation
▪ Optima of the regularized loss function will be Gaussian’s mean

▪ Inverse of the second derivative of the regularized loss function will be covariance matrix
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True posterior

Gaussian 

approximation

E.g., a deep neural network, or even in 

simpler models (e.g., logistic reg with a 

very large number of features

For multimodal posteriors, 

can use a mixture of 

Laplace approximations*

If  𝐾 local modes, then define the approx. 

posterior as a mixture of 𝐾 Gaussians

𝑝 𝜃 𝐷 ≈ ෍
𝑘=1

𝐾

𝜋(𝑘)𝒩(𝜃|𝜃𝑀𝐴𝑃
𝑘 , 𝐻 𝑘 −1

)

(see paper cited below for details)

*Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning (Eschenhagen et al, 2021)

Useful for deep 

learning models
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Generalized Linear Models and Exponential Family
▪ (Probabilistic) Linear Regression: when response 𝑦 is real-valued 

▪ Logistic Regression: when response 𝑦 is binary (0/1) 

▪ Both are examples of a Generalized Linear Model (GLM)

▪ The model depends on the inputs 𝒙 via a linear model 𝒘⊤𝒙

▪ GLM is defined using an exponential family distribution

▪ ExpFam can be any suitable distribution depending on the nature of outputs, e.g.,
▪ Gaussian for reals, Bernoulli for binary, Poisson for Count, gamma for positive reals

▪ ExpFam distributions are more generally useful in other contexts as well
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𝑝 𝑦 𝒙, 𝒘 = ExpFam[𝑦|𝑓 𝒘⊤𝒙 ]

𝑝 𝑦 𝒙, 𝒘 =  𝒩(𝑦|𝒘⊤𝒙, 𝛽−1)

𝑝 𝑦 𝒙, 𝒘 =  Bernoulli 𝑦 𝜎(𝒘⊤𝒙) =
exp 𝒘⊤𝒙

1 + exp 𝒘⊤𝒙

𝑦
1

1 + exp 𝒘⊤𝒙

1−𝑦

MLE/MAP of 𝒘 is easy for GLMs (due 

to convex objective, thanks to exp-

family). Posterior usually requires 

approximations if  likelihood and prior 

are not conjugate pairs (Laplace 

approximation or other methods used) 
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Exp. Family (Pitman, Darmois, Koopman, 1930s)

▪Defines a class of distributions. An Exponential Family distribution is of the form

▪ 𝒙 ∈  𝒳𝑚 is the r.v. being modeled (𝒳 denotes some space, e.g., ℝ or {0,1}) 

▪ 𝜃 ∈  ℝ𝑑 : Natural parameters or canonical parameters defining the distribution

▪ 𝜙(𝒙)  ∈  ℝ𝑑 : Sufficient statistics (another random variable)

▪ Knowing this quantity suffices to estimate parameter 𝜃 from 𝑥

▪𝑍 𝜃 = ∫ ℎ 𝒙 exp 𝜃⊤𝜙 𝒙 𝑑𝒙: Partition Function

▪𝐴 𝜃 =  log 𝑍(𝜃): Log-partition function (also called cumulant function)

▪ℎ(𝒙): A constant (doesn’t depend on 𝜃)

8
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Expressing a Distribution in Exp. Family Form

▪ Recall the form of exp-fam distribution 𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃

▪ To write any exp-fam dist 𝑝() in the above form, write it as exp(log 𝑝()) 

▪Now compare the resulting expression with the exponential family form

 .. to identify the natural parameters, sufficient statistics, log-partition function, etc.

9

𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃
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(Univariate) Gaussian as Exponential Family

▪ Let’s try to write a univariate Gaussian in the exponential family form

▪ Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

10
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Other Examples

▪Many other distribution belong to the exponential family
▪ Bernoulli

▪ Beta

▪ Gamma

▪ Multinoulli/Multinomial

▪ Dirichlet

▪ Multivariate Gaussian

▪ .. and many more ( https://en.wikipedia.org/wiki/Exponential_family )

▪Note: Not all distributions belong to the exponential family, e.g.,

▪ Uniform distribution (x ∼ Unif(a, b))

▪ Student-t distribution

▪ Mixture distributions (e.g., mixture of Gaussians)

11

https://en.wikipedia.org/wiki/Exponential_family
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Log-Partition Function

▪ The log-partition function is 

▪ 𝐴(𝜃) is also called the cumulant function

▪ Derivatives of 𝐴(𝜃) can be used to generate the cumulants of the sufficient statistics

▪ Exercise: Assume 𝜃 to be a scalar (thus 𝜙(𝑥) is also scalar). Show that the first and 
the second derivatives of 𝐴(𝜃) are

▪ Above result also holds when 𝜃 and 𝜙(𝑥) are vector-valued (the “var” will be “covar”)

▪ Important: 𝐴(𝜃) is a convex function of 𝜃. Why?

12
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MLE for Exponential Family Distributions

▪ Assume data 𝒟 =  {𝑥1, . . . , 𝑥𝑁} drawn i.i.d. from an exp. family distribution

▪ To do MLE, we need the overall likelihood -- a product of the individual likelihoods

▪ To estimate 𝜃 (as we’ll see shortly), we only need

▪ Size of 𝜙 𝒟 = σ𝑖=1
𝑁 𝜙 𝑥𝑖  does not grow with 𝑁 (same as the size of each 𝜙 𝑥𝑖 )

▪ Only exponential family distributions have finite-sized sufficient statistics
▪ No need to store all the data; can simply update the sufficient statistics as data comes

▪ Useful in probabilistic inference with large-scale data sets and “online” parameter estimation

13

𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃
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Bayesian Inference for Expon. Family Distributions

▪ Already saw that the total likelihood given 𝑁 i.i.d. observations 𝒟 =  {𝑥1, . . . , 𝑥𝑁} 

▪ Let’s choose the following prior (note: looks similar in terms of 𝜃 within exp)

▪ Ignoring the prior’s log-partition function

▪ Comparing the prior’s form with the likelihood, note that
▪  𝜈0 is like the number of “pseudo-observations” coming from the prior

▪  𝜏0 is the total sufficient statistics of the pseudo-observations (𝜏0/ 𝜈0 per pseudo-obs)

14
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The Posterior

▪ The likelihood and prior were 

▪ The posterior                              therefore will be

▪ Every exp family likelihood has a conjugate prior having the form above

▪ Posterior’s hyperparams 𝜏0
′ , 𝜈0

′  obtained by adding “stuff” to prior’s hyperparams

15

Posterior is also 

from the same 

family as the prior
Happens when the 

prior is conjugate 

to the likelihood

Number of pseudo-observations plus 

number of actual observations

Suff-stats of pseudo-obervations plus 

suff-stats of actual observations

Its log partition function will be 

𝐴𝑐(𝜈0 + 𝑁, 𝜏0 + 𝜙(𝒟))

Assume its log partition 

function denoted as 𝐴𝑐(𝜈0, 𝜏0)

Convex comb of avg 

suff-stats of pseudo 

obs and actual obs

Another equivalent form
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Posterior Predictive Distribution

▪ Assume some training data 𝒟 =  {𝑥1, . . . , 𝑥𝑁} from some exp-fam distribution

▪ Assume some test data 𝒟′ =  { ෤𝑥1, . . . , ෤𝑥𝑁′} from the same distribution

▪ The posterior pred. distr. of 𝒟′

▪ This gets further simplified into

16

Exp. Fam. likelihood 

w.r.t. test data

Posterior (same form as the 

prior due to conjugacy)
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Posterior Predictive Distribution

▪ Since 𝐴𝑐  =  log 𝑍𝑐 or 𝑍𝑐 =  exp(𝐴𝑐), we can write the PPD as

▪ Therefore the posterior predictive is proportional to
▪ Ratio of two partition functions of two “posterior distributions” (one with 𝑁 +  𝑁′ examples and 

the other with 𝑁 examples)

▪ Exponential of the difference of the corresponding log-partition functions

▪ Note that the form of 𝑍𝑐 (and 𝐴𝑐) will simply depend on the chosen conjugate prior

▪ Very useful result. Also holds for 𝑁 =  0 
▪ In this case                                         is simply the marginal likelihood of test data 𝒟′ 

17
Thus PPD as well as 

marginal likelihood has 

closed form expression 

when working with exp-

family distributions
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Summary

▪ Exp. family distributions are very useful for modeling diverse types of data/parameters

▪ Conjugate priors to exp. family distributions make parameter updates very simple

▪ Other quantities such as posterior predictive can be computed in closed form

▪ Useful in designing generative classification models. Choosing class-conditional from 
exponential family with conjugate priors helps in parameter estimation

▪ Useful in designing generative models for unsupervised learning

▪ Used in designing Generalized Linear Models: Model 𝑝(𝑦|𝑥) using exp. fam distribution
▪ Linear regression (with Gaussian likelihood) and logistic regression are GLMs

▪ Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs 
sampling, and especially variational inference)

18
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Generative Supervised Learning

▪ The conditional distribution 𝑝(𝑦|𝑥) can also be defined as

▪ Generative sup. learning is usually more work because 𝑝(𝑥, 𝑦) has to be estimated

▪ However, there are some benefits as well. For example, for classification

𝑝 𝑦 𝑥 =
𝑝(𝑥, 𝑦)

𝑝(𝑥)

Requires modeling the 

joint distribution of the 

inputs and outputs

In the discriminative approach 

for learning 𝑝(𝑦|𝑥), we didn’t 

model the inputs 𝑥 but treated 

them as “given”

𝑝 𝑦 𝑥 =
𝑝(𝑥, 𝑦)

𝑝(𝑥)
=

𝑝(𝑦)𝑝(𝑥|𝑦)

𝑝(𝑥)

Can incorporate knowledge of frequency 

(“size”) of each class in training data

Can incorporate knowledge of the distribution 

(“shape”) of each class in training data

Can assume simple/sophisticated types 

of distributions for the “class-conditional” 

distribution 𝑝(𝑥|𝑦) and learned them 

using the training data of each class

𝑝(𝑦) is called the “class-prior” or 

“class-marginal” distribution
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Generative Supervised Learning

▪ The generative classification model

▪ We need to learn 𝑝(𝑦) and 𝑝(𝒙|𝑦) here given training data 𝑿, 𝒚 = 𝑥𝑛, 𝑦𝑛 𝑛=1
𝑁

▪ Class prior/marginal distribution 𝑝(𝑦) will always be a discrete distribution, e.g.,
▪ For 𝑦 ∈  {0,1}, 𝑝 𝑦 = 𝑝 𝑦 𝜋 =  Bernoulli 𝑦|𝜋  with 𝝅 ∈  (0,1)

▪ For 𝑦 ∈  {1,2, … , 𝐾}, 𝑝 𝑦 = 𝑝 𝑦 𝝅 =  multinoulli 𝑦|𝝅  where 𝝅 = [𝜋1, … , 𝜋𝐾]

▪ Class conditional distribution 𝑝(𝒙|𝑦) will depend on the nature of inputs, e.g.,

▪ For 𝒙 ∈ ℝ𝐷 , 𝑝 𝒙 𝑦 = 𝑘  can be a multivariate Gaussian (one per class) 

▪ Can estimate 𝜋 and {θ𝑘}𝑘=1
𝐾  using 𝑿, 𝒚  via point est. or fully Bayesian infer.

20

𝑝 𝒙 𝑦 = 𝑘 = 𝑝 𝒙 𝜃𝑘 =  𝒩(𝒙|𝜇𝑘 , Σ𝑘) 

𝑝 𝑦 = 𝑘 𝒙  =
𝑝(𝑦 = 𝑘)𝑝(𝒙|𝑦 = 𝑘)

σ𝑘 𝑝(𝑦 = 𝑘)𝑝(𝒙|𝑦 = 𝑘)

Marginal probability of 

belonging to class 𝑘

Probability of belonging to 

class 𝑘, conditioned on the 

input 𝒙

Probability (density) of 

input 𝒙 under class 𝑘

෍
𝑘=1

𝐾

𝜋𝑘 = 1

Note: When estimating 𝜃𝑘 , we 

only need inputs from class 𝑘
𝑿k = {𝒙𝑛:  𝑦𝑛 = 𝑘}

Will need appropriate prior 

distributions for 𝜋 and {θ𝑘}𝑘=1
𝐾

For 𝜋 , can use Beta or Dirichlet 

(we have already seen these 

examples)

Note: Estimating 𝑝(𝒙|𝑦) can be 

difficult especially if  𝒙 is high-

dimensional and we don’t have 

enough data from each class

A way to handle this is to assume simpler forms for 

𝑝(𝒙|𝑦) (e.g., Gaussian with diagonal/spherical covar – 

naïve Bayes) but it might sacrifice accuracy too
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Generative Classification: Making Predictions

▪ Once 𝜋 and {θ𝑘}𝑘=1
𝐾  are learned, we are ready to make prediction for any test input 𝒙∗

▪ Two ways to make the prediction

▪ Approach 1: If  we have point estimates for 𝜋 and {θ𝑘}𝑘=1
𝐾 , say ො𝜋 and { መ𝜃𝑘}𝑘=1

𝐾 . Then

▪ Approach 2: If  we have the full posterior for 𝜋 and {θ𝑘}𝑘=1
𝐾 . Then

▪ Instead of using 𝑝(𝑦∗ = 𝑘| ො𝜋), we will use 𝑝 𝑦∗ = 𝑘 𝒚 = ∫ 𝑝 𝑦∗ = 𝑘 𝜋 𝑝 𝜋 𝒚 𝑑𝜋

▪ Instead of using 𝑝(𝒙∗| ෠𝜃𝑘), we will use 𝑝 𝒙∗ 𝑿𝑘 = ∫ 𝑝 𝒙∗ 𝜃𝑘 𝑝 𝜃𝑘 𝑿𝑘 𝑑𝜃𝑘

▪ Using these quantities, the prediction will be made as

21

𝑝 𝑦∗ = 𝑘 𝑥∗, 𝑿, 𝒚  =
𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

σ𝑘 𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

𝑝 𝑦∗ = 𝑘 𝒙∗  =
𝑝(𝑦∗ = 𝑘| ො𝜋)𝑝(𝒙∗| መ𝜃𝑘)

σ𝑘 𝑝(𝑦 = 𝑘| ො𝜋)𝑝(𝒙| መ𝜃𝑘)
∝  ො𝜋𝑘𝑝(𝒙∗| መ𝜃𝑘)

∝ 𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

PPD of 𝑦∗ 

PPD of 𝒙∗ 

Compute for every value 

of 𝑘 and normalize

Compute for every value 

of 𝑘 and normalize

Note that we aren’t using a single 

“best” value of the params 𝜋 and 𝜃𝑘 

unlike Approach 1
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Generative Sup. Learning: Some Comments

▪ A very flexible approach for classification

▪ Can handle missing labels and missing features

▪ These can be treated as latent variables as estimated using methods such as EM

▪ Ability to handle missing labels makes it suitable for semi-supervised learning

▪ The choice of the class-conditional and proper estimation is important

▪ Can leverage advances in deep generative models to learn very flexible forms for 𝑝(𝒙|𝑦)

▪ Can also use it for regression (define 𝑝(𝒙, 𝑦) via some distr. and obtain 𝑝(𝑦|𝒙) from it)

▪ Can also combine generative and discriminative approaches for supervised learning

22

𝑝 𝑦∗ = 𝑘 𝒙∗  =
𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

σ𝑘 𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

Incorporate info about how frequent each 

class is in the training data (“class prior”)

Incorporate info about the 

shape of each class

Will discuss this later

Consequently, can naturally 

learn nonlinear boundaries, too 

(without using kernel methods 

or deep learning)
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Hybrids of Discriminative and Generative Models

▪ Both discriminative and generative models have their strengths/shortcomings

▪ Some aspects about discriminative models for sup. learning
▪ Discriminative models have usually fewer parameters (e.g., just a weight vector)

▪ Given “plenty” of training data, disc. models can usually outperform generative models

▪ Some aspects about generative models for sup. learning
▪ Can be more flexible (we have seen the reasons already)

▪ Usually have more parameters to be learned

▪ Modeling the inputs (learning 𝑝(𝒙|𝑦)) can be difficult for high-dim inputs

▪ Some prior work on combining discriminative and generative models. Examples:

23

Approach 1 (McCullum et 

al, 2006) – modeling the 

joint 𝑝(𝑥, 𝑦|𝜃) using a 

multi-conditional likelihood

Approach 2 (Lasserre et al, 2006) – 

Coupled parameters between 

discriminative and generative models

Approach 3 (Kuleshov and Ermon, 2017) – Coupling discriminative and generative models via a latent 

variable 𝑧 (see “Deep Hybrid Models: Bridging Discriminative and Generative Approaches“, UAI 2017)

Recall prob linear 

regression and logistic reg
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