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Plan Today

= Probabilistic linear regression (contd)
" | ogistic and Softmax/Multinoulli Regression
" Generalized Linear Models
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A discriminative model

Probabilistic Linear Regression = i easonpmens

= Assume training data {x,,, Y, 14, with features x,, € RP and responses y,, € R

Unknown to be estimated Each weight assumed real-valued
= Assume y,, generated by a noisy linear model with wts w = [wy, ...,wp] € R

(Gaussian noise drawn

R
Yn =W Xu T € | fom Nel0,870)

= Notation alert: B is the precision of Gaussian noise (and B~ the variance)

The line represents the
mean w' x,, of the output

UYn ~ N(w—rq;m ﬂ_l) random variable y,,

Likelihood model
p(Wnlxn, w, B) = Ny lw'x,, B71)

Input x,, being

treated as given y
and not modeled

by any probability

The zero mean
Gaussian noise
perturbs the output
from its mean

distribution Gaussian
T Will later study models | B { A T Thus NLL is like
wx 9. o \Un — n
n in which both input and or P72 (yn —w 2n) squared loss
output are modeled by CST7A: PMIL

distributions X



Prior on weights

May also use a non-zero mean Gaussian
prior, e.g., N (wg|u, A1) if we expect
weights to be close to some value u

» Assume a zero-mean Gaussian prior on w

This prior assumes that a priori each
weight has a small value (close to zero)

p(W|2) = ]_[p<wdm> . ]_[mwdm A1) o

In zero-mean case, 4 sort A controls the uncertainty around our L‘.

of denotes each feature’s prior belief about value of wy
importance. Think why?

Can also use a full covariance

- —1 . -1 .
Large A means - ,p(Wd)— N(Wf’|0’).‘ ). . N O /1_ 11 matnx A f.or'the prior to
more aggressi\/e on | | — (Wl ) D) ImpOSG a prIOl’I COrre|atIOﬂS
push towards zero | | among different weights
The precision _. 2 Prior's hyperparameters (4/A/u)
A controls how ‘ /1 2 A etc can be learned as well using
aggressively the | X | — exp|—= WTW point estimation (e.g., MLE-Il) or
prior pushes wq J | T ) fully Bayesian inference
towards mean (O)

Reason: The negative log

prior —log p(w) « % wiw

» /ero-mean Gaussian prior corresponds to €, regularizer
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The Posterior MLEMAP eft - gy /

as an exercise ‘ »

" The posterior over w (for now, assume hyperparams [ and A to be known)

p(w|A)p(y|w, X, 5)
p(wly, X, 3,) = o p(w|A)p(y|w, X, 3
( ) F’(-y|x‘5I /87' A) Marginal Ikeiho(od for this r)egres(sion model. )

Note that it is conditioned on X too which is
due to conjugacy

assumed given and not being modeled

P(W‘y, xa /8: }‘) DCN(W|0: )\_IID) X N(.y XW:JB_IIN)

» Using the "completing the squares” trick (or linear Gaussian model results)
Note that A and S can be

P(W‘y:, x:| /8? }.) — N(”N? ZN) learned under the

probabilistic set-up (though
assumed fixed as of now)

—1
where Xy = (f E XXy + Ap) "= (X" X+ Alp) (posterior's covariance matrix)
The form is also similar to the solution to ridge MAP solution turns out to be exactly
regression argmlnw||y Xw|| +AwTw=(XTX+ the same (reason: Gaussian's mean

N “ap-1 A\ and mode are the same)

ny = Xy 52%%] =Xy [ﬁXT_y} = (X'X+ Z1p)'X"y (posterior's mean)

B
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The Posterior: A Visualization

= Assume a lin. reg. problem with true w = [wg, wq],wy = —0.3,w; = 0.5

» Assume data generated by a linear regression model y = wy + wyx + "noise”
= Note: It's actually 1-D regression (wy is just a bias term), or 2-D reg. with feature [1, x]

" Figures below show the "data space”™ and posterior of w for different number of
observations (note: with no observations, the posterior = prior)

Each red line Ul '
represents the data .

| 1
y y
‘data” generated space © 0 L 0) o u/
for a randomly % =
drawn w from the y 3 5 ) _
) 4 z | -1 0 z | -1 0 z |1

current posterior
| |
VA wn
0 0
-1 -1
S 0 ! -l

Wo 0 wp ! CS772A: PML
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Posterior Predictive Distribution

" [o get the prediction y, for a new input x,, we can compute its PPD

Only w is unknown with a
posterior distribution so only

P(y* IX*, X, y, 6, )\) — /P(y* |X*, W, B)P(WIX, y, 5, )\)dW w has to be integrated out
NQ.w'x,, ) N(w|py, Zy)
* The above is the marginalization of w from N (y,|w'x,, B~1). Using LGM results

’ Can also derive it by writing y, = w'x, + €

P(Vi|Xs, X, ¥, B, A) = N’(u;x*, B_I—FXIZNX*) [ where w ~ N gy By) and € ~ N (0.67")

= So we have a predictive mean ujx, as well as an input-specific predictive variance
" [n contrast, MLE and MAP make "plug-in" predictions (using the point estimate of w)

p(ys|Xe, wie) = N(Wn—;LE"* B ~ MLE prediction Since PPD also takes into
- 4 o account the uncertainty in w,
p(y«|xs, wmap) = N(wpyupx..8 ) - MAP prediction the predictive variance is larger

» Unlike MLE/MAP, variance of y, also depends on the input x, (this, as we will see later,
will be very useful in sequential decision-making problems such as active learning).., ...



Posterior Predictive Distribution: An Illustration

= Black dots are training examples

Small predictive

- . B .
.
.
% - 2 . - ./ Variance here
- . .
..
. . - ; -
- L

Large predictive

/ variance here

Line showing
predictive mean

X

= Width of the shaded region at any x denotes the predictive uncertainty at that x (+/-
one std-dev)

= Regions with more training examples have smaller predictive variance
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Nonlinear Regression
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= Can extend the linear regression model to handle nonlinear regression problems

= One way is to replace the feature vectors x by a nonlinear mapping ¢ (x)

Can be pre-defined (e.g., replace a scalar

p(‘y|x’ W) — N(WT(;b(X), /8_1) x by polynomial mapping [1, x, x2]) or

extracted by a pretrained deep neural
net

" Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

= More on nonlinear regression when we discuss Gaussian Processes
CS772A: PML



More on Visualization of Uncertainty v

" Figures below: Green curve is the true function and blue circles are observations
= Posterior of the nonlinear regression model: Some curves drawn from the posterior
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* PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty
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Estimating Hyperparameters via MLE-I|

" The probabilistic linear reg. model we saw had two hyperparams (f, 1)
= Thus total three unknowns (w, 8, 1)

Need posterior over
all the 3 unknowns

x? b) QA ?A?
p(w’ﬁjMx,y):p(yl w, 3, X\)p(w, X, 3)

p(y[X)
PPD would require p(y|X, w, B, \)p(w|X\)p(B)p(A)
' ' 3 | =
wcome S P(yIX, w, B)p(w[N)p(B)p(X) dw dAdp
plyelxeiXoy) = [ plyelx., w. B)p(w, B, X, y) dw dp dX
= Posterior and PPD computation is intractable. o e o1

= |f we just want point estimates for (8, ) then MLE-Il is an option

Will see various other

And then compute (IBA, j) = argmaxg j logp(y|X,5,4) methods like EM, variational

wl|X,y, A, A inference, MCMC, etc later
p(wiX,y, B, 4) For regression with Gaussian likelihood

treating f5, 4 as given and Gaussian prior on w, the marginal

likelihood has an exact expression CS772A: PML



Prob. Linear Regression: Some Other Variations

= Can use other likelihoods p(yy, |x,,, W) and/or prior distribution p(w)

Mean Variance

|

» | aplace distribution for the likelihood

P (Ynlxn, W) = Lap(Ynlexn: b)
" Heteroskedastic noise in the likelihood, e.q.,
P (Vnlxn, W) = N()’nlexn» Bat)

Can even assume 3, Different noise distribution
to depend on input x,, N (0, B 1) for each y,

" Feature-specific variances in the prior for w

Y

More robust to
outliers than
squared loss

1
oC exp [*E\yn ~w x|

——

: l,' Gives rise to “absolute loss”
instead of squared loss

Diagonal precision/covariance

D
_ _ matrix with A4's along the
p(W) — N(Wd|0, Adl) — N(WlO,A 1) columns of A
da=1 Since we can also learn these precisions (e.g.,

This has the effect of
having feature-specific
regularization

using MLE-II), using such a prior, we can learn

the importance of different features (feature

selection) which isn't possible with a

N (w|0, A7) prior with spherical covariance S772A: PML



There are other ways too that can convert

Logistic Regression e e o)

the CDF of V' (0,1). This model is known as b4 /

g

"Probit Regression”.

= A discriminative model for binary classification (y € {0,1})
= A linear model with parameters w € RP computes a score w' x for input x

= A sigmoid function maps this real-valued score into probability of label being 1

Also used as a

1 exp(z)
. “ . ! O—(Z) = ==
nonlinear “activation 1+exp(—z) 1+ exp(2)
function” in deep

neural networks p(y — 1|x’ W) = U= O-(WTx)

Large positive score w'x means
large prob of label being 1, and large
z .

real-valued score negative score means low prob

* Thus conditional distribution of label y € {0,1} given x is the following Bernoulli
Likelihood

exp(wTx) 17

1 1y
1+exp(w'x)| |1+ exp(wa)]

p(ylx,w) = Bernoulli[y|u] = u¥(1 — )77 = [

= NLL is the binary cross-entropy loss: —[y,log u,, + (1 — y,)log (1 — u,,)]

= NLL is convex in w. Can also use a prior p(w|1) = N (w]|0,A71]) if interested

in MAP or tull posterior on w CS772A: PML



Logistic Regression: MAP and Posterior

" The posterior will be Gaussian Bernoull
wix,y) = PWPOIX W) pOW) [lnzy pOmlW, )
’ p(¥|X) oW [I3=1 PO lW, x,) dw

= MAP estimation is easy. —log p(w|X, y) is convex for LR. Unique minima
= Can use first or second order optimization with gradient and Hessian being

N

g = ——Z(yn—;1.,,)x,,+/\lw:XT(p—y)+)\w (a D x 1 vector)
n=1
N
i = Z;.l,,(l — )X X A =X "SX = (a D x D matrix)
=1

Un = O-(WTxn)

= Full posterior is intractable because of non-conjugacy

= A popular option is to use the Laplace's approximation (other methods like MCMC and
variational inference can also be used; will see them later) CS772A: PML



Laplace’s (or Gaussian) Approximation

» Consider a posterior distribution that is intractable to compute

p(D,0) p(D|8)p6)
p(D) p(D)

= | aplace approximation approximates the above using a Gaussian distribution

p(0|D) =

Tells us about the space Related to the Fisher
(curvature) of the true Information Matrix

Laplace Approx. posterior around Oy 4p (FIM); will see shortly

1 Gaussian /

p(0|D) = N(glgMAP:A_l) . .
Negative of the Hessian,
i.e., the second derivative

QMAP — dI'gindXg log p(@ |D) of the log joint, at Oy 4p

A = —V; logp(6]D) ‘ = —Vz log p(D, 8) ‘

0=0pmap

0=0pmap

" | aplace’s approx. is based on a second-order Taylor approx. of the posterior (will
see the proof and details later) CS772A: PML



LR: Posterior Predictive Distribution

" [he posterior predictive distribution can be computed as

p(y, = 1lx, X, ¥) = [ p(y. = 1w, x)p(W|X, y)dw

Integral not tractable and
must be approximated

* Monte-Carlo approximation of this integral is one possible way
" Draw M samples wq, W, ..., Wy, from the approx. of posterior
= Approximate the PPD as follows

1M 1M
PO =1, XN~ 2> p =W x) = 23 o(Why)
M m=1 M m=1

= In contrast, when using MLE/MAP solution W, the plug-in pred. distribution

sigmoid Gaussian (if using Laplace approx.)

p(y. = 1x., X, y) = [p(y. = 1w, x,.)p(w|X, y)dw

~ A~ T
~ p(y* — 1|Wopt: x*) — O-(Wopt xn)
CS772A: PML



LR: Plug-in Prediction vs Bayesian Averaging

" Plug-in prediction uses a single w (point est) to make prediction
= PPD does an averaging using all possible w's from the posterior

Input Dimension 2

p()’* — 1|x*,X, y) ~ U(Wopthn)

Logistic Regression decision boundary
when using a point estimate of w

\
\

-8 -6

-4

—é 0 2
Input Dimension 1

4

6

8

Color transitions (red
to blue) in both plots
denote how the
probability of an
input changes from
belonging to red
class to belonging to
blue class. All inputs
on a line (or curve
on RHS plot)have
the same probability
of belonging to the
red/blue class

Input Dimension 2

Logistic Regression decision boundary
when using posterior averaging

-8 -8 -4 -2 0 2 4 o

Input Dimension 1

8
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Posterior averaging is like
using an ensemble of
models. In this example,
each model is a linear
classifier but the ensemble-
like effect resulted in
nonlinear boundaries

1 ~—M
p(y. =1|x,, X, y) = ; E o(Whxy)
m=1
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Multiclass Logistic (a.k.a. Softmax) Regression

= Also called multinoulli/multinomial regression: Basically, LR for K > 2 classes
= |n this case, y,, € {1,2, ..., K} and label probabilities are defined as

Real-valued scores wj x,, are also known
as "logits” (thus K logits for each input)

g
1

= K weight vecs wq, W,, ..., Wi (one per class), each D-dim, and W = [w{,W,, ..., W]
= Each likelihood p(y,,|x,, W) is a multinoulli distribution. Therefore total likelihood

N K : '
Vne Notation: y,,p = 1 if true class of

p(le, W) — Hne Xpisfandy,, =0VL =74

Softmax function

Also note that Ys_q tnp =1
for any input x,

p()’n — klxn» W)

» Can do MLE/MAP/fully Bayesian estimation for W similar to LR model

CS772A: PML



Generalized Linear Models

" (Probabilistic) Linear Regression: when response y is real-valued

p(lx,w) = N(ylw'x, 1)
= | ogistic Regression: when response y is binary (0/1)
y

exp(w'x) | 1 1=y
1+exp(w™x)| [1+exp(w'x)

p(y|x,w) = Bernoulli[y|lo(w'x)] = [

* Both are examples of a Generalized Linear Model (GLM) | MLE/MAP of w is easy for GLMs (due

: , : T to convex objective, thanks to exp-
" The model depends on the inputs x via a linear model w' x family). Posterior usually requires
approximations if likelihood and prior

u GLM |S deflﬂed USIﬂg aﬂ GXpOﬂeﬂtIa| fam”y dIStrIbUthﬂ are not Conjugate pairs (I_aplace
T approximation or other methods used)
p(y|x,w) = ExpFam[y|f(w'x)]

» ExpFam can be any suitable distribution depending on the nature of outputs, e.g.,
* Gaussian for reals, Bernoulli for binary, Poisson for Count, gamma for positive reals

" ExpFam distributions are more generally useful in other contexts as well
CS772A: PML
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