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Plan Today

" Probabilistic Supervised Learning
= Discriminative vs Generative Supervised Learning

= Discriminative Supervised Learning

" (Probabilistic) Linear Regression

= | ogistic and Softmax/Multinoulli Regression
* Generalized Linear Models
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Probabilistic Supervised Learning

» Goal: To learn the conditional distribution p(y|x) of output given input

* The form of the distribution p(y|x) depends on output type, €.g.,

= Real: Model p(y|x) using a Gaussian (or some other suitable real-valued distribution)

= Binary: Model p(y|x) using a Bernoulli p(y|x)
= Categorical/multiclass: Model p(y|x) using a multinoulli/categorical distribution

y

= Various other types (e.qg., count, positive reals, etc) can also be modeled using appropriate

distributions (e.g., Poisson for count, gamma for positive reals) ‘Indirect” way requires first
learning the joint distribution of

» The distribution p('y|x) can be defined directly or indirectly inputs and outputs

“Direct” way without Parameters of this “Indirect” way by modeling the
distribution are the

( ‘ ) O_utputsof functionf( outguts as well as the inputsp(y‘x) — p(y’ x)
p y X) = p(y f X, W ) p(x) CS772A: PML

modeling the inputs x,




Discriminative vs Generative Sup. Lea rningZiir:i:fjgi;%?;‘:;éjj1SVW

= Direct way of sup. learning is discriminative, indirect way is generative A y
ﬁ)iscr'minative Approach\/Generative Approach &%
p(ylx) =p(ylf(x,w)) () = PO
f can be any function which uses inputs and PLY B p(x)

weights w to defines parameters of distr. p
Requires estimating the joint distribution of

Some examples inputs and outputs to get the conditional

p(y x) — N(y|wa, IB_l) p(ylx) .(unlike th.e discriminative ‘a.pproach
which directly estimates the conditional p(y|x)

\p\(y X) — Bernoulli(yld(WTxy Wdoes not model the distribution of x) /

» Note: Generative approach can also be used for other settings too, such as
unsupervised learning and semi-supervised learning (will see later) CS771: Intro to ML




A discriminative model

Probabilistic Linear Regression = i easonpmens

= Assume training data {x,,, Y, 14, with features x,, € RP and responses y,, € R

Unknown to be estimated Each weight assumed real-valued
= Assume y,, generated by a noisy linear model with wts w = [wy, ...,wp] € R

(Gaussian noise drawn

R
Yn =W Xu T € | fom Nel0,870)

= Notation alert: B is the precision of Gaussian noise (and B~ the variance)

The line represents the
mean w' x,, of the output

UYn ~ N(w—rq;m ﬂ_l) random variable y,,

Likelihood model
p(Wnlxn, w, B) = Ny lw'x,, B71)

Input x,, being

treated as given y
and not modeled

by any probability

The zero mean
Gaussian noise
perturbs the output
from its mean

distribution Gaussian
T Will later study models | B { A T Thus NLL is like
wx 9. o \Un — n
n in which both input and or P72 (yn —w 2n) squared loss
output are modeled by CST7A: PMIL

distributions X



Probabilistic Linear Regression

= -or all the training data, we can write the above model in matrix-vector notation

Y = [y1;y2; s yn] is the X = [x{; x3; ..; X)]
NX1 response vector is the N X D input matrix

Same as writing y p— XW _I_ €

p(YIX,w,B) = N (y|Xw, B y)

" This is a linear Gaussian model with w being the unknown Gaussian r.v.

€ = [€1; €5; ...; €y] is the NX1 noise
vector drawn from N (0, 711 ,)

= A simple “plate diagram” for this model would look like this (hyperparameters not
shown in the diagram)

White nodes denote unknown
quantities, grey nodes denote
observed quantities (training

Direction of arrow input-output pairs)

show dependency

The plate/box with number
N shows that we have N
such i.i.d. observations

CS772A: PML



On compact notations..

" When writing the likelihood (assuming y,,'s are i.i.d. given w and x,,)

N
p(yIX, W, ,B) — N(Ynlexn» 18_1)

n=1
— N(}’lXW, :8_11N)

" Thus a product of N univariate Gaussians here (not always) is equivalent to an
N-dim Gaussian over the vector y = [y1, V2, -, YN ]

" \We will prefer to use this equivalence at other places too whenever we have

multiple i.i.d. random variables, each having a univariate Gaussian distributiC%r;ZA_ -



Prior on weights

May also use a non-zero mean Gaussian
prior, e.g., N (wg|u, A1) if we expect
weights to be close to some value u

» Assume a zero-mean Gaussian prior on w

This prior assumes that a priori each
weight has a small value (close to zero)

p(W|2) = ]_[p<wdm> . ]_[mwdm A1) o

In zero-mean case, 4 sort A controls the uncertainty around our L‘.

of denotes each feature’s prior belief about value of wy
importance. Think why?

Can also use a full covariance

- —1 . -1 .
Large A means - ,p(Wd)— N(Wf’|0’).‘ ). . N O /1_ 11 matnx A f.or'the prior to
more aggressi\/e on | | — (Wl ) D) ImpOSG a prIOl’I COrre|atIOﬂS
push towards zero | | among different weights
The precision _. 2 Prior's hyperparameters (4/A/u)
A controls how ‘ /1 2 A etc can be learned as well using
aggressively the | X | — exp|—= WTW point estimation (e.g., MLE-Il) or
prior pushes wq J | T ) fully Bayesian inference
towards mean (O)

Reason: The negative log

prior —log p(w) « % wiw

» /ero-mean Gaussian prior corresponds to €, regularizer

CS772A: PML



The Posterior MLEMAP eft - gy /

as an exercise ‘ »

" The posterior over w (for now, assume hyperparams [ and A to be known)

p(w|A)p(y|w, X, 5)
p(wly, X, 3,) = o p(w|A)p(y|w, X, 3
( ) F’(-y|x‘5I /87' A) Marginal Ikeiho(od for this r)egres(sion model. )

Note that it is conditioned on X too which is
due to conjugacy

assumed given and not being modeled

P(W‘y, xa /8: }‘) DCN(W|0: )\_IID) X N(.y XW:JB_IIN)

» Using the "completing the squares” trick (or linear Gaussian model results)
Note that A and S can be

P(W‘y:, x:| /8? }.) — N(”N? ZN) learned under the

probabilistic set-up (though
assumed fixed as of now)

—1
where Xy = (f E XXy + Ap) "= (X" X+ Alp) (posterior's covariance matrix)
The form is also similar to the solution to ridge MAP solution turns out to be exactly
regression argmlnw||y Xw|| +AwTw=(XTX+ the same (reason: Gaussian's mean

N “ap-1 A\ and mode are the same)

ny = Xy 52%%] =Xy [ﬁXT_y} = (X'X+ Z1p)'X"y (posterior's mean)

B

: PML



The Posterior: A Visualization

= Assume a lin. reg. problem with true w = [wg, wq],wy = —0.3,w; = 0.5

» Assume data generated by a linear regression model y = wy + wyx + "noise”
= Note: It's actually 1-D regression (wy is just a bias term), or 2-D reg. with feature [1, x]

" Figures below show the "data space”™ and posterior of w for different number of
observations (note: with no observations, the posterior = prior)

Each red line Ul '
represents the data .

| 1
y y
‘data” generated space © 0 L 0) o u/
for a randomly % =
drawn w from the y 3 5 ) _
) 4 z | -1 0 z | -1 0 z |1

current posterior
| |
VA wn
0 0
-1 -1
S 0 ! -l

Wo 0 wp ! CS772A: PML
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Posterior Predictive Distribution

" [o get the prediction y, for a new input x,, we can compute its PPD

Only w is unknown with a
posterior distribution so only

P(y* IX*, X, y, 6, )\) — /P(y* |X*, W, B)P(WIX, y, 5, )\)dW w has to be integrated out
NQ.w'x,, ) N(w|py, Zy)
* The above is the marginalization of w from N (y,|w'x,, B~1). Using LGM results

’ Can also derive it by writing y, = w'x, + €

P(Vi|Xs, X, ¥, B, A) = N’(u;x*, B_I—FXIZNX*) [ where w ~ N gy By) and € ~ N (0.67")

= So we have a predictive mean ujx, as well as an input-specific predictive variance
" [n contrast, MLE and MAP make "plug-in" predictions (using the point estimate of w)

p(ys|Xe, wie) = N(Wn—;LE"* B ~ MLE prediction Since PPD also takes into
- 4 o account the uncertainty in w,
p(y«|xs, wmap) = N(wpyupx..8 ) - MAP prediction the predictive variance is larger

» Unlike MLE/MAP, variance of y, also depends on the input x, (this, as we will see later,
will be very useful in sequential decision-making problems such as active learning).., ...



Posterior Predictive Distribution: An Illustration

= Black dots are training examples

Small predictive

- . B .
.
.
% - 2 . - ./ Variance here
- . .
..
. . - ; -
- L

Large predictive

/ variance here

Line showing
predictive mean

X

= Width of the shaded region at any x denotes the predictive uncertainty at that x (+/-
one std-dev)

= Regions with more training examples have smaller predictive variance

CS772A: PML



Nonlinear Regression
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= Can extend the linear regression model to handle nonlinear regression problems

= One way is to replace the feature vectors x by a nonlinear mapping ¢ (x)

Can be pre-defined (e.g., replace a scalar

p(‘y|x’ W) — N(WT(;b(X), /8_1) x by polynomial mapping [1, x, x2]) or

extracted by a pretrained deep neural
net

" Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

= More on nonlinear regression when we discuss Gaussian Processes
CS772A: PML



More on Visualization of Uncertainty -

" Figures below: Green curve is the true function and blue circles are observations
= Posterior of the nonlinear regression model: Some curves drawn from the posterior
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* PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty
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Estimating Hyperparameters via MLE-I|

" The probabilistic linear reg. model we saw had two hyperparams (f, 1)
= Thus total three unknowns (w, 8, 1)

Need posterior over
all the 3 unknowns

x? b) QA ?A?
p(w’ﬁjMx,y):p(yl w, 3, X\)p(w, X, 3)

p(y[X)
PPD would require p(y|X, w, B, \)p(w|X\)p(B)p(A)
' ' 3 | =
wcome S P(yIX, w, B)p(w[N)p(B)p(X) dw dAdp
plyelxeiXoy) = [ plyelx., w. B)p(w, B, X, y) dw dp dX
= Posterior and PPD computation is intractable. o e o1

= |f we just want point estimates for (8, ) then MLE-Il is an option

Will see various other

And then compute (IBA, j) = argmaxg j logp(y|X,5,4) methods like EM, variational

wl|X,y, A, A inference, MCMC, etc later
p(wiX,y, B, 4) For regression with Gaussian likelihood

treating f5, 4 as given and Gaussian prior on w, the marginal

likelihood has an exact expression CS772A: PML



Prob. Linear Regression: Some Other Variations

= Can use other likelihoods p(yy, |x,,, W) and/or prior distribution p(w)

Mean Variance

|

» | aplace distribution for the likelihood

P (Ynlxn, W) = Lap(Ynlexn: b)
" Heteroskedastic noise in the likelihood, e.q.,
P (Vnlxn, W) = N()’nlexn» Bat)

Can even assume 3, Different noise distribution
to depend on input x,, N (0, B 1) for each y,

" Feature-specific variances in the prior for w

Y

More robust to
outliers than
squared loss

1
oC exp [*E\yn ~w x|

——

: l,' Gives rise to “absolute loss”
instead of squared loss

Diagonal precision/covariance

D
_ _ matrix with A4's along the
p(W) — N(Wd|0, Adl) — N(WlO,A 1) columns of A
da=1 Since we can also learn these precisions (e.g.,

This has the effect of
having feature-specific
regularization

using MLE-II), using such a prior, we can learn

the importance of different features (feature

selection) which isn't possible with a

N (w|0, A7) prior with spherical covariance S772A: PML



There are other ways too that can convert

Logistic Regression e e o)

the CDF of V' (0,1). This model is known as b4 /

g

"Probit Regression”.

= A discriminative model for binary classification (y € {0,1})
= A linear model with parameters w € RP computes a score w' x for input x

= A sigmoid function maps this real-valued score into probability of label being 1

Also used as a

1 exp(z)
. “ . ! O—(Z) = ==
nonlinear “activation 1+exp(—z) 1+ exp(2)
function” in deep

neural networks p(y — 1|x’ W) = U= O-(WTx)

Large positive score w'x means
large prob of label being 1, and large
z .

real-valued score negative score means low prob

* Thus conditional distribution of label y € {0,1} given x is the following Bernoulli
Likelihood

exp(wTx) 17

1 1y
1+exp(w'x)| |1+ exp(wa)]

p(ylx,w) = Bernoulli[y|u] = u¥(1 — )77 = [

= NLL is the binary cross-entropy loss: —[y,log u,, + (1 — y,)log (1 — u,,)]

= NLL is convex in w. Can also use a prior p(w|1) = N (w]|0,A71]) if interested

in MAP or tull posterior on w CS772A: PML



Logistic Regression: MAP and Posterior

" The posterior will be Gaussian Bernoull
wix,y) = PWPOIX W) pOW) [lnzy pOmlW, )
’ p(¥|X) oW [I3=1 PO lW, x,) dw

= MAP estimation is easy. —log p(w|X, y) is convex for LR. Unique minima
= Can use first or second order optimization with gradient and Hessian being

N

g = ——Z(yn—;1.,,)x,,+/\lw:XT(p—y)+)\w (a D x 1 vector)
n=1
N
i = Z;.l,,(l — )X X A =X "SX = (a D x D matrix)
=1

Un = O-(WTxn)

= Full posterior is intractable because of non-conjugacy

= A popular option is to use the Laplace's approximation (other methods like MCMC and
variational inference can also be used; will see them later) CS772A: PML



Laplace’s (or Gaussian) Approximation

» Consider a posterior distribution that is intractable to compute

p(D,0) p(D|8)p6)
p(D) p(D)

= | aplace approximation approximates the above using a Gaussian distribution

p(0|D) =

Tells us about the space Related to the Fisher
(curvature) of the true Information Matrix

Laplace Approx. posterior around Oy 4p (FIM); will see shortly

1 Gaussian /

p(0|D) = N(glgMAP:A_l) . .
Negative of the Hessian,
i.e., the second derivative

QMAP — dI'gindXg log p(@ |D) of the log joint, at Oy 4p

A = —V; logp(6]D) ‘ = —Vz log p(D, 8) ‘

0=0pmap

0=0pmap

" | aplace’s approx. is based on a second-order Taylor approx. of the posterior (will
see the proof and details later) CS772A: PML



LR: Posterior Predictive Distribution

" [he posterior predictive distribution can be computed as

p(y, = 1lx, X, ¥) = [ p(y. = 1w, x)p(W|X, y)dw

Integral not tractable and
must be approximated

* Monte-Carlo approximation of this integral is one possible way
" Draw M samples wq, W, ..., Wy, from the approx. of posterior
= Approximate the PPD as follows

1M 1M
PO =1, XN~ 2> p =W x) = 23 o(Why)
M m=1 M m=1

= In contrast, when using MLE/MAP solution W, the plug-in pred. distribution

sigmoid Gaussian (if using Laplace approx.)

p(y. = 1x., X, y) = [p(y. = 1w, x,.)p(w|X, y)dw

~ A~ T
~ p(y* — 1|Wopt: x*) — O-(Wopt xn)
CS772A: PML



LR: Plug-in Prediction vs Bayesian Averaging

" Plug-in prediction uses a single w (point est) to make prediction
= PPD does an averaging using all possible w's from the posterior

Input Dimension 2

p()’* — 1|x*,X, y) ~ U(Wopthn)

Logistic Regression decision boundary
when using a point estimate of w

\
\

-8 -6

-4

—é 0 2
Input Dimension 1

4

6

8

Color transitions (red
to blue) in both plots
denote how the
probability of an
input changes from
belonging to red
class to belonging to
blue class. All inputs
on a line (or curve
on RHS plot)have
the same probability
of belonging to the
red/blue class

Input Dimension 2

Logistic Regression decision boundary
when using posterior averaging

-8 -8 -4 -2 0 2 4 o

Input Dimension 1

8

°
Ll
at
|
of
|
f
@i {

|

.\":‘ /
v

Ay

Posterior averaging is like
using an ensemble of
models. In this example,
each model is a linear
classifier but the ensemble-
like effect resulted in
nonlinear boundaries

1 ~—M
p(y. =1|x,, X, y) = ; E o(Whxy)
m=1

CS772A: PML



Multiclass Logistic (a.k.a. Softmax) Regression

= Also called multinoulli/multinomial regression: Basically, LR for K > 2 classes
= |n this case, y,, € {1,2, ..., K} and label probabilities are defined as

Real-valued scores wj x,, are also known
as "logits” (thus K logits for each input)

g
1

= K weight vecs wq, W,, ..., Wi (one per class), each D-dim, and W = [w{,W,, ..., W]
= Each likelihood p(y,,|x,, W) is a multinoulli distribution. Therefore total likelihood

N K : '
Vne Notation: y,,p = 1 if true class of

p(le, W) — Hne Xpisfandy,, =0VL =74

Softmax function

Also note that Ys_q tnp =1
for any input x,

p()’n — klxn» W)

» Can do MLE/MAP/fully Bayesian estimation for W similar to LR model

CS772A: PML



Generalized Linear Models

" (Probabilistic) Linear Regression: when response y is real-valued

p(lx,w) = N(ylw'x, 1)
= | ogistic Regression: when response y is binary (0/1)
y

exp(w'x) | 1 1=y
1+exp(w™x)| [1+exp(w'x)

p(y|x,w) = Bernoulli[y|lo(w'x)] = [

* Both are examples of a Generalized Linear Model (GLM) | MLE/MAP of w is easy for GLMs (due

: , : T to convex objective, thanks to exp-
" The model depends on the inputs x via a linear model w' x family). Posterior usually requires
approximations if likelihood and prior

u GLM |S deflﬂed USIﬂg aﬂ GXpOﬂeﬂtIa| fam”y dIStrIbUthﬂ are not Conjugate pairs (I_aplace
T approximation or other methods used)
p(y|x,w) = ExpFam[y|f(w'x)]

» ExpFam can be any suitable distribution depending on the nature of outputs, e.g.,
* Gaussian for reals, Bernoulli for binary, Poisson for Count, gamma for positive reals

" ExpFam distributions are more generally useful in other contexts as well
CS772A: PML
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