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Plan Today

▪Quick overview of parameter estimation and predictive distributions for

▪Multinoulli observation model

▪ Gaussian (univariate) observation model

▪ Probabilistic Supervised Learning

▪ (Probabilistic) Linear Regression
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Multinoulli Observation Model
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The Posterior Distribution

▪ Assume 𝑁 discrete obs 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁} with each 𝑦𝑛 ∈ {1,2, … , 𝐾}, e.g.,

▪ 𝑦𝑛 represents the outcome of a dice roll with 𝐾 faces

▪ 𝑦𝑛 represents the class label of the 𝑛𝑡ℎ example in a classification problem (total 𝐾 classes)

▪ 𝑦𝑛 represents the identity of the 𝑛𝑡ℎ word in a sequence of words

▪ Assume likelihood to be multinoulli with unknown params 𝝅 = [𝜋1, 𝜋2, … , 𝜋𝐾]

▪ 𝝅 is a vector of probabilities (“probability vector”), e.g.,
▪ Biases of the 𝐾 sides of the dice

▪ Prior class probabilities in multi-class classification (𝑝 𝑦𝑛 = 𝑘 = 𝜋𝑘)

▪ Probabilities of observing each word of the 𝐾 words in a vocabulary

▪ Assume a conjugate prior (Dirichlet) on 𝝅 with hyperparams 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝐾]
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𝑝 𝑦𝑛 𝜋 =  multinoulli 𝑦𝑛 𝜋 = ෑ
𝑘=1

𝐾

𝜋𝑘
𝕀[𝑦𝑛=𝑘]

These sum to 1

Each 𝛼𝑘 ≥ 0

Generalization of Bernoulli to 

𝐾 > 2 discrete outcomes

Generalization of Beta to 

𝐾-dimensional probability 

vectors

Called the 

concentration 

parameter of the 

Dirichlet (assumed 

known for now)

Large values of 𝛼 will 

give a Dirichlet peaked 

around its mean (next 

slides illustrates this)

MLE/MAP left as 

an exercise
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Brief Detour: Dirichlet Distribution

▪ An important distribution. Models non-neg. vectors 𝜋 that also sum to one

▪ A random draw from 𝐾-dim Dirich. will be a point under (𝐾-1)-dim probability simplex
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Basically, probability vectors

(1,0,0)

(0,1,0) (0,0,1)

(1/2,0,1/2)(1/2,1/2,0)

(0,1/2,1/2)

(1/2,1/4,1/4)

(1/4,1/4,1/2)(1/4,1/2,1/4)

(3/8,1/4,3/8)(3/8,3/8,1/4)

(1/4,3/8,3/8)

The probability simplex of a 

2-dim simplex (representing 

a 3-dim Dirichlet) and the 

coordinates of various 

points on the simplex
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Brief Detour: Dirichlet Distribution

▪ A visualization of Dirichlet distribution for different values of concentration param

▪ Interesting fact: Can generate a 𝐾-dim Dirichlet random variable by independently 
generating 𝐾 gamma random variables and normalizing them to sum to 1 
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Visualizations of PDFs of some 3-dim 
Dirichlet distributions (each generated 
using a different conc. Param vector 
𝜶)

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3 𝜋3
𝜋1

𝜋2

𝜶 controls the shape 

of the Dirichlet (just 

like Beta distribution’s 

hyperparameters)

Like a uniform 

distribution if  

all 𝛼𝑘’s are 1
All 𝛼𝑘’s large results in 

peak around the 

center of the simplex 
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The Posterior Distribution

▪ Posterior 𝑝(𝝅|𝒚) is easy to compute due to conjugacy b/w multinoulli and Dir.

▪ Assuming 𝑦𝑛’s are i.i.d. given 𝝅, 𝑝 𝒚 𝝅 =  ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝝅), and therefore

▪ Even without computing marg-lik, 𝑝(𝒚|𝜶), we can see that the posterior is Dirichlet 

▪ Denoting 𝑁𝑘 =  σ𝑛=1
𝑁 𝕀[𝑦𝑛 = 𝑘], number of observations with with value 𝑘

▪ Note: 𝑁1, , 𝑁2 . . . , 𝑁𝐾 are the sufficient statistics for this estimation problem
▪ We only need the suff-stats to estimate the parameters and values of individual observations aren’t 

needed (another property from exponential family of distributions – more on this later)
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𝑝 𝝅 𝒚, 𝜶 =
𝑝(𝝅, 𝒚|𝜶)

𝑝(𝒚|𝜶)
=

𝑝(𝝅|𝜶)𝑝 𝒚 𝝅, 𝜶

𝑝(𝒚|𝜶)
=

𝑝(𝝅|𝜶)𝑝 𝒚 𝝅

𝑝(𝒚|𝜶)

Likelihood Prior

Marg-lik = ∫ 𝑝(𝝅|𝜶)𝑝 𝒚 𝝅 d𝝅

Don’t need to compute for this 

case because of conjugacy

𝑝 𝝅 𝒚, 𝜶 ∝ ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘−1
× ς𝑛=1

𝑁 ς𝑘=1
𝐾 𝜋𝑘

𝕀[𝑦𝑛=𝑘]
  

𝑝 𝝅 𝒚, 𝜶 =  Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)  
Similar to number 

of heads and tails 

for the coin bias 

estimation problem

= ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘+σ𝑛=1
𝑁 𝕀[𝑦𝑛=𝑘] −1
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The Predictive Distribution
▪ Finally, let’s also look at the posterior predictive distribution for this model

▪ PPD is the prob distr of a new 𝑦∗ ∈ 1,2, … , 𝐾 , given training data 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁}

▪ 𝑝 𝑦∗ 𝝅 =  multinoulli 𝑦∗ 𝝅 ,  𝑝 𝝅 𝒚, 𝜶 =  Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)

▪ Can compute the posterior predictive probability for each of the 𝐾 possible outcomes

▪ Thus PPD is multinoulli with probability vector 
𝛼𝑘+𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘+𝑁

𝑘=1

𝐾

 

▪ Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 𝝅 
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𝑝 𝑦∗ 𝒚, 𝜶 = ∫ 𝑝 𝑦∗ 𝝅 𝒑 𝝅 𝒚, 𝜶 𝒅𝝅

𝑝 𝑦∗ = 𝑘 𝒚, 𝜶 = ∫ 𝑝 𝑦∗ = 𝑘 𝝅 𝒑 𝝅 𝒚, 𝜶 𝒅𝝅

= ∫ 𝜋𝑘 × Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)𝑑𝜋

=
𝛼𝑘 + 𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘 + 𝑁

(Expectation of 𝜋𝑘 w.r.t the Dirichlet posterior)

Note how these probabilities 

have been “smoothened” due 

to the use of the prior + the 

averaging over the posterior

A similar effect was 

achieved in the Beta-

Bernoulli model, too

Will be a multinoulli. Just need 

to estimate the probabilities of 

each of the 𝐾 outcomes
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Gaussian Observation Model
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Gaussian Distribution (Univariate)
10

▪Distribution over real-valued scalar random variables 𝑋 ∈ ℝ, e.g., height of 
students in a class

▪ Defined by a scalar mean 𝜇 and a scalar variance 𝜎2

▪ Mean: 𝔼 𝑋 = 𝜇

▪ Variance: var[𝑋] = 𝜎2

▪ Inverse of variance is called precision: 𝛽 =
1

𝜎2
. 

𝒩 𝑋 = 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

𝑥 − 𝜇 2

2𝜎2
 

𝒩 𝑋 = 𝑥 𝜇, 𝛽 =
𝛽

2𝜋
exp −

𝛽

2
𝑥 − 𝜇 2  

Gaussian PDF in 

terms of precision
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Gaussian Distribution (Multivariate)
11

▪Distribution over real-valued vector random variables 𝑿 ∈ ℝ𝐷

▪ Defined by a mean vector 𝜇 ∈ ℝ𝐷and a covariance matrix 𝚺

▪ Note: The cov. matrix 𝚺 must be symmetric and PSD
▪ All eigenvalues are positive

▪ 𝒛⊤𝚺𝒛 ≥ 0 for any real vector 𝒛

▪ The covariance matrix also controls the shape of the Gaussian

𝒩 𝑿 = 𝒙 𝝁, 𝚺 =
1

2𝜋 𝐷 𝚺
exp − 𝒙 − 𝝁 ⊤𝚺−1(𝒙 − 𝝁)  

A two-dimensional Gaussian
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Posterior Distribution for Gaussian’s Mean

▪ Given: 𝑁 i.i.d. scalar observations 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁} assumed drawn from 𝒩(𝑦|𝜇, 𝜎2)

▪ Note: Easy to see that each 𝑦𝑛 drawn from 𝒩(𝑦|𝜇, 𝜎2) is equivalent to the following 

▪ Let’s estimate mean 𝜇 given 𝒚 using fully Bayesian inference (not point estimation) 

12

𝜇

𝒩(𝑦|𝜇, 𝜎2)
Assume 𝜎2 to 

be known

𝑦𝑛 = 𝜇 + 𝜖𝑛 where 𝜖𝑛 ∼ 𝒩(0, 𝜎2)
Thus 𝑦𝑛 is like a noisy 

version of 𝜇 with zero 

mean Gaussian noise 

added to it

Likelihood

Its MLE/MAP 

estimation left as 

an exercise

𝑝 𝑦𝑛 𝜇, 𝜎2 =  𝒩 𝑦𝑛 𝜇, 𝜎2 ∝ exp −
𝑦𝑛 − 𝜇 2

2𝜎2

𝑝 𝒚 𝜇, 𝜎2 =  ෑ
𝑛=1

𝑁

𝑝(𝑦𝑛|𝜇, 𝜎2)

Overall 

Likelihood
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A prior distribution for the mean

▪ To computer posterior, need a prior over 𝜇 

▪ Let’s choose a Gaussian prior

▪ The prior basically says that  a priori  we believe 𝜇 is close to 𝜇0 

▪ The prior’s variance 𝜎0
2 denotes how certain we are about our belief

▪We will assume that the prior’s hyperparameters (𝜇0, 𝜎0
2 )are known

▪ Since 𝜎2 in the likelihood 𝒩 𝑦 𝜇, 𝜎2  is known, Gaussian prior 𝒩 𝜇 𝜇0, 𝜎0
2  on 

𝜇 is also conjugate to the likelihood (thus posterior of 𝜇 will also be Gaussian) 

13

𝑝 𝜇|𝜇0, 𝜎0
2 =  𝒩 𝜇 𝜇0, 𝜎0

2

𝜇0

𝑝 𝜇|𝜇0, 𝜎0
2

∝ exp −
𝜇 − 𝜇0

2

2𝜎0
2
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The posterior distribution for the mean

▪ The posterior distribution for the unknown mean parameter 𝜇

▪ Easy to see that the above will be prop. to exp of a quadratic function of 𝜇. Simplifying:

▪ What happens to the posterior as 𝑁 (number of observations) grows very large?
▪ Data (likelihood part) overwhelms the prior 

▪ Posterior’s variance 𝜎𝑁
2 will approximately be 𝜎2/𝑁 (and goes to 0 as 𝑁 → ∞)

▪ The posterior’s mean 𝜇𝑁 approaches ത𝑦(which is also the MLE solution)

14

On conditioning side, 

skipping all fixed params 

and hyperparams from 

the notation

Also the MLE 

solution for 𝜇

Gaussian posterior’s mean is a 

convex combination of prior’s 

mean and the MLE solution

Gaussian posterior’s precision is the sum of 

the prior’s precision and sum of the noise 

precisions of all the observations

Gaussian posterior (not a 

surprise since the chosen prior 

was conjugate to the likelihood)

Contribution 

from the prior

Contribution 

from the data

Meaning, we become very-very 

certain about the estimate of 𝜇

𝑝 𝜇 𝒚 =
𝑝 𝒚 𝜇 𝑝(𝜇)

𝑝(𝒚)
∝  ෑ

𝑛=1

𝑁

exp −
𝑦𝑛 − 𝜇 2

2𝜎2
exp −

𝜇 − 𝜇0
2

2𝜎0
2

𝑝 𝜇 𝒚 ∝ exp −
𝜇 − 𝜇𝑁

2

2𝜎𝑁
2

1

𝜎𝑁
2 =

1

𝜎0
2 +

𝑁

𝜎2

𝜇𝑁 =
𝜎2

𝑁𝜎0
2 + 𝜎2

𝜇0 +
𝑁𝜎0

2

𝑁𝜎0
2 + 𝜎2

ത𝑦 (where ത𝑦 =
σ𝑛=1

𝑁 𝑦𝑛

𝑁
)  



CS772A: PML

The Predictive Distribution

▪ If  given a point estimate Ƹ𝜇, the plug-in predictive distribution for a test 𝑦∗would be

▪ On the other hand, the posterior predictive distribution of 𝑦∗ would be

▪ For an alternative way to get the above result, note that, for test data

15

𝑝 𝑦∗ Ƹ𝜇, 𝜎2) = 𝒩(𝑦∗| Ƹ𝜇, 𝜎2)

𝑝 𝑦∗ 𝒚 = ∫ 𝑝 𝑦∗ 𝜇, 𝜎2)𝑝(µ 𝒚 𝑑𝜇

= ∫ 𝒩(𝑦∗|𝜇, 𝜎2)𝒩 𝜇 𝜇𝑁 , 𝜎𝑁
2 𝑑𝜇

= 𝒩(𝑦∗|𝜇𝑁 , 𝜎2 + 𝜎𝑁
2)

The best point estimate

If conditional is Gaussian 

then marginal is also 

Gaussian
PRML [Bis 06], 

2.115, and also 

mentioned in prob-

stats refresher slides

𝑦∗ = 𝜇 + 𝜖 𝜇 ∼ 𝒩 𝜇𝑁, 𝜎𝑁
2 𝜖 ∼ 𝒩 0, 𝜎2

⇒  𝑝(𝑦∗|𝒚) = 𝒩(𝑦∗|𝜇𝑁, 𝜎2 + 𝜎𝑁
2)

Since both 𝜇 and 𝜖 are Gaussian r.v., and are independent, 

𝑦∗ also has a Gaussian posterior predictive, and the 

respective means and variances of 𝜇 and 𝜖 get added up

This “extra” variance 𝜎𝑁
2  in PPD is due to the 

averaging over the posterior’s uncertainty

A useful fact: When we 

have conjugacy, the 

posterior predictive 

distribution also has a 

closed form (will see this  

result more formally when 

talking about exponential 

family distributions)

This is an approximation 

of the true PPD 𝑝 𝑦∗ 𝒚  

Using the posterior of 𝜇 since we 
are at test stage now
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Gaussian Observation Model: Some Other Facts 

▪ MLE/MAP for 𝜇, 𝜎2 (or both) is straightforward in Gaussian observation models.

▪ Posterior also straightforward in most situations for such  models

▪ (As we saw) computing posterior of 𝜇 is easy (using Gaussian prior) if  variance 𝜎2 is known

▪ Likewise, computing posterior of 𝜎2 is easy (using gamma prior on 𝜎2) if  mean 𝜇 is known

▪ If  𝜇, 𝜎2 both are unknown, posterior computation requires computing 𝑝 𝜇, 𝜎2 𝒚

▪ Computing joint posterior 𝑝 𝜇, 𝜎2 𝒚  exactly requires a jointly conjuage prior 𝑝(𝜇, 𝜎2)

▪ “Gaussian-gamma” (“Normal-gamma”) is such a conjugate prior – a product of normal and gamma

▪ Note: Computing joint posteriors exactly is possible only in rare cases such this one

▪ If  each observation 𝒚𝑛 ∈ ℝ𝐷, can assume a likelihood/observation model 𝒩 𝒚 𝝁, 𝚺

▪ Need to estimate a vector-valued mean 𝝁 ∈ ℝ𝐷. Can use a multivariate Gaussian prior

▪ Need to estimate a 𝐷 × 𝐷 positive definite covariance matrix 𝚺. Can use a Wishart prior

▪ If  𝝁, 𝚺 both are unknown, can use Normal-Wishart as a conjugate prior

16
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Linear Gaussian Model (LGM)

▪ LGM defines a noisy lin. transform of a Gaussian r.v. 𝜽 with 𝑝 𝜽 = 𝒩(𝜽|𝝁, 𝚲−1)

▪ Easy to see that, conditioned on 𝜽, 𝒚 too has a Gaussian distribution

▪ Assume 𝑝 𝜽  as prior and 𝑝 𝒚|𝜽  as the likelihood, and defining 𝚺 = 𝚲 + 𝑨⊤𝑳𝑨 −1

▪ Many probabilistic ML models are LGMs

▪ These results are very widely used (PRML Chap. 2 contains a proof)

17

Noise vector - independently 

and drawn from  𝒩(𝝐|𝟎, 𝑳−1)𝒚 = 𝑨𝜽 + 𝒃 + 𝝐

𝑝 𝒚|𝜽 = 𝒩 𝒚 𝑨𝜽 + 𝒃, 𝑳−1

𝑝 𝜽|𝒚 =
𝑝 𝒚 𝜽 𝑝(𝜽)

𝑝(𝒚)
=  𝒩 𝜽 𝚺(𝑨⊤𝑳 𝒚 − 𝒃 + 𝚲𝝁), 𝚺

𝑝 𝒚 = ∫ 𝑝 𝒚 𝜽 𝑝 𝜽 𝑑𝜽 =  𝒩(𝒚|𝑨𝝁 + 𝒃, 𝑨𝚲−1𝑨⊤ + 𝑳−1)

Posterior of 𝜽 

Marginal 

distribution

Both 𝜽 and 𝒚 are vectors (can 

be of different sizes)

Also assume 𝑨, 𝒃, 𝚲, 𝑳 to be 

known; only 𝜽 is unknown

Conditional 

distribution
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Probabilistic Supervised Learning

▪ Goal: To learn the conditional distribution 𝑝(𝑦|𝑥) of output given input

▪ The form of the distribution 𝑝(𝑦|𝑥) depends on output type, e.g.,

▪ Real: Model 𝑝(𝑦|𝒙) using a Gaussian (or some other suitable real-valued distribution)

▪ Binary: Model 𝑝(𝑦|𝒙) using a Bernoulli 

▪ Categorical/multiclass: Model 𝑝(𝑦|𝒙) using a multinoulli/categorical distribution 

▪ Various other types (e.g., count, positive reals, etc) can also be modeled using appropriate 
distributions (e.g., Poisson for count, gamma for positive reals)

▪ The distribution 𝑝(𝑦|𝒙) can be defined directly or indirectly

18

𝑝(𝑦|𝒙)

𝑦

𝑝 𝑦 𝒙 = 𝑝(𝑦|𝑓 𝒙, 𝒘 ) 𝑝 𝑦 𝒙 =
𝑝(𝑦, 𝒙)

𝑝(𝒙)

“Direct” way without 

modeling the inputs 𝒙𝑛 

“Indirect” way by modeling the 

outputs as well as the inputs

“Indirect” way requires first 

learning the joint distribution of 

inputs and outputs
Parameters of this 

distribution are the 

outputs of function 𝑓
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Discriminative vs Generative Sup. Learning
19

▪Direct way of sup. learning is discriminative, indirect way is generative

▪Note: Generative approach can also be used for other settings too, such as 
unsupervised learning and semi-supervised learning (will see later)

           

𝑝 𝑦 𝒙 = 𝑝(𝑦|𝑓 𝒙, 𝒘 )
𝑝 𝑦 𝒙 =

𝑝(𝑦, 𝒙)

𝑝(𝒙)

Discriminative Approach Generative Approach

𝑝 𝑦 𝒙 = 𝒩(𝑦|𝒘⊤𝒙, 𝛽−1)

𝑝 𝑦 𝒙 = Bernoulli(𝑦|𝜎(𝒘⊤𝒙))

Some examples

𝑓 can be any function which uses inputs and 

weights 𝒘 to defines parameters of distr. 𝑝
Requires estimating the joint distribution of 

inputs and outputs to get the conditional 

𝑝 𝑦 𝒙  (unlike the discriminative approach 

which directly estimates the conditional 𝑝 𝑦 𝒙  

and does not model the distribution of 𝒙)

Non-probabilistic supervised 

learning approaches (e.g., SVM) 

are usually considered 

discriminative since 𝑝(𝑥) is 

never modeled 
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Probabilistic Linear Regression

▪ Assume training data {𝒙𝑛, 𝑦𝑛}𝑛=1
𝑁 , with features 𝒙𝑛 ∈ ℝ𝐷 and responses 𝑦𝑛 ∈ ℝ

▪ Assume 𝑦𝑛 generated by a noisy linear model with wts 𝒘 = 𝑤1, … , 𝑤𝐷 ∈ ℝ𝐷

▪Notation alert: 𝛽 is the precision of Gaussian noise (and 𝛽−1 the variance)

20

Each weight assumed real-valued

𝑦𝑛 = 𝒘⊤𝒙𝑛 + 𝜖𝑛
Gaussian noise drawn 

from  𝒩(𝝐𝑛|0, 𝛽−1)

𝑝 𝑦𝑛 𝒙𝑛, 𝒘, 𝛽 = 𝒩 𝑦𝑛 𝒘⊤𝒙𝑛, 𝛽−1)

𝒘⊤𝒙𝑛

Gaussian

The line represents the 

mean 𝒘⊤𝒙𝑛 of the output 

random variable 𝑦𝑛

The zero mean 

Gaussian noise 

perturbs the output 

from its mean

𝑥

𝑦

Likelihood model

Thus NLL is like 

squared loss

Input 𝑥𝑛 being 

treated as given 

and not modeled 

by any probability 

distribution

Will later study models 

in which both input and 

output are modeled by 

distributions

Unknown to be estimated

A discriminative model 

for regression problems
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Probabilistic Linear Regression

▪ For all the training data, we can write the above model in matrix-vector notation

▪ This is a linear Gaussian model with 𝒘 being the unknown Gaussian r.v.

▪ A simple “plate diagram” for this model would look like this (hyperparameters not 
shown in the diagram) 
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𝒚 = 𝑿𝒘 + 𝝐

𝒚 = [𝑦1; 𝑦2; … ; 𝑦𝑁] is the 

𝑁×1 response vector

𝑿 = [𝒙1
⊤; 𝒙2

⊤; … ; 𝒙𝑁
⊤ ]

is the 𝑁 × 𝐷 input matrix
𝝐 = [𝜖1; 𝜖2; … ; 𝜖𝑁] is the 𝑁×1 noise 

vector drawn from 𝒩(𝟎, 𝛽−1𝑰𝑁)

Same as writing 

𝑝 𝒚 𝑿, 𝒘, 𝛽 = 𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)

Direction of arrow 

show dependency The plate/box with number 

𝑁 shows that we have 𝑁 

such i.i.d. observations

White nodes denote unknown 

quantities, grey nodes denote 

observed quantities (training 

input-output pairs)



CS772A: PML

On compact notations..

▪When writing the likelihood (assuming 𝑦𝑛’s are i.i.d. given 𝒘 and 𝒙𝑛)  

▪ Thus a product of 𝑁 univariate Gaussians here (not always) is equivalent to an 
𝑁-dim Gaussian over the vector 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑁]

▪We will prefer to use this equivalence at other places too whenever we have 
multiple i.i.d. random variables, each having a univariate Gaussian distribution
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𝑝 𝒚 𝑿, 𝒘, 𝛽 = ෑ
𝑛=1

𝑁

𝒩 𝑦𝑛 𝒘⊤𝒙𝑛, 𝛽−1)

= 𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)
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Prior on weights

▪ Assume a zero-mean Gaussian prior on 𝒘

▪ Zero-mean Gaussian prior corresponds to ℓ2 regularizer
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𝑝 𝒘|𝜆 = ෑ

𝑑=1

𝐷

𝑝 𝑤𝑑|𝜆 = ෑ

𝑑=1

𝐷

𝒩(𝑤𝑑|0, 𝜆−1)

= 𝒩(𝒘|𝟎, 𝜆−1𝐈𝐷)

∝
𝜆

2𝜋

𝐷
2

exp −
𝜆

2
 𝒘⊤𝒘

𝜆 controls the uncertainty around our 

prior belief about value of 𝑤𝑑  

This prior assumes that a priori each 

weight has a small value (close to zero)

May also use a non-zero mean Gaussian 

prior, e.g., 𝒩(𝑤𝑑|𝜇, 𝜆−1) if  we expect 

weights to be close to some value 𝜇

Reason: The negative log 

prior −log 𝑝(𝒘) ∝
𝜆

2
 𝒘⊤𝒘

The precision 

𝜆 controls how 

aggressively the 

prior pushes 𝑤𝑑 

towards mean (0)

Large 𝜆 means 

more aggressive 

push towards zero

In zero-mean case, 𝜆 sort 

of denotes each feature’s 

importance. Think why? Can also use a full covariance 

matrix Λ−1 for the prior to 

impose a priori correlations 

among different weights 

Prior’s hyperparameters (𝝀/𝚲/𝝁) 

etc can be learned as well using 

point estimation (e.g., MLE-II) or 

fully Bayesian inference
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The Posterior

▪ The posterior over 𝒘 (for now, assume hyperparams 𝛽 and 𝜆 to be known)

▪ Using the “completing the squares” trick (or linear Gaussian model results)

24

Marginal likelihood for this regression model. 

Note that it is conditioned on 𝐗 too which is 

assumed given and not being modeled
Must be a Gaussian 

due to conjugacy

Note that 𝜆 and 𝛽 can be 

learned under the 

probabilistic set-up(though 

assumed fixed as of now) 

MLE/MAP left 

as an exercise

MAP solution turns out to be exactly 

the same (reason: Gaussian’s mean 

and mode are the same)

The form is also similar to the solution to ridge 

regression argmin𝑤 𝑦 − 𝑋𝑤
2

+ 𝜆𝑤⊤𝑤 = (

)
𝑋⊤𝑋 +

𝜆𝐼 −1𝑋⊤𝑦
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The Posterior: A Visualization

▪ Assume a lin. reg. problem with true 𝒘 = 𝑤0, 𝑤1 , 𝑤0 = −0.3, 𝑤1 = 0.5

▪ Assume data generated by a linear regression model 𝑦 =  𝑤0  + 𝑤1𝑥 +  "noise"
▪ Note: It’s actually 1-D regression (𝑤0 is just a bias term), or 2-D reg. with feature [1, 𝑥]

▪ Figures below show the “data space” and posterior of 𝒘 for different number of 
observations (note: with no observations, the posterior = prior)
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Each red line 

represents the 

“data” generated 

for a randomly 

drawn 𝒘 from the 

current posterior
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Posterior Predictive Distribution

▪ To get the prediction 𝑦∗ for a new input 𝒙∗, we can compute its PPD

▪ The above is the marginalization of 𝒘 from 𝒩(𝑦∗|𝒘⊤𝒙∗, 𝛽−1). Using LGM results

▪ So we have a predictive mean 𝝁𝑁
⊤ 𝒙∗ as well as an input-specific predictive variance 

▪ In contrast, MLE and MAP make “plug-in” predictions (using the point estimate of 𝒘)

▪ Unlike MLE/MAP, variance of 𝑦∗ also depends on the input 𝒙∗ (this, as we will see later, 
will be very useful in sequential decision-making problems such as active learning)
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Only 𝒘 is unknown with a 

posterior distribution so only 

𝒘 has to be integrated out

𝒩(𝑦∗|𝒘⊤𝒙∗, 𝛽−1) 𝒩(𝒘|𝝁𝑁, 𝚺𝑁)

Can also derive it by writing 𝑦∗ = 𝒘⊤𝒙∗ + 𝜖 

where 𝒘 ∼ 𝒩(𝝁𝑁, 𝚺𝑁) and 𝜖 ∼ 𝒩(0, 𝛽−1)

Since PPD also takes into 

account the uncertainty in 𝒘, 

the predictive variance is larger
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Posterior Predictive Distribution: An Illustration

▪ Black dots are training examples

▪ Width of the shaded region at any 𝑥 denotes the predictive uncertainty at that 𝑥 (+/- 
one std-dev)

▪ Regions with more training examples have smaller predictive variance

27
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Nonlinear Regression

▪ Can extend the linear regression model to handle nonlinear regression problems

▪ One way is to replace the feature vectors 𝒙 by a nonlinear mapping 𝜙(𝒙)

▪ Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

▪ More on nonlinear regression when we discuss Gaussian Processes

28

Can be pre-defined (e.g., replace a scalar 
𝑥 by polynomial mapping [1, 𝑥, 𝑥2]) or 
extracted by a pretrained deep neural 
net
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More on Visualization of Uncertainty

▪ Figures below: Green curve is the true function and blue circles are observations

▪ Posterior of the nonlinear regression model: Some curves drawn from the posterior

▪ PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty

29



CS772A: PML

Estimating Hyperparameters via MLE-II

▪ The probabilistic linear reg. model we saw had two hyperparams (𝛽, 𝜆)
▪ Thus total three unknowns (𝒘, 𝛽, 𝜆)

▪ Posterior and PPD computation is intractable. 

▪ If  we just want point estimates for (𝛽, 𝜆) then MLE-II is an option

30

Need posterior over 

all the 3 unknowns

PPD would require 

integrating out all 3 

unknowns

And then compute 

𝑝(𝒘|𝑿, 𝒚, መ𝛽, መ𝜆) 

treating መ𝛽, መ𝜆 as given

Called “MLE-II” because we are maximizing 

marginal likelihood, not the likelihood

መ𝛽, መ𝜆 =  argmax𝛽,𝜆 log 𝑝(𝒚|𝑿, 𝛽, 𝜆)
Will see various other 

methods like EM, variational 

inference, MCMC, etc later
For regression with Gaussian likelihood 

and Gaussian prior on 𝒘, the marginal 

likelihood has an exact expression
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Prob. Linear Regression: Some Other Variations

▪ Can use other likelihoods 𝑝 𝑦𝑛 𝒙𝑛, 𝒘) and/or prior distribution 𝑝(𝒘) 

▪ Laplace distribution for the likelihood

▪ Heteroskedastic noise in the likelihood, e.g., 

▪ Feature-specific variances in the prior for 𝒘
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𝑝 𝑦𝑛 𝒙𝑛, 𝒘) =  Lap 𝑦𝑛 𝒘⊤𝒙𝑛, 𝑏)

𝑝 𝒘 =  ෑ
𝑑=1

𝐷

𝒩(𝑤𝑑|0, 𝜆𝑑
−1) = 𝒩(𝒘|𝟎, 𝚲−1)

This has the effect of 

having feature-specific 

regularization

Since we can also learn these precisions (e.g., 

using MLE-II), using such a prior, we can learn 

the importance of different features (feature 

selection) which isn’t possible with a 

𝒩(𝒘|𝟎, 𝜆−1𝐈) prior with spherical covariance

Diagonal precision/covariance 

matrix with 𝜆𝑑 ’s along the 

columns of Λ

𝑝 𝑦𝑛 𝒙𝑛, 𝒘) =  𝒩(𝑦𝑛|𝒘⊤𝒙𝑛, 𝛽𝑛
−1)

Gives rise to “absolute loss” 

instead of squared loss

More robust to 

outliers than 

squared loss

Different noise distribution 

𝒩(0, 𝛽𝑛
−1) for each 𝑦𝑛

Can even assume 𝛽𝑛 

to depend on input 𝒙𝑛
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