

Probabilistic Supervised Learning: Linear Regression

CS772A: Probabilistic Machine Learning

Piyush Rai

Plan Today

- Quick overview of parameter estimation and predictive distributions for
 - Multinoulli observation model
 - Gaussian (univariate) observation model
- Probabilistic Supervised Learning
 - (Probabilistic) Linear Regression

Multinoulli Observation Model

The Posterior Distribution

MLE/MAP left as
an exercise

- Assume N discrete obs $\mathbf{y} = \{y_1, y_2, \dots, y_N\}$ with each $y_n \in \{1, 2, \dots, K\}$, e.g.,

- y_n represents the outcome of a dice roll with K faces
 - y_n represents the class label of the n^{th} example in a classification problem (total K classes)
 - y_n represents the identity of the n^{th} word in a sequence of words

- Assume **likelihood** to be multinoulli with unknown params $\boldsymbol{\pi} = [\pi_1, \pi_2, \dots, \pi_K]$

$$p(y_n|\boldsymbol{\pi}) = \text{multinoulli}(y_n|\boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{\mathbb{I}[y_n=k]}$$

These sum to 1

- $\boldsymbol{\pi}$ is a vector of probabilities ("probability vector"), e.g.,

- Biases of the K sides of the dice
- Prior class probabilities in multi-class classification ($p(y_n = k) = \pi_k$)
- Probabilities of observing each word of the K words in a vocabulary

- Assume a **conjugate prior** (Dirichlet) on $\boldsymbol{\pi}$ with hyperparams $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_K]$

$$p(\boldsymbol{\pi}|\boldsymbol{\alpha}) = \text{Dirichlet}(\boldsymbol{\pi}|\alpha_1, \dots, \alpha_K) = \frac{\Gamma(\sum_{k=1}^K \alpha_k)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k-1} = \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^K \pi_k^{\alpha_k-1}$$

Generalization of Bernoulli to
 $K > 2$ discrete outcomes

Called the
concentration
parameter of the
Dirichlet (assumed
known for now)

Large values of α will
give a Dirichlet peaked
around its mean (next
slides illustrates this)

Each $\alpha_k \geq 0$

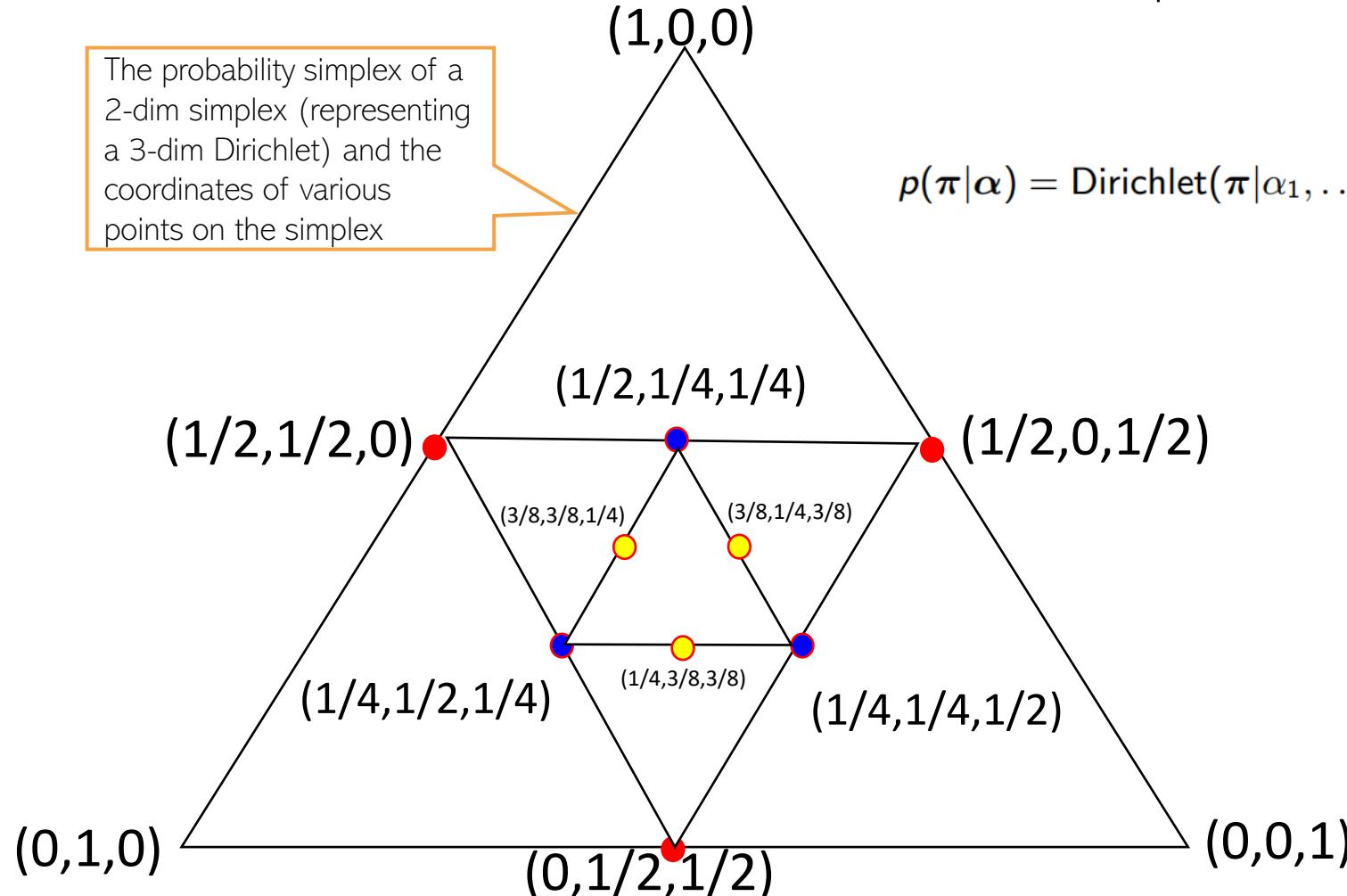
Generalization of Beta to
 K -dimensional probability
vectors

Brief Detour: Dirichlet Distribution

Basically, probability vectors

- An important distribution. Models non-neg. vectors π that also sum to one
- A random draw from K -dim Dirich. will be a point under $(K-1)$ -dim probability simplex

The probability simplex of a 2-dim simplex (representing a 3-dim Dirichlet) and the coordinates of various points on the simplex



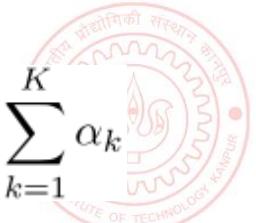
$$p(\pi|\alpha) = \text{Dirichlet}(\pi|\alpha_1, \dots, \alpha_K) = \frac{\Gamma(\sum_{k=1}^K \alpha_k)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k-1} = \frac{1}{B(\alpha)} \prod_{k=1}^K \pi_k^{\alpha_k-1}$$

$$\text{Mean} = \left[\frac{\alpha_1}{\sum_{k=1}^K \alpha_k}, \dots, \frac{\alpha_K}{\sum_{k=1}^K \alpha_k} \right]$$

$$\text{Mode} = \left[\frac{\alpha_1 - 1}{\sum_{k=1}^K \alpha_k - K}, \dots, \frac{\alpha_K - 1}{\sum_{k=1}^K \alpha_k - K} \right] (\alpha_k > 1)$$

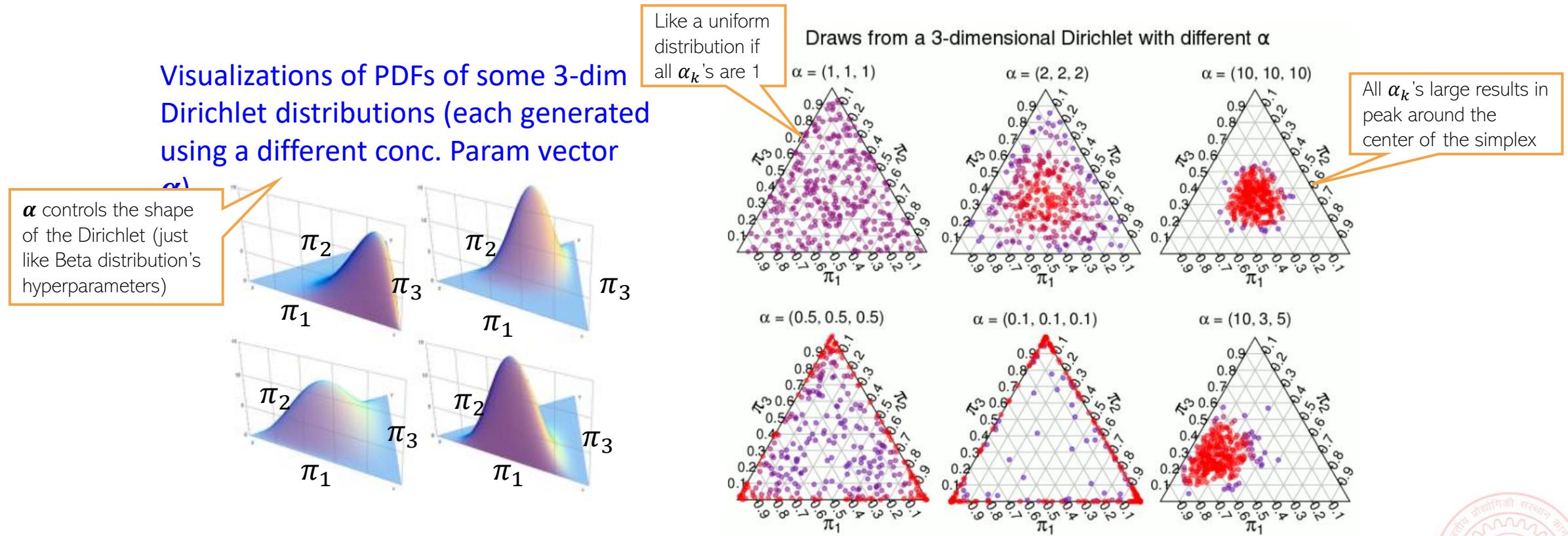
$$\text{var}(\pi_k) = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}$$

$$\alpha_0 = \sum_{k=1}^K \alpha_k$$



Brief Detour: Dirichlet Distribution

- A visualization of Dirichlet distribution for different values of concentration param



- Interesting fact: Can generate a K -dim Dirichlet random variable by independently generating K gamma random variables and normalizing them to sum to 1

The Posterior Distribution

- Posterior $p(\boldsymbol{\pi}|\mathbf{y})$ is easy to compute due to conjugacy b/w multinoulli and Dir.

$$p(\boldsymbol{\pi}|\mathbf{y}, \boldsymbol{\alpha}) = \frac{p(\boldsymbol{\pi}, \mathbf{y}|\boldsymbol{\alpha})}{p(\mathbf{y}|\boldsymbol{\alpha})} = \frac{p(\boldsymbol{\pi}|\boldsymbol{\alpha})p(\mathbf{y}|\boldsymbol{\pi}, \boldsymbol{\alpha})}{p(\mathbf{y}|\boldsymbol{\alpha})} = \frac{p(\boldsymbol{\pi}|\boldsymbol{\alpha})p(\mathbf{y}|\boldsymbol{\pi})}{p(\mathbf{y}|\boldsymbol{\alpha})}$$

Likelihood

Prior

Don't need to compute for this case because of conjugacy

Marg-lik = $\int p(\boldsymbol{\pi}|\boldsymbol{\alpha})p(\mathbf{y}|\boldsymbol{\pi})d\boldsymbol{\pi}$

- Assuming y_n 's are i.i.d. given $\boldsymbol{\pi}$, $p(\mathbf{y}|\boldsymbol{\pi}) = \prod_{n=1}^N p(y_n|\boldsymbol{\pi})$, and therefore

$$p(\boldsymbol{\pi}|\mathbf{y}, \boldsymbol{\alpha}) \propto \prod_{k=1}^K \pi_k^{\alpha_k-1} \times \prod_{n=1}^N \prod_{k=1}^K \pi_k^{\mathbb{I}[y_n=k]} = \prod_{k=1}^K \pi_k^{\alpha_k + \sum_{n=1}^N \mathbb{I}[y_n=k] - 1}$$

- Even without computing marg-lik, $p(\mathbf{y}|\boldsymbol{\alpha})$, we can see that the posterior is Dirichlet

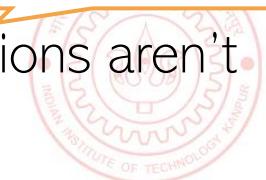
- Denoting $N_k = \sum_{n=1}^N \mathbb{I}[y_n = k]$, number of observations with value k

$$p(\boldsymbol{\pi}|\mathbf{y}, \boldsymbol{\alpha}) = \text{Dirichlet}(\boldsymbol{\pi}|\alpha_1 + N_1, \alpha_2 + N_2, \dots, \alpha_K + N_K)$$

- Note: N_1, N_2, \dots, N_K are the sufficient statistics for this estimation problem

- We only need the suff-stats to estimate the parameters and values of individual observations aren't needed (another property from exponential family of distributions – more on this later)

Similar to number of heads and tails for the coin bias estimation problem



The Predictive Distribution

- Finally, let's also look at the [posterior predictive distribution](#) for this model
- PPD is the prob distr of a new $y_* \in \{1, 2, \dots, K\}$, given training data $\mathbf{y} = \{y_1, y_2, \dots, y_N\}$

Will be a multinoulli. Just need to estimate the probabilities of each of the K outcomes

$$p(y_* | \mathbf{y}, \boldsymbol{\alpha}) = \int p(y_* | \boldsymbol{\pi}) p(\boldsymbol{\pi} | \mathbf{y}, \boldsymbol{\alpha}) d\boldsymbol{\pi}$$

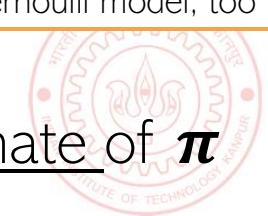
- $p(y_* | \boldsymbol{\pi}) = \text{multinoulli}(y_* | \boldsymbol{\pi})$, $p(\boldsymbol{\pi} | \mathbf{y}, \boldsymbol{\alpha}) = \text{Dirichlet}(\boldsymbol{\pi} | \alpha_1 + N_1, \alpha_2 + N_2, \dots, \alpha_K + N_K)$
- Can compute the posterior probability for each of the K possible outcomes

$$\begin{aligned} p(y_* = k | \mathbf{y}, \boldsymbol{\alpha}) &= \int p(y_* = k | \boldsymbol{\pi}) p(\boldsymbol{\pi} | \mathbf{y}, \boldsymbol{\alpha}) d\boldsymbol{\pi} \\ &= \int \pi_k \times \text{Dirichlet}(\boldsymbol{\pi} | \alpha_1 + N_1, \alpha_2 + N_2, \dots, \alpha_K + N_K) d\boldsymbol{\pi} \\ &= \frac{\alpha_k + N_k}{\sum_{k=1}^K \alpha_k + N} \quad (\text{Expectation of } \pi_k \text{ w.r.t the Dirichlet posterior}) \end{aligned}$$

- Thus PPD is multinoulli with probability vector $\left\{ \frac{\alpha_k + N_k}{\sum_{k=1}^K \alpha_k + N} \right\}_{k=1}^K$
- Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of $\boldsymbol{\pi}$

Note how these probabilities have been “smoothened” due to the use of the prior + the averaging over the posterior

A similar effect was achieved in the Beta-Bernoulli model, too

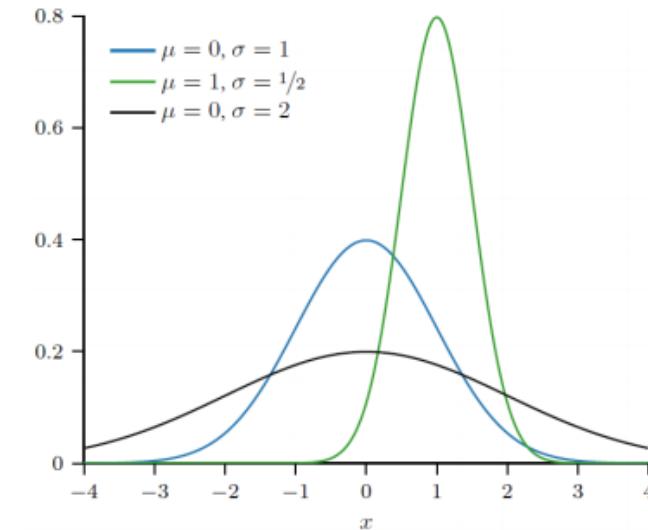


Gaussian Observation Model

Gaussian Distribution (Univariate)

- Distribution over real-valued scalar random variables $X \in \mathbb{R}$, e.g., height of students in a class
- Defined by a scalar mean μ and a scalar variance σ^2

$$\mathcal{N}(X = x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right]$$



- Mean: $\mathbb{E}[X] = \mu$
- Variance: $\text{var}[X] = \sigma^2$
- Inverse of variance is called **precision**: $\beta = \frac{1}{\sigma^2}$.

Gaussian PDF in terms of precision

$$\mathcal{N}(X = x | \mu, \beta) = \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(x - \mu)^2\right]$$

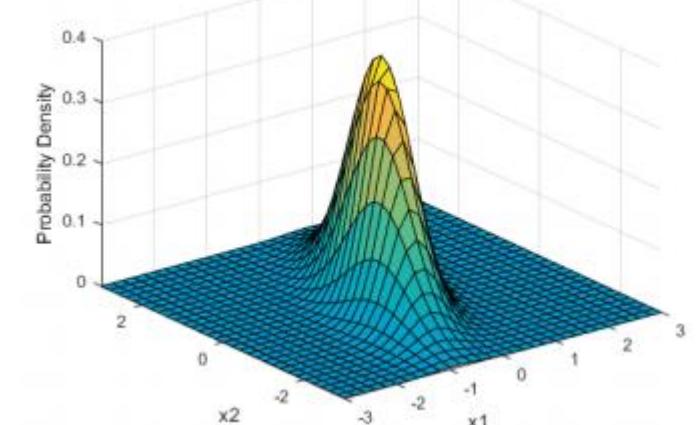
Gaussian Distribution (Multivariate)

- Distribution over real-valued vector random variables $\mathbf{X} \in \mathbb{R}^D$
- Defined by a mean vector $\boldsymbol{\mu} \in \mathbb{R}^D$ and a covariance matrix $\boldsymbol{\Sigma}$

$$\mathcal{N}(\mathbf{X} = \mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp[-(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})]$$

- Note: The cov. matrix $\boldsymbol{\Sigma}$ must be symmetric and PSD
 - All eigenvalues are positive
 - $\mathbf{z}^\top \boldsymbol{\Sigma} \mathbf{z} \geq 0$ for any real vector \mathbf{z}
- The covariance matrix also controls the shape of the Gaussian

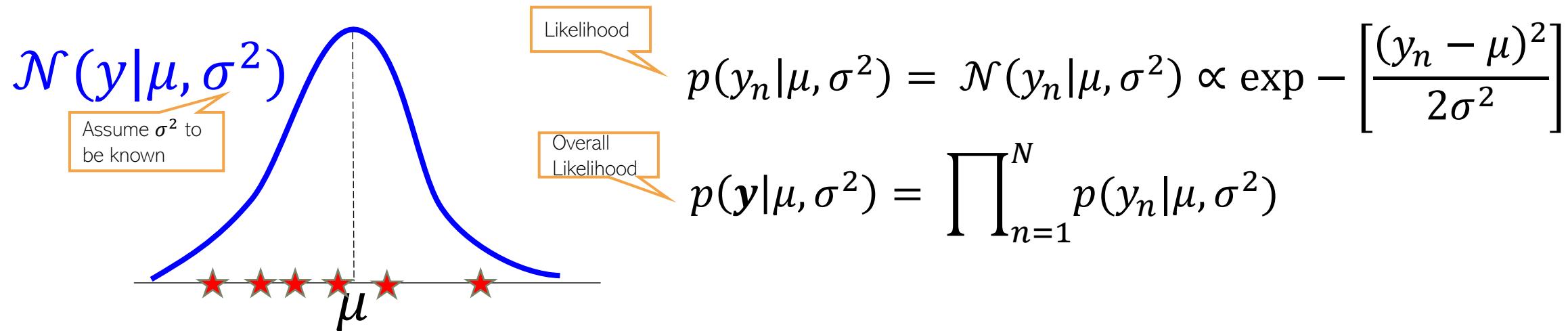
A two-dimensional Gaussian



Posterior Distribution for Gaussian's Mean

Its MLE/MAP estimation left as an exercise

- Given: N i.i.d. scalar observations $\mathbf{y} = \{y_1, y_2, \dots, y_N\}$ assumed drawn from $\mathcal{N}(y|\mu, \sigma^2)$



- Note: Easy to see that each y_n drawn from $\mathcal{N}(y|\mu, \sigma^2)$ is equivalent to the following

Thus y_n is like a noisy version of μ with zero mean Gaussian noise added to it

$$y_n = \mu + \epsilon_n \quad \text{where } \epsilon_n \sim \mathcal{N}(0, \sigma^2)$$

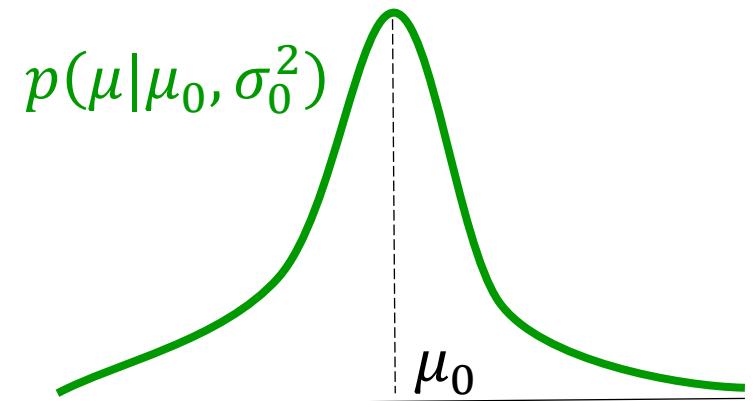
- Let's estimate mean μ given \mathbf{y} using fully Bayesian inference (not point estimation)

A prior distribution for the mean

- To compute posterior, need a prior over μ
- Let's choose a Gaussian prior

$$p(\mu|\mu_0, \sigma_0^2) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

$$\propto \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$



- The prior basically says that a priori we believe μ is close to μ_0
- The prior's variance σ_0^2 denotes how certain we are about our belief
- We will assume that the prior's hyperparameters (μ_0, σ_0^2) are known
- Since σ^2 in the likelihood $\mathcal{N}(y|\mu, \sigma^2)$ is known, Gaussian prior $\mathcal{N}(\mu|\mu_0, \sigma_0^2)$ on μ is also conjugate to the likelihood (thus posterior of μ will also be Gaussian)

The posterior distribution for the mean

- The posterior distribution for the unknown mean parameter μ

On conditioning side,
skipping all fixed params
and hyperparams from
the notation

$$p(\mu|y) = \frac{p(y|\mu)p(\mu)}{p(y)} \propto \prod_{n=1}^N \exp\left[-\frac{(y_n - \mu)^2}{2\sigma^2}\right] \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

- Easy to see that the above will be prop. to **exp of a quadratic function** of μ . Simplifying:

$$p(\mu|y) \propto \exp\left[-\frac{(\mu - \mu_N)^2}{2\sigma_N^2}\right]$$

Gaussian posterior's precision is the sum of the prior's precision and sum of the noise precisions of all the observations

Gaussian posterior's mean is a convex combination of prior's mean and the MLE solution

$$\frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}$$

$$\mu_N = \frac{1}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{y}$$

(where $\bar{y} = \frac{\sum_{n=1}^N y_n}{N}$)

Gaussian posterior (not a surprise since the chosen prior was conjugate to the likelihood)

Contribution from the prior

Contribution from the data

Also the MLE solution for μ

- What happens to the posterior as N (number of observations) grows very large?

- Data (likelihood part) overwhelms the prior
- Posterior's variance σ_N^2 will approximately be σ^2/N (and goes to 0 as $N \rightarrow \infty$)
- The posterior's mean μ_N approaches \bar{y} (which is also the MLE solution)

Meaning, we become very-very certain about the estimate of μ



The Predictive Distribution

- If given a point estimate $\hat{\mu}$, the plug-in predictive distribution for a test y_* would be

This is an approximation of the true PPD $p(y_*|y)$

$$p(y_*|\hat{\mu}, \sigma^2) = \mathcal{N}(y_*|\hat{\mu}, \sigma^2)$$

The best point estimate

- On the other hand, the posterior predictive distribution of y_* would be

$$\begin{aligned} p(y_*|y) &= \int p(y_*|\mu, \sigma^2) p(\mu|y) d\mu \\ &= \int \mathcal{N}(y_*|\mu, \sigma^2) \mathcal{N}(\mu|\mu_N, \sigma_N^2) d\mu \\ &= \mathcal{N}(y_*|\mu_N, \sigma^2 + \sigma_N^2) \end{aligned}$$

This "extra" variance σ_N^2 in PPD is due to the averaging over the posterior's uncertainty

If **conditional** is Gaussian then **marginal** is also Gaussian

A useful fact: When we have conjugacy, the posterior predictive distribution also has a closed form (will see this result more formally when talking about exponential family distributions)

PRML [Bis 06], 2.115, and also mentioned in prob-stats refresher slides

- For an alternative way to get the above result, note that, for test data

$$y_* = \mu + \epsilon \quad \mu \sim \mathcal{N}(\mu_N, \sigma_N^2) \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Using the **posterior** of μ since we are at test stage now

$$\Rightarrow p(y_*|y) = \mathcal{N}(y_*|\mu_N, \sigma^2 + \sigma_N^2)$$

Since both μ and ϵ are Gaussian r.v., and are independent, y_* also has a Gaussian posterior predictive, and the respective means and variances of μ and ϵ get added up

Gaussian Observation Model: Some Other Facts

- MLE/MAP for μ, σ^2 (or both) is straightforward in Gaussian observation models.
- Posterior also straightforward in most situations for such models
 - (As we saw) computing posterior of μ is easy (using Gaussian prior) if variance σ^2 is known
 - Likewise, computing posterior of σ^2 is easy (using **gamma prior** on σ^2) if mean μ is known
- If μ, σ^2 both are unknown, posterior computation requires computing $p(\mu, \sigma^2 | \mathbf{y})$
 - Computing joint posterior $p(\mu, \sigma^2 | \mathbf{y})$ exactly requires a jointly conjugate prior $p(\mu, \sigma^2)$
 - “**Gaussian-gamma**” (“Normal-gamma”) is such a conjugate prior – a product of normal and gamma
 - Note: Computing joint posteriors exactly is possible only in rare cases such this one
- If each observation $\mathbf{y}_n \in \mathbb{R}^D$, can assume a likelihood/observation model $\mathcal{N}(\mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - Need to estimate a **vector-valued** mean $\boldsymbol{\mu} \in \mathbb{R}^D$. Can use a **multivariate Gaussian prior**
 - Need to estimate a $D \times D$ positive definite covariance **matrix** $\boldsymbol{\Sigma}$. Can use a **Wishart prior**
 - If $\boldsymbol{\mu}, \boldsymbol{\Sigma}$ both are unknown, can use **Normal-Wishart** as a conjugate prior

Linear Gaussian Model (LGM)

- LGM defines a noisy lin. transform of a Gaussian r.v. θ with $p(\theta) = \mathcal{N}(\theta|\mu, \Lambda^{-1})$

Both θ and y are vectors (can be of different sizes)

Also assume A, b, Λ, L to be known; only θ is unknown

$$y = A\theta + b + \epsilon$$

Noise vector - independently and drawn from $\mathcal{N}(\epsilon|\mathbf{0}, L^{-1})$

- Easy to see that, conditioned on θ , y too has a Gaussian distribution

Conditional distribution

$$p(y|\theta) = \mathcal{N}(y|A\theta + b, L^{-1})$$

- Assume $p(\theta)$ as prior and $p(y|\theta)$ as the likelihood, and defining $\Sigma = (\Lambda + A^\top L A)^{-1}$

Posterior of θ

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \mathcal{N}(\theta|\Sigma(A^\top L(y - b) + \Lambda\mu), \Sigma)$$

Marginal distribution

$$p(y) = \int p(y|\theta)p(\theta)d\theta = \mathcal{N}(y|A\mu + b, A\Lambda^{-1}A^\top + L^{-1})$$

- Many probabilistic ML models are LGMs
- These results are very widely used (PRML Chap. 2 contains a proof)

Probabilistic Supervised Learning

- Goal: To learn the conditional distribution $p(y|x)$ of output given input
- The form of the distribution $p(y|x)$ depends on output type, e.g.,
 - Real: Model $p(y|x)$ using a Gaussian (or some other suitable real-valued distribution)
 - Binary: Model $p(y|x)$ using a Bernoulli
 - Categorical/multiclass: Model $p(y|x)$ using a multinoulli/categorical distribution
 - Various other types (e.g., count, positive reals, etc) can also be modeled using appropriate distributions (e.g., Poisson for count, gamma for positive reals)
- The distribution $p(y|x)$ can be defined directly or indirectly

“Direct” way without modeling the inputs \mathbf{x}_n

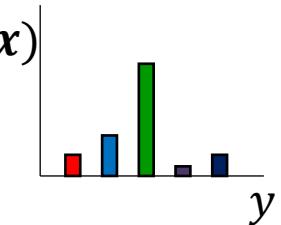
Parameters of this distribution are the outputs of function f

$$p(y|x) = p(y|f(\mathbf{x}, \mathbf{w}))$$

“Indirect” way by modeling the outputs as well as the inputs

$$p(y|x) = \frac{p(y, \mathbf{x})}{p(\mathbf{x})}$$

“Indirect” way requires first learning the joint distribution of inputs and outputs



Discriminative vs Generative Sup. Learning

- Direct way of sup. learning is discriminative, indirect way is generative

Discriminative Approach

$$p(y|\mathbf{x}) = p(y|f(\mathbf{x}, \mathbf{w}))$$

f can be any function which uses inputs and weights \mathbf{w} to defines parameters of distr. p

Some examples

$$p(y|\mathbf{x}) = \mathcal{N}(y|\mathbf{w}^\top \mathbf{x}, \beta^{-1})$$

$$p(y|\mathbf{x}) = \text{Bernoulli}(y|\sigma(\mathbf{w}^\top \mathbf{x}))$$

Generative Approach

$$p(y|\mathbf{x}) = \frac{p(y, \mathbf{x})}{p(\mathbf{x})}$$

Requires estimating the **joint distribution** of inputs and outputs to get the conditional $p(y|\mathbf{x})$ (unlike the discriminative approach which directly estimates the conditional $p(y|\mathbf{x})$ and does not model the distribution of \mathbf{x})

- Note: Generative approach can also be used for other settings too, such as unsupervised learning and semi-supervised learning (will see later)

Non-probabilistic supervised learning approaches (e.g., SVM) are usually considered discriminative since $p(\mathbf{x})$ is never modeled



Probabilistic Linear Regression

A discriminative model
for regression problems

- Assume training data $\{\mathbf{x}_n, y_n\}_{n=1}^N$, with features $\mathbf{x}_n \in \mathbb{R}^D$ and responses $y_n \in \mathbb{R}$
 - Unknown to be estimated
 - Each weight assumed real-valued
- Assume y_n generated by a noisy linear model with wts $\mathbf{w} = [w_1, \dots, w_D] \in \mathbb{R}^D$

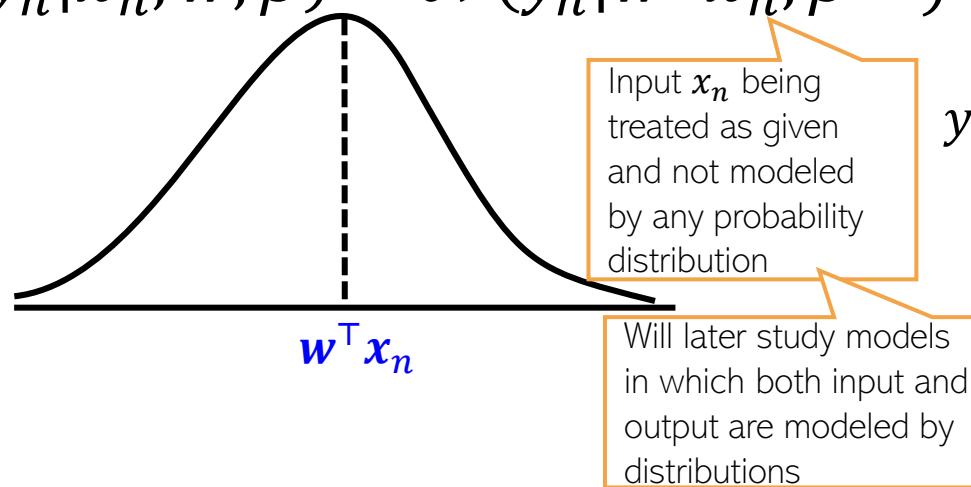
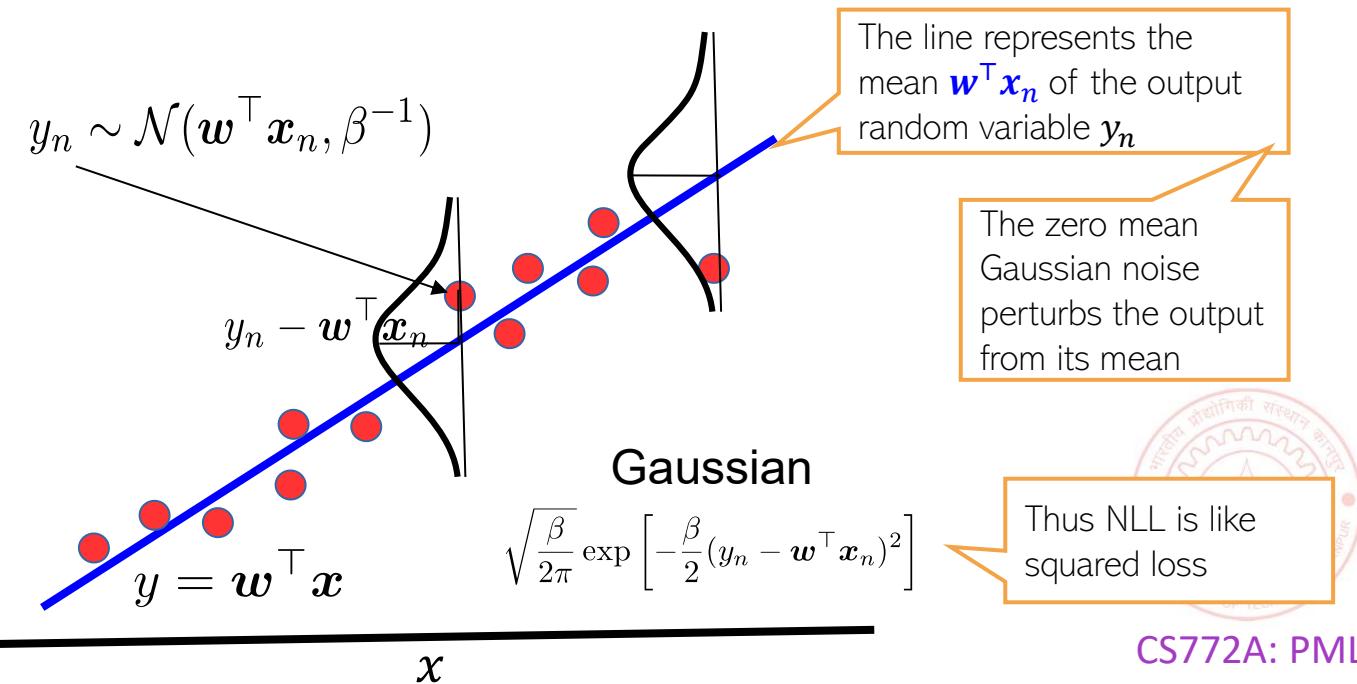
$$y_n = \mathbf{w}^\top \mathbf{x}_n + \epsilon_n$$

Gaussian noise drawn
from $\mathcal{N}(\epsilon_n | 0, \beta^{-1})$

- Notation alert: β is the precision of Gaussian noise (and β^{-1} the variance)

Likelihood model

$$p(y_n | \mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(y_n | \mathbf{w}^\top \mathbf{x}_n, \beta^{-1})$$



Probabilistic Linear Regression

- For all the training data, we can write the above model in matrix-vector notation

$\mathbf{y} = [y_1; y_2; \dots; y_N]$ is the $N \times 1$ response vector

$\mathbf{X} = [\mathbf{x}_1^\top; \mathbf{x}_2^\top; \dots; \mathbf{x}_N^\top]$ is the $N \times D$ input matrix

$\boldsymbol{\epsilon} = [\epsilon_1; \epsilon_2; \dots; \epsilon_N]$ is the $N \times 1$ noise vector drawn from $\mathcal{N}(\mathbf{0}, \beta^{-1} \mathbf{I}_N)$

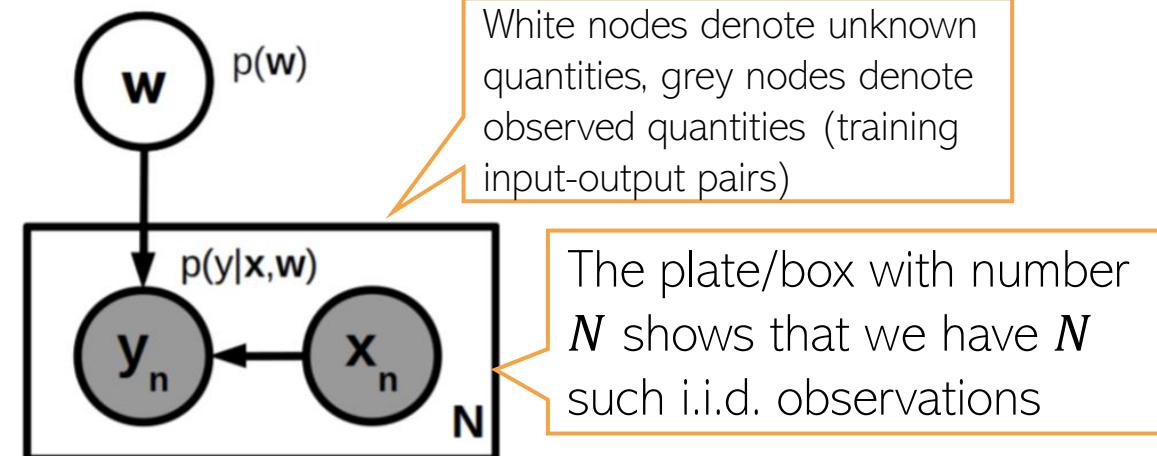
Same as writing

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1} \mathbf{I}_N)$$

$$\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$$

- This is a linear Gaussian model with \mathbf{w} being the unknown Gaussian r.v.
- A simple “plate diagram” for this model would look like this (hyperparameters not shown in the diagram)

Direction of arrow show dependency



On compact notations..

- When writing the likelihood (assuming y_n 's are i.i.d. given \mathbf{w} and \mathbf{x}_n)

$$\begin{aligned}
 p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta) &= \prod_{n=1}^N \mathcal{N}(y_n | \mathbf{w}^\top \mathbf{x}_n, \beta^{-1}) \\
 &= \mathcal{N}(\mathbf{y} | \mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_N)
 \end{aligned}$$

- Thus a product of N univariate Gaussians here (not always) is equivalent to an N -dim Gaussian over the vector $\mathbf{y} = [y_1, y_2, \dots, y_N]$
- We will prefer to use this equivalence at other places too whenever we have multiple i.i.d. random variables, each having a univariate Gaussian distribution

Prior on weights

- Assume a **zero-mean Gaussian prior** on \mathbf{w}

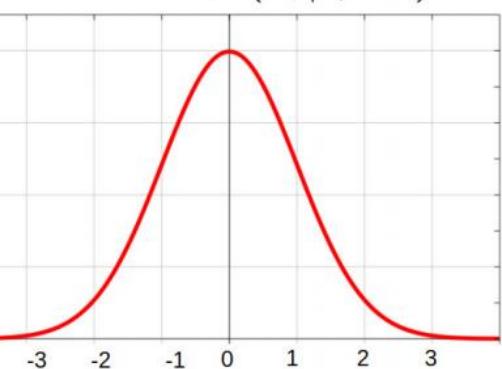
$$p(\mathbf{w}|\lambda) = \prod_{d=1}^D p(w_d|\lambda) = \prod_{d=1}^D \mathcal{N}(w_d|0, \lambda^{-1})$$

In zero-mean case, λ sort of denotes each feature's importance. Think why?

Large λ means more aggressive push towards zero

The precision λ controls how aggressively the prior pushes w_d towards mean (0)

$$p(w_d) = \mathcal{N}(w_d|0, \lambda^{-1})$$



$$= \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda^{-1} \mathbf{I}_D)$$

$$\propto \left(\frac{\lambda}{2\pi}\right)^{\frac{D}{2}} \exp\left[-\frac{\lambda}{2} \mathbf{w}^\top \mathbf{w}\right]$$

λ controls the uncertainty around our prior belief about value of w_d

Can also use a **full covariance matrix** Λ^{-1} for the prior to impose a priori correlations among different weights

Prior's hyperparameters ($\lambda/\Lambda/\mu$) etc can be learned as well using point estimation (e.g., MLE-II) or fully Bayesian inference

May also use a non-zero mean Gaussian prior, e.g., $\mathcal{N}(w_d|\mu, \lambda^{-1})$ if we expect weights to be close to some value μ

This prior assumes that *a priori* each weight has a small value (close to zero)

- Zero-mean Gaussian prior corresponds to ℓ_2 regularizer

Reason: The negative log prior $-\log p(\mathbf{w}) \propto \frac{\lambda}{2} \mathbf{w}^\top \mathbf{w}$

The Posterior

MLE/MAP left as an exercise

- The posterior over \mathbf{w} (for now, assume hyperparams β and λ to be known)

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) = \frac{p(\mathbf{w}|\lambda)p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \beta)}{p(\mathbf{y}|\mathbf{X}, \beta, \lambda)} \propto p(\mathbf{w}|\lambda)p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \beta)$$

Must be a Gaussian due to conjugacy

Marginal likelihood for this regression model. Note that it is conditioned on \mathbf{X} too which is assumed given and not being modeled

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) \propto \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda^{-1}\mathbf{I}_D) \times \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_N)$$

- Using the “completing the squares” trick (or linear Gaussian model results)

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) = \mathcal{N}(\boldsymbol{\mu}_N, \boldsymbol{\Sigma}_N)$$

$$\text{where } \boldsymbol{\Sigma}_N = (\beta \sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^\top + \lambda \mathbf{I}_D)^{-1} = (\beta \mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}_D)^{-1}$$

Note that λ and β can be learned under the probabilistic set-up (though assumed fixed as of now)

(posterior's covariance matrix)

The form is also similar to the solution to ridge

regression $\text{argmin}_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \lambda \mathbf{w}^\top \mathbf{w} = (\mathbf{X}^\top \mathbf{X} +$

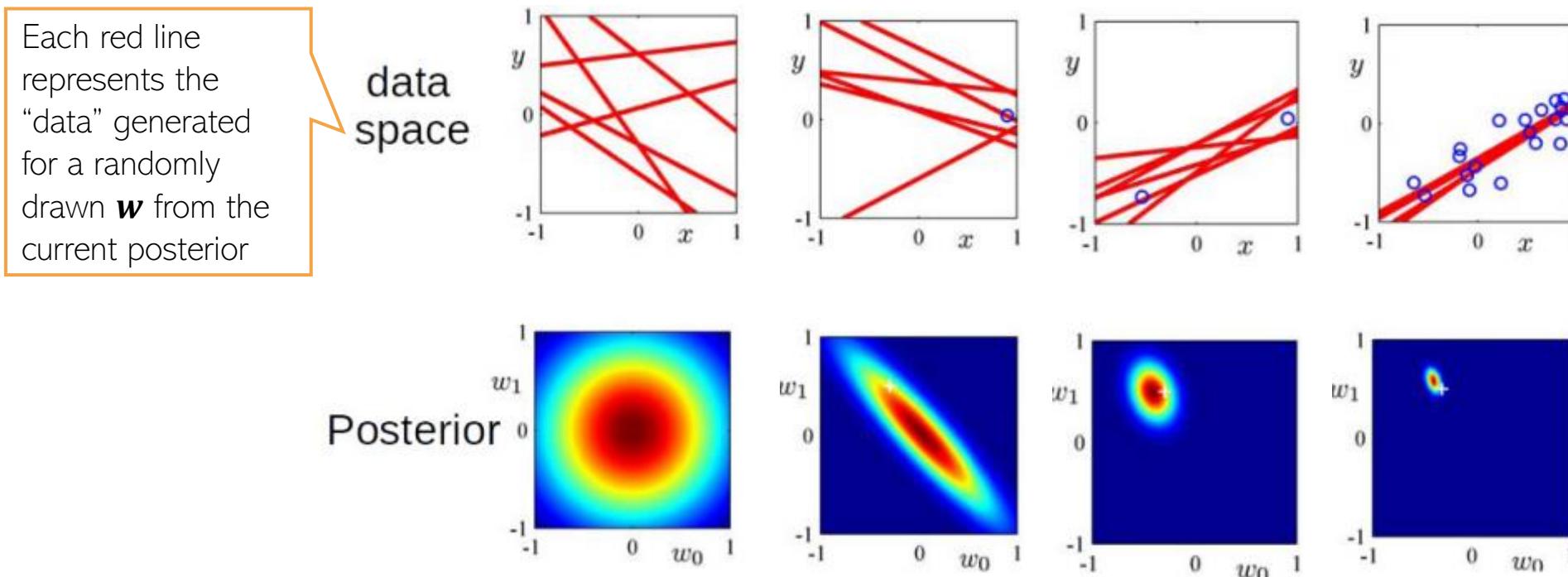
$\lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}$

MAP solution turns out to be exactly the same (reason: Gaussian's mean and mode are the same)

$$\boldsymbol{\mu}_N = \boldsymbol{\Sigma}_N \left[\beta \sum_{n=1}^N \mathbf{y}_n \mathbf{x}_n \right] = \boldsymbol{\Sigma}_N \left[\beta \mathbf{X}^\top \mathbf{y} \right] = (\mathbf{X}^\top \mathbf{X} + \frac{\lambda}{\beta} \mathbf{I}_D)^{-1} \mathbf{X}^\top \mathbf{y} \quad (\text{posterior's mean})$$

The Posterior: A Visualization

- Assume a lin. reg. problem with true $\mathbf{w} = [w_0, w_1], w_0 = -0.3, w_1 = 0.5$
- Assume data generated by a linear regression model $y = w_0 + w_1 x + \text{"noise"}$
 - Note: It's actually 1-D regression (w_0 is just a bias term), or 2-D reg. with feature $[1, x]$
- Figures below show the “data space” and posterior of \mathbf{w} for different number of observations (note: with no observations, the posterior = prior)



Posterior Predictive Distribution

- To get the prediction y_* for a new input \mathbf{x}_* , we can compute its PPD

$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}, \beta, \lambda) = \int p(y_* | \mathbf{x}_*, \mathbf{w}, \beta) p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \beta, \lambda) d\mathbf{w}$$

$\mathcal{N}(y_* | \mathbf{w}^\top \mathbf{x}_*, \beta^{-1})$

$\mathcal{N}(\mathbf{w} | \boldsymbol{\mu}_N, \boldsymbol{\Sigma}_N)$

Only \mathbf{w} is unknown with a posterior distribution so only \mathbf{w} has to be integrated out

- The above is the marginalization of \mathbf{w} from $\mathcal{N}(y_* | \mathbf{w}^\top \mathbf{x}_*, \beta^{-1})$. Using LGM results

$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}, \beta, \lambda) = \mathcal{N}(\boldsymbol{\mu}_N^\top \mathbf{x}_*, \beta^{-1} + \mathbf{x}_*^\top \boldsymbol{\Sigma}_N \mathbf{x}_*)$$

Can also derive it by writing $y_* = \mathbf{w}^\top \mathbf{x}_* + \epsilon$ where $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}_N, \boldsymbol{\Sigma}_N)$ and $\epsilon \sim \mathcal{N}(0, \beta^{-1})$

- So we have a predictive mean $\boldsymbol{\mu}_N^\top \mathbf{x}_*$ as well as an **input-specific predictive variance**
- In contrast, MLE and MAP make “plug-in” predictions (using the point estimate of \mathbf{w})

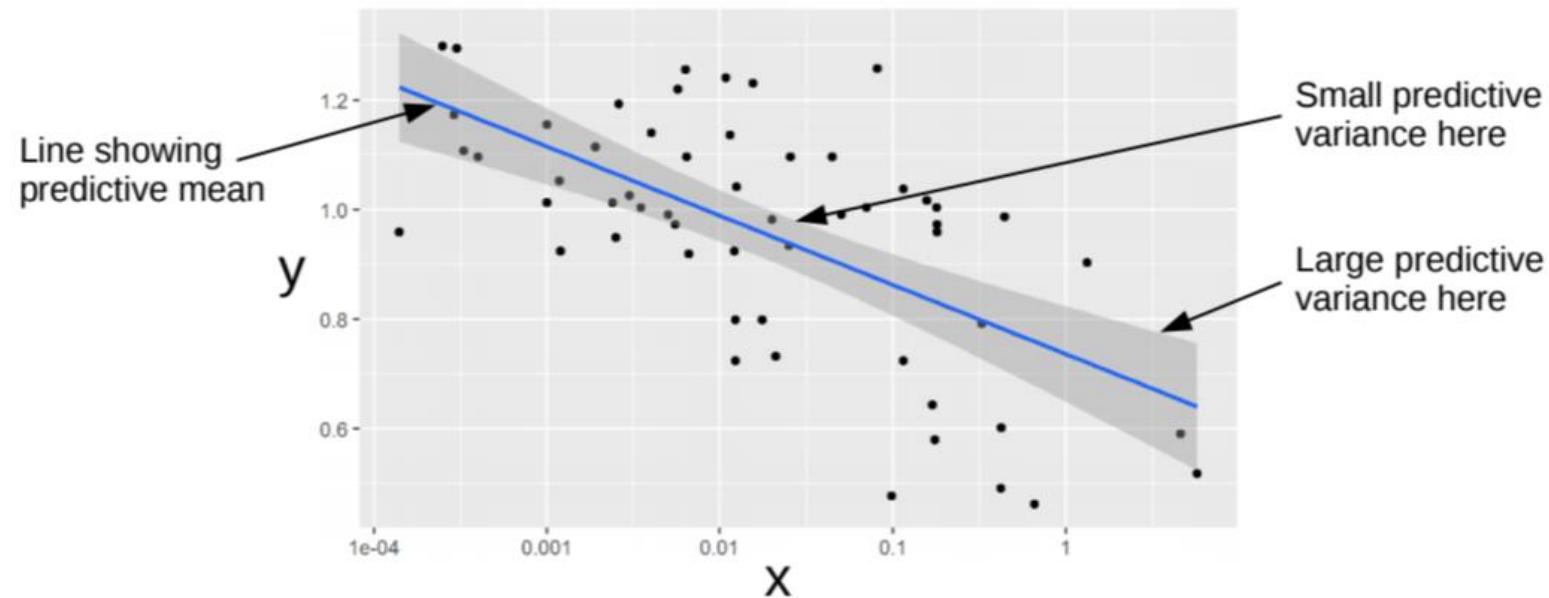
$$\begin{aligned} p(y_* | \mathbf{x}_*, \mathbf{w}_{MLE}) &= \mathcal{N}(\mathbf{w}_{MLE}^\top \mathbf{x}_*, \beta^{-1}) & - \text{MLE prediction} \\ p(y_* | \mathbf{x}_*, \mathbf{w}_{MAP}) &= \mathcal{N}(\mathbf{w}_{MAP}^\top \mathbf{x}_*, \beta^{-1}) & - \text{MAP prediction} \end{aligned}$$

Since PPD also takes into account the uncertainty in \mathbf{w} , the predictive variance is larger

- Unlike MLE/MAP, variance of y_* also depends on the input \mathbf{x}_* (this, as we will see later, will be very useful in **sequential decision-making** problems such as **active learning**)

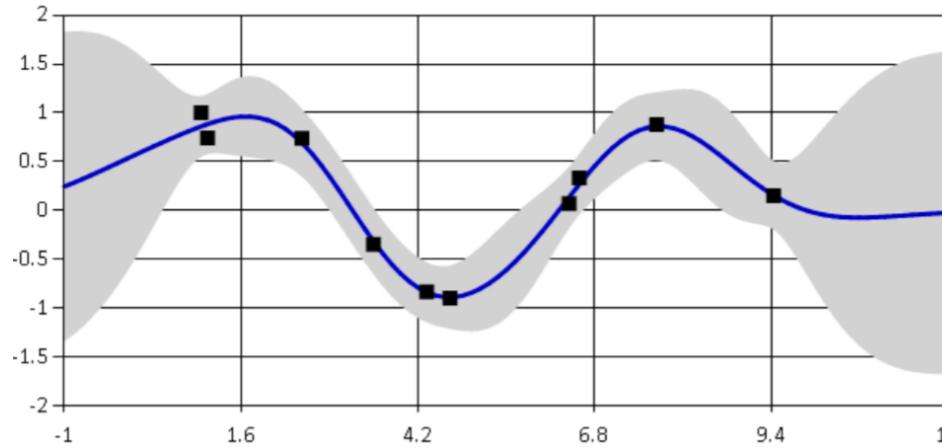
Posterior Predictive Distribution: An Illustration

- Black dots are training examples



- Width of the shaded region at any x denotes the predictive uncertainty at that x (+/- one std-dev)
- Regions with more training examples have smaller predictive variance

Nonlinear Regression



- Can extend the linear regression model to handle nonlinear regression problems
- One way is to replace the feature vectors \mathbf{x} by a nonlinear mapping $\phi(\mathbf{x})$

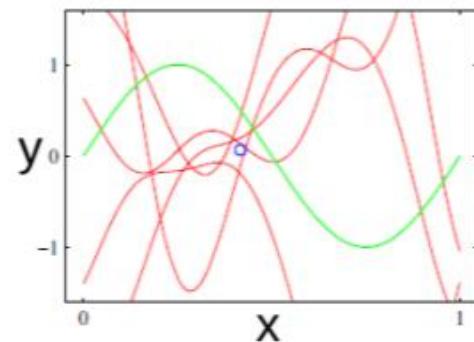
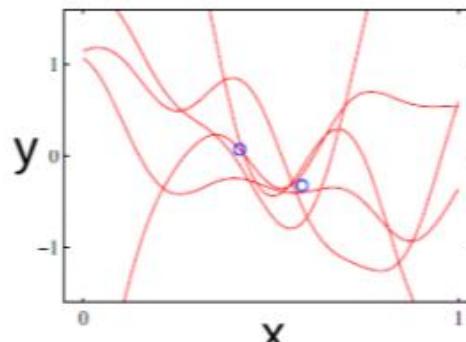
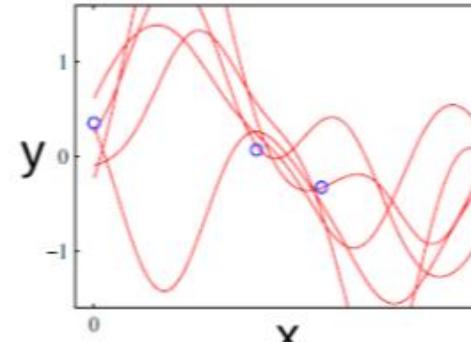
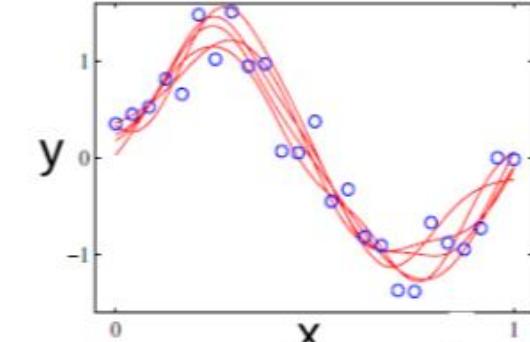
$$p(y|\mathbf{x}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^\top \phi(\mathbf{x}), \beta^{-1})$$

Can be pre-defined (e.g., replace a scalar x by polynomial mapping $[1, x, x^2]$) or extracted by a pretrained deep neural net

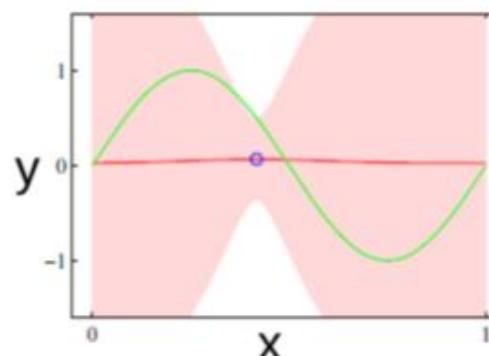
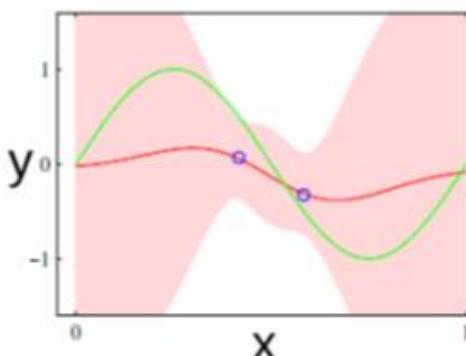
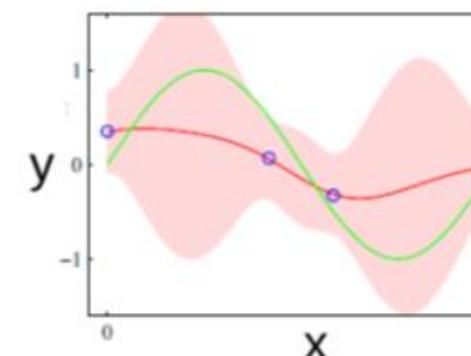
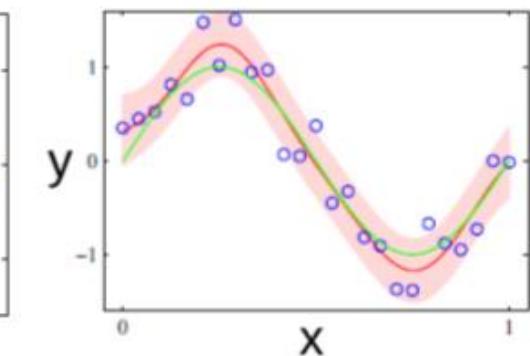
- Alternatively, a **kernel function** can be used to implicitly define the nonlinear mapping
- More on nonlinear regression when we discuss **Gaussian Processes**

More on Visualization of Uncertainty

- Figures below: Green curve is the true function and blue circles are observations
- Posterior of the nonlinear regression model: Some curves drawn from the posterior

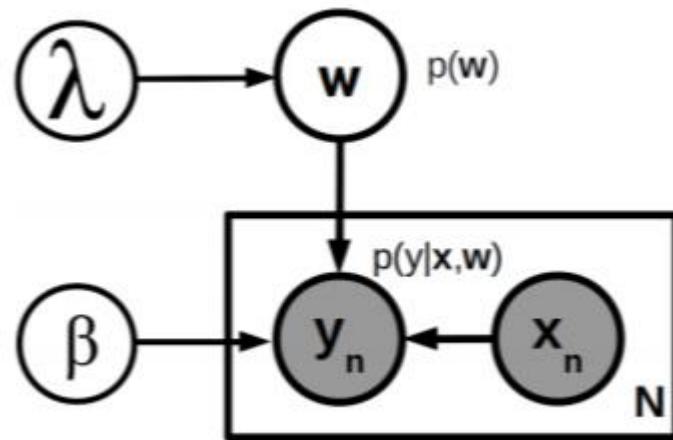


- PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty



Estimating Hyperparameters via MLE-II

- The probabilistic linear reg. model we saw had two hyperparams (β, λ)
 - Thus total three unknowns $(\mathbf{w}, \beta, \lambda)$



$$\begin{aligned}
 p(\mathbf{w}, \beta, \lambda | \mathbf{X}, \mathbf{y}) &= \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w}, \lambda, \beta)}{p(\mathbf{y} | \mathbf{X})} \\
 &= \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w} | \lambda) p(\beta) p(\lambda)}{\int p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w} | \lambda) p(\beta) p(\lambda) d\mathbf{w} d\lambda d\beta} \\
 p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) &= \int p(y_* | \mathbf{x}_*, \mathbf{w}, \beta) p(\mathbf{w}, \beta, \lambda | \mathbf{X}, \mathbf{y}) d\mathbf{w} d\beta d\lambda
 \end{aligned}$$

Need posterior over all the 3 unknowns

PPD would require integrating out all 3 unknowns

Called "MLE-II" because we are maximizing **marginal likelihood**, not the likelihood

- Posterior and PPD computation is intractable.
- If we just want point estimates for (β, λ) then MLE-II is an option

And then compute $p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \hat{\beta}, \hat{\lambda})$ treating $\hat{\beta}, \hat{\lambda}$ as given

$$(\hat{\beta}, \hat{\lambda}) = \operatorname{argmax}_{\beta, \lambda} \log p(\mathbf{y} | \mathbf{X}, \beta, \lambda)$$

For regression with Gaussian likelihood and Gaussian prior on \mathbf{w} , the marginal likelihood has an exact expression

Will see various other methods like EM, variational inference, MCMC, etc later

Prob. Linear Regression: Some Other Variations

- Can use other likelihoods $p(y_n | \mathbf{x}_n, \mathbf{w})$ and/or prior distribution $p(\mathbf{w})$

- Laplace distribution for the likelihood

$$p(y_n | \mathbf{x}_n, \mathbf{w}) = \text{Lap}(y_n | \mathbf{w}^\top \mathbf{x}_n, b)$$

- Heteroskedastic noise in the likelihood, e.g.,

$$p(y_n | \mathbf{x}_n, \mathbf{w}) = \mathcal{N}(y_n | \mathbf{w}^\top \mathbf{x}_n, \beta_n^{-1})$$

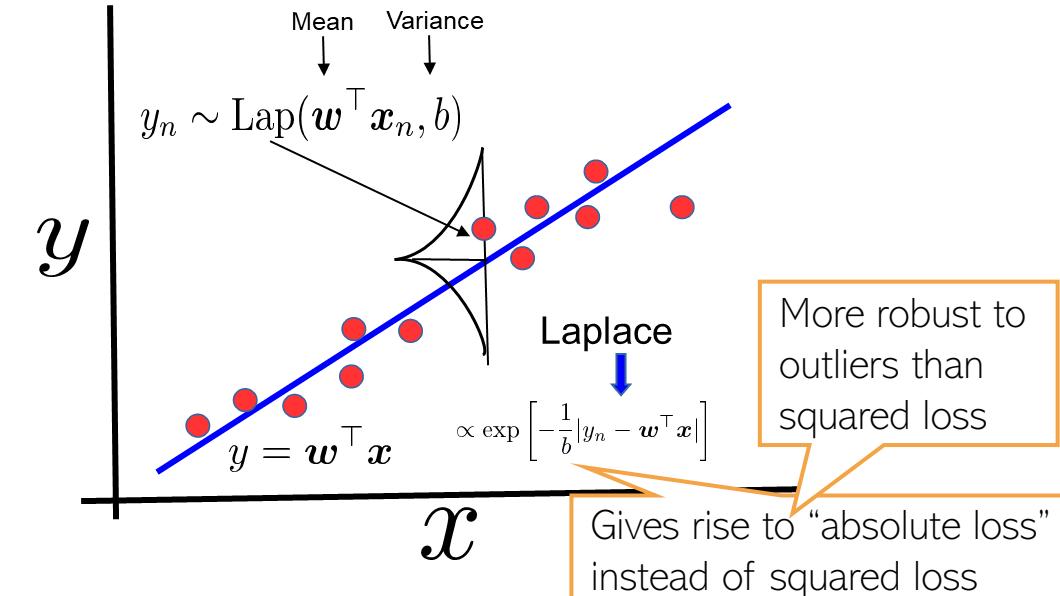
Can even assume β_n to depend on input \mathbf{x}_n

Different noise distribution $\mathcal{N}(0, \beta_n^{-1})$ for each y_n

- Feature-specific variances in the prior for \mathbf{w}

$$p(\mathbf{w}) = \prod_{d=1}^D \mathcal{N}(w_d | 0, \lambda_d^{-1}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \Lambda^{-1})$$

This has the effect of having feature-specific regularization



Since we can also learn these precisions (e.g., using MLE-II), using such a prior, we can learn the importance of different features (**feature selection**) which isn't possible with a $\mathcal{N}(\mathbf{w} | \mathbf{0}, \lambda^{-1} \mathbf{I})$ prior with spherical covariance

