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Plan Today

" Quick overview of parameter estimation and predictive distributions for
= Multinoulli observation model
" (Gaussian (univariate) observation model

= Probabilistic Supervised Learning
" (Probabilistic) Linear Regression
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Multinoulli Observation Model
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MLE/MAP left as

The Posterior Distribution seeerse

= Assume N discrete obs y = {y4, V5, ..., Yy} with each y,, € {1,2, ..., K}, eq,
=y, represents the outcome of a dice roll with K faces
= y. represents the class label of the nt" example in a classification problem (total K classes)

=y, represents the identity of the nt* word in a sequence of words These sum to 1

= Assume likelihood to be multinoulli with unknown params T = w4, 5, ..., Tk ]
K

: : [[yn=k] Generalization of Bernoulli to
) = multinoulli(y,|) = ‘ ‘ m,” "
p(ynlm) (Ynlm) w1 K K > 2 discrete outcomes
' N “ ' " Large values of a will

" 7T iS a vector of probabilities (“probability vector™), e.q., — ge  Dichit peaked

» Biases of the K sides of the dice concentration e e e

: . : . e - — — parameter of the
= Prior class probabilities in multi-class classification (p(yn, = k) = m,) | 20" (assumed
= Probabilities of observing each word of the K words in a vocabulary known for now) Fach @ = 0

= Assume a conjugate prior (Dirichlet) on 1 with hyperparams & = a4, @5, ..., ag]

p(7m|a) = Dirichlet(w|a, ..., ak)

vectors

K K
r(zle lek) ap—1 1 ay—1 Generalization of Beta to
— K r H Ty — m H Ty K-dimensional probability
[Tiea Tla) 35 k=1
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Brief Detour: Dirichlet Distribution

Basically, probability vectors

* An important distribution. Models non-neg. vectors 1 that also sum to one

* A random draw from K-dim Dirich. will be a point under (K-1)-dim probability simplex

The probability simplex of a
2-dim simplex (representing
a 3-dim Dirichlet) and the

coordinates of various
points on the simplex

(1/2,1/2,0)

(1,0,0)

p(m|a) = Dirichlet(w|aa, . . ., ak) = E_(Ikzk -1 %) H Xl — ) Hﬂ'ak .
1
¥ ¥
(1/2,1/4,1/4) Hean = [ K o U FK ]
(1/2,0,1/2) | -
(3/8,3/8,1/4) (3/8,1/4,3/8) _ o
Mode = { o1 - 1 ;ﬁ‘ : ] (ap > 1)
g O — K Yoo — K

(1/4,1/411/2) B lek((lg - O;;g) . . o
\?LI‘(TF;E) (I%(O;‘U n 1) 0= ; k

(0,1,0)

(0,0,1)
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Brief Detour: Dirichlet Distribution

= A visualization of Dirichlet distribution for different values of concentration param

Like a uniform ) ) L L
distribution if Draws from a 3-dimensional Dirichlet with different o

Visualizations of PDFs of some 3-dim | alaxsaret Jo=(1.1.1)
Dirichlet distributions (each generated
using a different conc. Param vector

44

o= (10, 10, 10)

Al ay's large results in
peak around the
center of the simplex

a controls the shape
of the Dirichlet (just
like Beta distribution’s
hyperparameters)

,,,,,,,,,
P AGC TR
T

B A T e 15 O
T4

" Interesting fact: Can generate a K-dim Dirichlet random variable by independently
generating K gamma random variables and normalizing them to sum to 1 CS779A: PVIL



The Posterior Distribution

Likelihood Prior

= Posterior p(1T|y) is easy to compute due to conjugacy b/w multinoulli and Dir.

Don't need to compute for this

_ p(ﬂ'; }’| a) . P (Tl'l a)P()’hT; a) _ p(”l “)P(}’|7T) case because of conjugacy

|y, a =
Py @ = 6 T POYI@) ot - aenimn
= Assuming y,,'s are i.i.d. given i, p(y|m) = [I¥_1 (¥, 7). and therefore
- ] llyn=k n= n=K|—
p(1|y, a) x Hlk(zlﬂgk 1 v nglu Ik(:lnk[y I _ II§=1 n_IC:k+Z 1 l[yn=k] -1

= Even without computing marg-lik, p(y|a), we can see that the posterior is Dirichlet

= Denoting N, = YN _. I[y,, = k], number of observations with with value k

p(m|y, @) = Dirichlet(mr|ay + Ny, @y + Ny, ..., &g + Ni) | of heoce and e
for the coin bias

" Note: Ny,, N, ..., Ng are the sufficient statistics for this estimation problem | estimation probiem

* We only need the suff-stats to estimate the parameters and values of individual observations aren’t
needed (another property from exponential family of distributions — more on this later)
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The Predictive Distribution

" Finally, let's also look at the posterior predictive distribution for this model

» PPD is the prob distr of a new y, € {1,2, ..., K}, given training data y = {y1, V5, ..., Yn}

Will be a multinoulli. Just need

to estimate the probabilities of p (y* |y’ a) — f p (y* |Tl')p (T[ly, a) dT[

each of the K outcomes
* p(y,|m) = multinoulli(y,|m), p(m|y, @) = Dirichlet(m|a; + N, a, + N,, ..., ax + Ng)
= Can compute the posterior predictive probability for each of the K possible outcomes

p(y. = kly, @) = [ p(y. = klm)p(rly, a)dr

= [ m,, x Dirichlet(m|a; + Ny, ay + Ny, ..., ax + Ni)dm

__ % + Ni (Expectation of 7, w.r.t the Dirichlet posterior)

A similar effect was
achieved in the Beta-
Bernoulli model, too

Note how these probabilities
ai+Np } have been “smoothened” due

K to the use of the prior + the

Zk:l ap+N k=1 averaging over the posterior

= Thus PPD is multinoulli with probability vector {

" Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 1T

CS772A: PML



Gaussian Observation Model
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Gaussian Distribution (Univariate)

= Distribution over real-valued scalar random variables X € R, e.g., height of
students in a class

= Defined by a scalar mean p and a scalar variance ¢

0.8 5 0 ll,-"ﬂ\'.lI
- [
1 (x — p)? |
NX =x|u,0%) = exp | — :
2mo? 20
" Mean: E|X] =u
Gaussian PDF in
= \/ariance; var [X] = 0'2 terms of precision
. . - 1
* [nverse of variance is called precision: f = —. N =xlu,B) =j§exp [—g(x—u)zl
o

CS772: PML



Gaussian Distribution (Multivariate)

= Distribution over real-valued vector random variables X € RP
= Defined by a mean vector u € RPand a covariance matrix X

A two-dimensional Gaussian

1
NX=x|pX)= MR exp[—(x — ) T2 (x — )]

Probabiity Density

= Note: The cov. matrix & must be symmetric and PSD
= All eigenvalues are positive
= z'¥z > 0 for any real vector z

" The covariance matrix also controls the shape of the Gaussian

CS772: PML



lts MLE/MAP

Posterior Distribution for Gaussian’s Megmn | sstmaton eftas

an exercise

" Given: N i.i.d. scalar observations y = {yq, ¥, ..., yn} assumed drawn from N (y|u, %)

Likelihood

(yn — .u)z
202

N(ylu, o)

Assume 62 to
be known

= Note: Easy to see that each y,, drawn from N (y|u, 0%) is equivalent to the following

p(ynl.u; 0-2) — N()’nl.u; 0-2) X exp T [

Overall N

Likelihood
pOlno?) = |

_POnlmo®)

JLn_

Thus y,, is like a noisy

version of u with zero yn — H -I_ En Where En ~ N(O, 0-2)

mean Gaussian noise
added to it

" | et's estimate mean u given y using fully Bayesian inference (not point estimation)
CS772A: PML



A prior distribution for the mean

* o computer posterior, need a prior over U

2
" | et's choose a Gaussian prior p(ulto, 0¢)
p(lpo, 08) = N (u|uo, o)
(M — Mo)z]
X exp |— 5
20

" The prior basically says that g priori we believe u is close to ug

= The prior's variance a¢ denotes how certain we are about our belief

= \We will assume that the prior's hyperparameters (pg, o0& )are known

= Since a2 in the likelihood IV (y|u, 02) is known, Gaussian prior V' (1|, o¢) on
[ is also conjugate to the likelihood (thus posterior of u will also be Gaussian)). e



The posterior distribution for the mean

" The posterior distribution for the unknown mean parameteru
On conditioning side, 2
(Vn — (,Ll Ho)
208

Skigimg all fixed pfarams p(,u|y) _ p(yllu)p(:u) o 1_[N expl
yperp p(y) n=1 20

the notation
" Fasy to see that the above will be prop. to exp of a quadratic function of u. Simplitying:

(‘u — MN)Z Gaussian posterior (not a
p(‘uly) oC exp | — 5 surprise.since the cho.senl prior
20- was conjugate to the likelihood)
Gaussian posterior's precision is the sum of 1 1 N
the prior’ - - — o Also the MLE
prior's precision and sum of the noise —_— — — e Contribution _
precisions of all the observations 0-1\2, O—g 0-2 frg:r;[:ﬁztsr?or from the data solution for
Gaussian posterior's mean is a 0'2 NO' _ Zg=1 Vn
convex combination of prior's Uy = MO y (Where Yy = —)
mean and the MLE solution NO'OZ + 0'2 NO_O + 0-2 N

» What happens to the posterior as N (number of observations) grows very large?
= Data (likelihood part) overwhelms the prior b
= Posterior's variance o will approximately be 62 /N (and goes to O as N — )

" The posterior's mean uy approaches y (which is also the MLE solution) CSTT2A: PML



The Predictive Distribution

= |f given a point estimate (i, the plug-in predictive distribution for a test y,would be

The best point estimate
. L A ? A 2
This is an approximation ( ‘ ) — ( ‘ )
of the true PPD p(y.|y) p y* l/l" o N y* l’l) o

= On the other hand, the posterior predictive distribution of y, would be o\

2 A useful fact: When we " A /
—_— h i - th
p.1y) = [ pG.lw, a®)p(uly)dp T 1 ¥
2 2 distribution also has a
—_— losed f (will thi
= [ N.lu, 0H)N (u|pn, o) dp e,
If conditional is Gaussian talking about exponential

.« " . 2. . 2 . L .
This "extra” variance oy in PPD is due to the — N (y* |MN; 0-2 _I_ O-N) then marginal is also family distributions)

averaging over the posterior's uncertainty .
Gaussian .
PRML [Bis 06],

2.115, and also

= For an alternative way to get the above result, note that, for test data | ;. nov
Ve = U + € u ~ N(:uN: 0-1\2,) € ~ N(O, 0_2) stats refresher slides

Using the posterior of u since we

are at test stage now _ , i
Since both p and € are Gaussian r.v., and are independent,

= P (y* |y) =N (y* |[.1N, 02 + 0'1\2]) y, also has a Gaussian posterior predictive, and the

respective means and variances of u and € get added up 72A: PML



Gaussian Observation Model: Some Other Facts

= MLE/MAP for u,a? (or both) is straightforward in Gaussian observation models.

" Posterior also straightforward in most situations for such models

= (As we saw) computing posterior of u is easy (using Gaussian prior) if variance o2 is known
= Likewise, computing posterior of g2 is easy (using gamma prior on ¢#) if mean u is known

= |f u, 0% both are unknown, posterior computation requires computing p(u, o|y)
= Computing joint posterior p(u, a2 |y) exactly requires a jointly conjuage prior p (i, 02)

= "Gaussian-gamma” ("Normal-gamma") is such a conjugate prior — a product of normal and gamma
= Note: Computing joint posteriors exactly is possible only in rare cases such this one

= |f each observation y,, € RP, can assume a likelihood/observation model NV (y|u, )
= Need to estimate a vector-valued mean p € RP. Can use a multivariate Gaussian prior
» Need to estimate a D X D positive definite covariance matrix . Can use a Wishart prior

" [f u, X both are unknown, can use Normal-Wishart as a conjugate prior
CS772A: PML



Linear Gaussian Model (LGM)

» L GM defines a noisy lin. transform of a Gaussian rv. @ with p(8) = ¥ (0|u, A™)

Both @ and y are vectors (can
be of different sizes)

_ Noise vector - independently
Also assume 4, b, A, L to be y — A 9 + b + E and drawn from ]\f(e|0,L‘1)

known; only 8 is unknown

" Fasy to see that, conditioned on 8, y too has a Gaussian distribution
onditiona — -1
gistr(ijbtution| p(yle) — N(ylAH + b’ L )
= Assume p(@) as prior and p(y|@) as the likelihood, and defining £ = (A + ATLA)™?!

Posterior of 8 p (}’l 9)p (9)
p(Oly) =
p(¥)
Marginal

ssvien -~ p(y) = | p(y|0)p(0)d0 = N (y|Ap + b, AN'AT + L)
= Many probabilistic ML models are LGMs

= N(O|Z(A"L(y — b) + Ap), %)

" These results are very widely used (PRML Chap. 2 contains a proof) CS772A: PML



Probabilistic Supervised Learning

» Goal: To learn the conditional distribution p(y|x) of output given input

* The form of the distribution p(y|x) depends on output type, €.g.,

= Real: Model p(y|x) using a Gaussian (or some other suitable real-valued distribution)

= Binary: Model p(y|x) using a Bernoulli p(y|x)
= Categorical/multiclass: Model p(y|x) using a multinoulli/categorical distribution

y

= Various other types (e.qg., count, positive reals, etc) can also be modeled using appropriate

distributions (e.g., Poisson for count, gamma for positive reals) ‘Indirect” way requires first
learning the joint distribution of

» The distribution p('y|x) can be defined directly or indirectly inputs and outputs

“Direct” way without Parameters of this “Indirect” way by modeling the
distribution are the

( ‘ ) O_utputsof functionf( outguts as well as the inputsp(y‘x) — p(y’ x)
p y X) = p(y f X, W ) p(x) CS772A: PML

modeling the inputs x,




Discriminative vs Generative Sup. Lea rningZiir:i:fjgi;%?;‘:;éjj1SVW

= Direct way of sup. learning is discriminative, indirect way is generative A y
ﬁ)iscr'minative Approach\/Generative Approach &%
p(ylx) =p(ylf(x,w)) () = PO
f can be any function which uses inputs and PLY B p(x)

weights w to defines parameters of distr. p
Requires estimating the joint distribution of

Some examples inputs and outputs to get the conditional

p(y x) — N(y|wa, IB_l) p(ylx) .(unlike th.e discriminative ‘a.pproach
which directly estimates the conditional p(y|x)

\p\(y X) — Bernoulli(yld(WTxy Wdoes not model the distribution of x) /

» Note: Generative approach can also be used for other settings too, such as
unsupervised learning and semi-supervised learning (will see later) CS771: Intro to ML




A discriminative model

Probabilistic Linear Regression = i easonpmens

= Assume training data {x,,, Y, 14, with features x,, € RP and responses y,, € R

Unknown to be estimated Each weight assumed real-valued
= Assume y,, generated by a noisy linear model with wts w = [wy, ...,wp] € R

(Gaussian noise drawn

R
Yn =W Xu T € | fom Nel0,870)

= Notation alert: B is the precision of Gaussian noise (and B~ the variance)

The line represents the
mean w' x,, of the output

UYn ~ N(w—rq;m ﬂ_l) random variable y,,

Likelihood model
p(Wnlxn, w, B) = Ny lw'x,, B71)

Input x,, being

treated as given y
and not modeled

by any probability

The zero mean
Gaussian noise
perturbs the output
from its mean

distribution Gaussian
T Will later study models | B { A T Thus NLL is like
wx 9. o \Un — n
n in which both input and or P72 (yn —w 2n) squared loss
output are modeled by CST7A: PMIL

distributions X



Probabilistic Linear Regression

= -or all the training data, we can write the above model in matrix-vector notation

Y = [y1;y2; s yn] is the X = [x{; x3; ..; X)]
NX1 response vector is the N X D input matrix

Same as writing y p— XW _I_ €

p(YIX,w,B) = N (y|Xw, B y)

" This is a linear Gaussian model with w being the unknown Gaussian r.v.

€ = [€1; €5; ...; €y] is the NX1 noise
vector drawn from N (0, 711 ,)

= A simple “plate diagram” for this model would look like this (hyperparameters not
shown in the diagram)

White nodes denote unknown
quantities, grey nodes denote
observed quantities (training

Direction of arrow input-output pairs)

show dependency

The plate/box with number
N shows that we have N
such i.i.d. observations

CS772A: PML



On compact notations..

" When writing the likelihood (assuming y,,'s are i.i.d. given w and x,,)

N
p(yIX, W, ,B) — N(Ynlexn» 18_1)

n=1
— N(}’lXW, :8_11N)

" Thus a product of N univariate Gaussians here (not always) is equivalent to an
N-dim Gaussian over the vector y = [y1, V2, -, YN ]

" \We will prefer to use this equivalence at other places too whenever we have

multiple i.i.d. random variables, each having a univariate Gaussian distributiC%r;ZA_ -



Prior on weights

May also use a non-zero mean Gaussian
prior, e.g., N (wg|u, A1) if we expect
weights to be close to some value u

» Assume a zero-mean Gaussian prior on w

This prior assumes that a priori each
weight has a small value (close to zero)

p(W|2) = ]_[p<wdm> . ]_[mwdm A1) o

In zero-mean case, 4 sort A controls the uncertainty around our L‘.

of denotes each feature’s prior belief about value of wy
importance. Think why?

Can also use a full covariance

- —1 . -1 .
Large A means - ,p(Wd)— N(Wf’|0’).‘ ). . N O /1_ 11 matnx A f.or'the prior to
more aggressi\/e on | | — (Wl ) D) ImpOSG a prIOl’I COrre|atIOﬂS
push towards zero | | among different weights
The precision _. 2 Prior's hyperparameters (4/A/u)
A controls how ‘ /1 2 A etc can be learned as well using
aggressively the | X | — exp|—= WTW point estimation (e.g., MLE-Il) or
prior pushes wq J | T ) fully Bayesian inference
towards mean (O)

Reason: The negative log

prior —log p(w) « % wiw

» /ero-mean Gaussian prior corresponds to €, regularizer

CS772A: PML



The Posterior MLEMAP eft - gy /

as an exercise ‘ »

" The posterior over w (for now, assume hyperparams [ and A to be known)

p(w|A)p(y|w, X, 5)
p(wly, X, 3,) = o p(w|A)p(y|w, X, 3
( ) F’(-y|x‘5I /87' A) Marginal Ikeiho(od for this r)egres(sion model. )

Note that it is conditioned on X too which is
due to conjugacy

assumed given and not being modeled

P(W‘y, xa /8: }‘) DCN(W|0: )\_IID) X N(.y XW:JB_IIN)

» Using the "completing the squares” trick (or linear Gaussian model results)
Note that A and S can be

P(W‘y:, x:| /8? }.) — N(”N? ZN) learned under the

probabilistic set-up (though
assumed fixed as of now)

—1
where Xy = (f E XXy + Ap) "= (X" X+ Alp) (posterior's covariance matrix)
The form is also similar to the solution to ridge MAP solution turns out to be exactly
regression argmlnw||y Xw|| +AwTw=(XTX+ the same (reason: Gaussian's mean

N “ap-1 A\ and mode are the same)

ny = Xy 52%%] =Xy [ﬁXT_y} = (X'X+ Z1p)'X"y (posterior's mean)

B

: PML



The Posterior: A Visualization

= Assume a lin. reg. problem with true w = [wg, wq],wy = —0.3,w; = 0.5

» Assume data generated by a linear regression model y = wy + wyx + "noise”
= Note: It's actually 1-D regression (wy is just a bias term), or 2-D reg. with feature [1, x]

" Figures below show the "data space”™ and posterior of w for different number of
observations (note: with no observations, the posterior = prior)

Each red line Ul '
represents the data .

| 1
y y
‘data” generated space © 0 L 0) o u/
for a randomly % =
drawn w from the y 3 5 ) _
) 4 z | -1 0 z | -1 0 z |1

current posterior
| |
VA wn
0 0
-1 -1
S 0 ! -l

Wo 0 wp ! CS772A: PML

un

Posterior o

—~

wo -1 0 wo



Posterior Predictive Distribution

" [o get the prediction y, for a new input x,, we can compute its PPD

Only w is unknown with a
posterior distribution so only

P(y* IX*, X, y, 6, )\) — /P(y* |X*, W, B)P(WIX, y, 5, )\)dW w has to be integrated out
NQ.w'x,, ) N(w|py, Zy)
* The above is the marginalization of w from N (y,|w'x,, B~1). Using LGM results

’ Can also derive it by writing y, = w'x, + €

P(Vi|Xs, X, ¥, B, A) = N’(u;x*, B_I—FXIZNX*) [ where w ~ N gy By) and € ~ N (0.67")

= So we have a predictive mean ujx, as well as an input-specific predictive variance
" [n contrast, MLE and MAP make "plug-in" predictions (using the point estimate of w)

p(ys|Xe, wie) = N(Wn—;LE"* B ~ MLE prediction Since PPD also takes into
- 4 o account the uncertainty in w,
p(y«|xs, wmap) = N(wpyupx..8 ) - MAP prediction the predictive variance is larger

» Unlike MLE/MAP, variance of y, also depends on the input x, (this, as we will see later,
will be very useful in sequential decision-making problems such as active learning).., ...



Posterior Predictive Distribution: An Illustration

= Black dots are training examples

Small predictive

- . B .
.
.
% - 2 . - ./ Variance here
- . .
..
. . - ; -
- L

Large predictive

/ variance here

Line showing
predictive mean

X

= Width of the shaded region at any x denotes the predictive uncertainty at that x (+/-
one std-dev)

= Regions with more training examples have smaller predictive variance

CS772A: PML



Nonlinear Regression

2

1.5+

1_

0.5

04

-0.54

-1

-1.5

-2

-1 1.6 4.2 6.8 9.4 12

= Can extend the linear regression model to handle nonlinear regression problems

= One way is to replace the feature vectors x by a nonlinear mapping ¢ (x)

Can be pre-defined (e.g., replace a scalar

p(‘y|x’ W) — N(WT(;b(X), /8_1) x by polynomial mapping [1, x, x2]) or

extracted by a pretrained deep neural
net

" Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

= More on nonlinear regression when we discuss Gaussian Processes
CS772A: PML



More on Visualization of Uncertainty -

" Figures below: Green curve is the true function and blue circles are observations
= Posterior of the nonlinear regression model: Some curves drawn from the posterior

= g5
\ Y "" K '._7
: B ™~ 1 I 1 1 0/ 1 it /75 00
y \ e P / \ ~ o \
-5 2 - y f Q W\ J \\O
YU _‘-;-. "“o. v g yn- 8 4 y o A s VNN . o4 y ol OD\\ o0
W '_-rc -~ ‘? 3 v \ O //
A \ ' / A .
-1 i -1 / 1 Qc;?..( 92.‘4
—
- - =& o0
0 X 1 0 X 1 0 X 1 0 x 1

* PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty

o C
I+ 1 1 ! : ! /O\o
opfo \
op 1

o]
| e A e | y” S \g\\ . -y y 0 \9«\~~°‘—//_o< YU OB\\O-Q /

4 S 096 |

-1} 1 - -
ele]
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Estimating Hyperparameters via MLE-I|

" The probabilistic linear reg. model we saw had two hyperparams (f, 1)
= Thus total three unknowns (w, 8, 1)

Need posterior over
all the 3 unknowns

x? b) QA ?A?
p(w’ﬁjMx,y):p(yl w, 3, X\)p(w, X, 3)

p(y[X)
PPD would require p(y|X, w, B, \)p(w|X\)p(B)p(A)
' ' 3 | =
wcome S P(yIX, w, B)p(w[N)p(B)p(X) dw dAdp
plyelxeiXoy) = [ plyelx., w. B)p(w, B, X, y) dw dp dX
= Posterior and PPD computation is intractable. o e o1

= |f we just want point estimates for (8, ) then MLE-Il is an option

Will see various other

And then compute (IBA, j) = argmaxg j logp(y|X,5,4) methods like EM, variational

wl|X,y, A, A inference, MCMC, etc later
p(wiX,y, B, 4) For regression with Gaussian likelihood

treating f5, 4 as given and Gaussian prior on w, the marginal

likelihood has an exact expression CS772A: PML



Prob. Linear Regression: Some Other Variations

= Can use other likelihoods p(yy, |x,,, W) and/or prior distribution p(w)

Mean Variance

|

» | aplace distribution for the likelihood

P (Ynlxn, W) = Lap(Ynlexn: b)
" Heteroskedastic noise in the likelihood, e.q.,
P (Vnlxn, W) = N()’nlexn» Bat)

Can even assume 3, Different noise distribution
to depend on input x,, N (0, B 1) for each y,

" Feature-specific variances in the prior for w

Y

More robust to
outliers than
squared loss

1
oC exp [*E\yn ~w x|

——

: l,' Gives rise to “absolute loss”
instead of squared loss

Diagonal precision/covariance

D
_ _ matrix with A4's along the
p(W) — N(Wd|0, Adl) — N(WlO,A 1) columns of A
da=1 Since we can also learn these precisions (e.g.,

This has the effect of
having feature-specific
regularization

using MLE-II), using such a prior, we can learn

the importance of different features (feature

selection) which isn't possible with a

N (w|0, A7) prior with spherical covariance S772A: PML
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