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Parameter Estimation: Summary of approaches

= Usually one of the following approaches taken

1. Asingle "best” point estimate of the parameters by optimizing an objective function
f can be log-likelihood (for MLE)

9 — argmaXG f(D; 6) or log-posterior (for MAP)

2. A distribution over the parameters (conditioned on observed data D)
0 = [91: 0]

s —p(6|D)

3. A set/ensemble of point estimates of parameters (applying approach 1 multiple times)

Computing multiple point Ensemble ( gD o) 6(S)
estimates, each using a p / / * training a deep neural

different subset of the {9 (D ) . D ™~ p } net with multiple

training data different initializations)
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Making Predictions: The Predictive Distribution

» Prediction: Computing p(D,|D) where D, is test data and D is training data

= |f we only have a single point estimate 6 then
p(D.D) ~ p(D.|6)
= [f we have computed p(8|D) then the predictive distribution can be defined as
p(D.|D) = [ p(D.,0|D) d6 = [ p(D.|6,D)p(6|D) db

If the proper expectation wirt. the — f p (D* | 0)p (8 |D) d@
posterior is computed, as in this case,
p(D.|D) is called the posterior — ]Ep(e D) [p (D* | 0)]

predictive distribution (PPD)
NS
= [f we don't have p(0|D) but a set/ensemble of estimates {9(1)}1.:1 then

1 S .
p(D.|D) = — E p(D,|6®)
SLlai—1
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Marginal Likelihood

" Recall the posterior distribution
p(D,8l@) _ p(D|0)p(6])
p(D|a) p(Dla)

= Marginal likelihood p(D|a) is an important quantity and is by definition

p(Dla) = [ p(DIO)p(8|a)dd = Epga)p(D]6)]

= Can think of it as the likelihood averaged over all 8's from the prior

= Useful quantity in general. For example, we can find the best hyperparameter a as

p(0|D,a) =

@ = argmax, log p(D|a) — No validation set required! ©

" Hard to compute however (because of the expectation involved)
= But approximations can be made
CS772A: PML



A “Shortcut”™: PPD using Marginal Likelihood

= PPD, by definition, is obtained by the following marginalization

p(D.|D) = | p(D.16)p(0]|D) db

= Can also compute PPD without computing the posterior! Some ways:

1. Using a ratio of marginal likelihoods as follows | int marginal likefihood

for training and test data
Follows simply from Bayes rule p (D* D)
)

plalp) = 222 p(D,.|D) =

p(b)

Marginal likelihood for

p (D) training data
2. If p(D,|D) can be obtained easily from the joint p(D,, D)

= Note that the PPD p(D,|D) is also a conditional distribution Will see this being used we we

study Gaussian Process (GP)

» For some distributions (e.g., Gaussian), conditionals can be easily derived from joint
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An Important Aspect: Posterior Updates

= Posterior updates in Bayesian inference can naturally be done in an online fashion

p (D | 0)p (H) Also, the posterior's

D (D) spread/variance gets smaller as we
Bayesian Inference use more and more data to infer it

p(0|D) =

ikelihood
P(D|6)

Data
D Prior _
P(0) Old posterior becomes
the new prior
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Coming up..

" Parameter estimation (point est. and posterior) and predictive distribution for
» Bernoulli observation model (binary-valued observations)
= Multinoulli observation model (discrete-valued observations)
" Gaussian observation model (real-valued observations)
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The IID Assumption

" Assume that, conditioned on 8, observations are independently and identically
distributed (i.i.d. assumption). Depending on the problem, this may look like:

N

Supervised generative model i.i.d.
(both inputs and output are (xn,yn) ~ p(x,y|9) |:> p(DlH) — p(xi,yi|9)
modeled using a distribution) =1

Supervised discriminative model g N

(only the output is modeled using ~ X 8 — . .

a distribution); input is assumed yn p (yl ’ ) :> p (D | 0) i—lp (yl |xl' 0)

“given” and not modeled

N
U ised , i.i.d. . .
S, pale)  mmp p@I6) = | [ pGilo)

inputs; no labels)

" Assume that both training and test data come from the same distribution

" This assumption, although standard, may be violated in real-world applications of ML and
there are "adaptation” methods to handle that
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Bernoulli Observation Model
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Estimating a Coin’s Bias

= Consider a sequence of N coin toss outcomes (observations) Probability
of a head

" Fach observation vy, is a binary random variable. Head: y,, = 1, Tail: y,, = 0

= Fach y, is assumed generated by a Bernoulli distribution with param 8 € (0,1)

Likelihood or _ 1—
observation model p(ynlg) — Bernounl(Ynlg) = grn (1 — 9) In

" Here 8 the unknown param (probability of head). Let's do MLE

assuming i.i.d. data

* Log-likelihood: Yn=110g p(¥,10) = IN_; [yulog 8+ (1 —yy)log (1 — 6)]

* Maximizing log-lik, or minimizing neg. log-lik (NLL) w.rt. 8 gives

_ . Thus MLE Indeed, with a small number of
| tossed a coin 5 times — gave 1 head and N S trainina observations. MLE ma
. . >z — solution is simply 9 » y
4 tails. Does it means 6 = O'??? The 6 — n=1 yn the fraction of overfit and may not be reliable. An
MLE approach says so. What is | see O MLE — N heads! © Makes | | alternative is MAP estimation
e head and 5 tails. Does it mean 8 = 07 ntuitive sensel which can incorporate a prior
| distribution over @
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Estimating a Coin’s Bias
" | et's do MAP estimation for the bias of the coin
" Fach likelihood term is Bernoulli
p(y,|0) = Bernoulli(y,|0) = ¥ (1 — §)1 In
" Also need a prior since we want to do MAP estimation

" Since 8 € (0,1), a reasonable choice of prior for 8 would be Beta distribution

- Tla+p)
POIEE) = Har)

The gamma function a and B (both non-negative reals)
are the two hyperparameters of this

Beta prior

6&—1(1 _ H)ﬁ—l

Using @ = 1 and = 1 will make
the Beta prior a uniform prior

Can set these based on intuition,
cross-validation, or even learn them




Estimating a Coin’s Bias
" The log posterior for the coin-toss model is log-lik + log-prior

N
LP(0) =z log p(y,10) +logp(Bla,p)

n=1

" Plugging in the expressions for Bernoulli and Beta and ignoring any terms that
don't depend on 8, the log posterior simplifies to

LP(0) = ZN |y, log0 4+ (1 —y,)log(1—6)]+ (a—1)logh + (f — 1)log(1 —0)

n=1

= Maximizing the above log post. (or min. of its negative) w.rt. 8 gives

Prior's hyperparameters have an

Usinga = 1and f = 1 gives us N +a—1 interesting interpretation. Can think of
the same solution as MLE H _ n=1 Yn a — 1 and B — 1 as the number of

MAP — N + a + ﬁ — 9 heads and tails, respectively, before
Recall that « = 1 and f = 1 for Beta starting the coin-toss experiment
distribution is in fact equivalent toa Such interpretations of prior's hyperparameters as (akin to “pseudo—observations")
uniform prior (hence making MAP being “pseudo-observations” exist for various other

prior distributions as well (in particular, distributions

equivalent to M LE) belonging to “exponential family” of distributions CS772A: PML



The Posterior Distribution

" | et’s do fully Bayesian inference and compute the posterior distribution
= Bernoulli likelihood: p(y,,|6) = Bernoulli(y,|0) = 6Yn (1 — 6)17In

= Beta prior: p(6) = Beta(@|a, ) = Fig;;g% H“‘l(% — Hf)hﬁd‘jv) Number of tals (No)

" The pg)ypse}pggigarﬁcan be computed as IN=1Yn (1 — )N-Zi=1¥n
not shown for brevity

p(g |y) — p0)p(y|0) — p(6) Hg=1 p(Ynl0) _ 11:1%%0%?)904—1(1—9)3—1 [N_, g¥n (1-9)1-In
p(y) 1469 | feorc 0% (=01 TIN_, 69n (1-6)1-7naf
" Here, even without computing the denominator (marg lik), we can identity the posterior
" |t is Beta distribution since p(@|y) o @%TN1=1(1 — §)BFNo~1 | tiercise: Show that the &\

-~ normalization constant equals ,.é 4 /
= Thus p(9|y) — Beta(9|a + Nl,,B 4 N()) Hint: Use the fact that the

[(a+p+N ‘
posterior must integrate to 1 ( d ) ) »
1Yn

J p(8ly)ds =1 Mo+ Xy y)T(B + N = 325

" Here, finding the posterior boiled down to simply "multiply, add stuff, and identify”

" Here, posterior has the same form as prior (both Beta): property of conjugate prgss. su.



Conjugacy and Conjugate Priors

* Many pairs of distributions are conjugate to each other
= Bernoulli (likelihood) + Beta (prior) = Beta posterior
= Binomial (likelihood) + Beta (prior) = Beta posterior
= Multinomial (likelihood) + Dirichlet (prior) = Dirichlet posterior | Not true in general, but in some
: : : , : cases (e.g., the variance of the
" Poisson (likelihood) + Gamma (prior) = Gamma posterior Gaussian likelihood is fixed)
" Gaussian (likelihood) + Gaussian (prior) = Gaussian posterior

" and many other such pairs ..

= Tip: If two distr are conjugate to each other, their functional forms are similar

= Example: Bernoulli and Beta have the forms This is why, when we multiply them while
computing the posterior, the exponents get added
. _ py _ N1-y and we get the same form for the posterior as the
Bernoulh(yl@) o (1 9) prior but with just updated hyperparameter. Also,
IMNa + we can identify the posterior and its
Beta(f|a, B) = F((TF(’,BB))) 0%~1(1 — g)~-1 hyperparameters simply by inspection

= More on conjugate priors when we look at exponential family distributions
CS772A: PML



Predictive Distribution

" Suppose we want to compute the prob that the next outcome yy 41 Will be head (=1)

" The posterior predictive distribution (averaging over all 8's weighted by their respective
posterior probabilities)

1
p(yn+1 = 1ly) = j
0

1

pmwpnﬁwme=ijﬂ=ummwww
0

1
=fQXwanw
0

Expectation of 8 w.r.t. the Beta posterior

= [Ep(g |}’) [6] distribution p(8|y) = Beta(8|a + N, B + Ny)
a + Nl For models where likelihood and
= prior are conjugate to each other,
- Therefore the PPD \/\/||| be a+ ,B + N the PPD can be computed easily
in closed form (more on this A
— - when we talk about exponential ;.J‘
p(yN+1 |y) Bernoulh(yN+1|[Ep(9|y) [6]) family distributions) l»/

= The plug-in predictive distribution using a point estimate 8 (e.g., using MLE/MAP)
pPner = 1Uy) = p(yn41 =1]0) =6 == p(n+1ly) = Bernoulli(yy.,(0)

CS772A: PML
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Multinoulli Observation Model
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MLE/MAP left as

The Posterior Distribution seeerse

= Assume N discrete obs y = {y4, V5, ..., Yy} with each y,, € {1,2, ..., K}, eq,
=y, represents the outcome of a dice roll with K faces
= y. represents the class label of the nt" example in a classification problem (total K classes)

=y, represents the identity of the nt* word in a sequence of words These sum to 1

= Assume likelihood to be multinoulli with unknown params T = w4, 5, ..., Tk ]
K

: : [[yn=k] Generalization of Bernoulli to
) = multinoulli(y,|) = ‘ ‘ m,” "
p(ynlm) (Ynlm) w1 K K > 2 discrete outcomes
' N “ ' " Large values of a will

" 7T iS a vector of probabilities (“probability vector™), e.q., — ge  Dichit peaked

» Biases of the K sides of the dice concentration e e e

: . : . e - — — parameter of the
= Prior class probabilities in multi-class classification (p(yn, = k) = m,) | 20" (assumed
= Probabilities of observing each word of the K words in a vocabulary known for now) Fach @ = 0

= Assume a conjugate prior (Dirichlet) on 1 with hyperparams & = a4, @5, ..., ag]

p(7m|a) = Dirichlet(w|a, ..., ak)

vectors

K K
r(zle lek) ap—1 1 ay—1 Generalization of Beta to
— K r H Ty — m H Ty K-dimensional probability
[Tiea Tla) 35 k=1
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Brief Detour: Dirichlet Distribution

Basically, probability vectors

* An important distribution. Models non-neg. vectors 1 that also sum to one

* A random draw from K-dim Dirich. will be a point under (K-1)-dim probability simplex

The probability simplex of a
2-dim simplex (representing
a 3-dim Dirichlet) and the

coordinates of various
points on the simplex

(1/2,1/2,0)

(1,0,0)

p(m|a) = Dirichlet(w|aa, . . ., ak) = E_(Ikzk -1 %) H Xl — ) Hﬂ'ak .
1
¥ ¥
(1/2,1/4,1/4) Hean = [ K o U FK ]
(1/2,0,1/2) | -
(3/8,3/8,1/4) (3/8,1/4,3/8) _ o
Mode = { o1 - 1 ;ﬁ‘ : ] (ap > 1)
g O — K Yoo — K

(1/4,1/411/2) B lek((lg - O;;g) . . o
\?LI‘(TF;E) (I%(O;‘U n 1) 0= ; k

(0,1,0)

(0,0,1)
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Brief Detour: Dirichlet Distribution -

= A visualization of Dirichlet distribution for different values of concentration param

Like a uniform ) ) L L
distribution if Draws from a 3-dimensional Dirichlet with different o

Visualizations of PDFs of some 3-dim | alaxsaret Jo=(1.1.1)
Dirichlet distributions (each generated
using a different conc. Param vector

44

o= (10, 10, 10)

Al ay's large results in
peak around the
center of the simplex

a controls the shape
of the Dirichlet (just
like Beta distribution’s
hyperparameters)

,,,,,,,,,
P AGC TR
T

B A T e 15 O
T4

" Interesting fact: Can generate a K-dim Dirichlet random variable by independently
generating K gamma random variables and normalizing them to sum to 1 CS779A: PVIL



The Posterior Distribution

Likelihood Prior

= Posterior p(1T|y) is easy to compute due to conjugacy b/w multinoulli and Dir.
p(myla) pmlapylma) pla)pyIm) |cboiss o

p(yla) ple)  pla) ek fpopoin
= Assuming y,,'s are i.i.d. given i, p(y|m) = N_1 p(y,,|T), and therefore

1 ; [y N k] -
p(rly, a) o< [Tii—y . X TIR=q I;gzlnk[ =[5, @ 7Okt Ln=1T[yn=k] —1
= Even without computing marg-lik, p(y|a), we can see that the posterior is Dirichlet

= Denoting N, = YN _. I[y,, = k], number of observations with with value k

p(m|y, @) = Dirichlet(mr|ay + Ny, @y + Ny, ..., &g + Ni) | of heoce and e
for the coin bias

" Note: Ny,, N, ..., Ng are the sufficient statistics for this estimation problem | estimation probiem

* We only need the suff-stats to estimate the parameters and values of individual observations aren’t
needed (another property from exponential family of distributions — more on this later)

CS772A: PML



The Predictive Distribution

= Finally, let’s also look at the posterior predictive distribution for this model

» PPD is the prob distr of a new y, € {1,2, ..., K}, given trainingdatay = {y1,¥5, ..., Yn}

Wil be-a multinoulli. Just
need to estimate the

probabilities of each of the K p (y* |Y; a) — f p (y* |7T)p (n | y) a) dn

outcomes

* p(y,|m) = multinoulli(y,|m), p(m|y, @) = Dirichlet(|a; + N;,a, + N,, ..., ax + Ng)
= Can compute the posterior predictive probability for each of the K possible outcomes

p(y. = kly, @) = [ p(y. = klm)p(wly, a)dm
= [ m,, x Dirichlet(m|a; + Ny, ay + Ny, ..., ax + Ni)dm

__ %k + Ni (Expectation of 1, w.r.t the Dirichlet posterior) —
k
K N A similar effect was
k=1 %k + Note how these probabilities achieved in the
ap+Np lK have been “smoothened” Beta-Bernoulli
" Thus PPD is multinoulli with probability vector {=% due to the use of the prior + | | model, too
Zk=1 (047 +N) i the averaging over the
posterior

" Plug-in predictive will also be multinoulli but with prob vector given by the point estimate
of

CS772A: PML
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Gaussian Observation Model
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Gaussian Distribution (Univariate)

= Distribution over real-valued scalar random variables X € R, e.g., height of
students in a class

= Defined by a scalar mean p and a scalar variance ¢

0.8 5 0 ll,-"ﬂ\'.lI
- [
1 (x — p)? |
NX =x|u,0%) = exp | — :
2mo? 20
" Mean: E|X] =u
Gaussian PDF in
= \/ariance; var [X] = 0'2 terms of precision
. . - 1
* [nverse of variance is called precision: f = —. N =xlu,B) =j§exp [—g(x—u)zl
o

CS772: PML



Gaussian Distribution (Multivariate)

= Distribution over real-valued vector random variables X € RP
= Defined by a mean vector u € RPand a covariance matrix X

A two-dimensional Gaussian

1
NX=x|pX)= MR exp[—(x — ) T2 (x — )]

Probabiity Density

= Note: The cov. matrix & must be symmetric and PSD
= All eigenvalues are positive
= z'¥z > 0 for any real vector z

" The covariance matrix also controls the shape of the Gaussian

CS772: PML



Linear Gaussian Model (LGM)

» L GM defines a noisy lin. transform of a Gaussian rv. @ with p(8) = ¥ (0|u, A™)

Both @ and y are vectors (can
be of different sizes)

_ Noise vector - independently
Also assume 4, b, A, L to be y — A 9 + b + E and drawn from ]\f(e|0,L‘1)

known; only 8 is unknown

" Fasy to see that, conditioned on 8, y too has a Gaussian distribution
onditiona — -1
gistr(ijbtution| p(yle) — N(ylAH + b’ L )
= Assume p(@) as prior and p(y|@) as the likelihood, and defining £ = (A + ATLA)™?!

Posterior of 8 p (}’l 9)p (9)
p(Oly) =
p(¥)
Marginal

ssvien -~ p(y) = | p(y|0)p(0)d0 = N (y|Ap + b, AN'AT + L)
= Many probabilistic ML models are LGMs

= N(O|Z(A"L(y — b) + Ap), %)

" These results are very widely used (PRML Chap. 2 contains a proof) CS772A: PML



lts MLE/MAP

Posterior Distribution for Gaussian’s Megmn | sstmaton eftas

an exercise

" Given: N i.i.d. scalar observations y = {yq, ¥, ..., yn} assumed drawn from N (y|u, %)

Likelihood

(yn — .u)z
202

N(ylu, o)

Assume 62 to
be known

= Note: Easy to see that each y,, drawn from N (y|u, 0%) is equivalent to the following

p(ynl.u; 0-2) — N()’nl.u; 0-2) X exp T [

Overall N

Likelihood
pOlno?) = |

_POnlmo®)

JLn_

Thus y,, is like a noisy

version of u with zero yn — H -I_ En Where En ~ N(O, 0-2)

mean Gaussian noise
added to it

" | et's estimate mean u given y using fully Bayesian inference (not point estimation)
CS772A: PML



A prior distribution for the mean

* o computer posterior, need a prior over U

2
" | et's choose a Gaussian prior p(ulto, 0¢)
p(lpo, 08) = N (u|uo, o)
(M — Mo)z]
X exp |— 5
20

" The prior basically says that g priori we believe u is close to ug

= The prior's variance a¢ denotes how certain we are about our belief

= \We will assume that the prior's hyperparameters (pg, o0& )are known

= Since a2 in the likelihood IV (y|u, 02) is known, Gaussian prior V' (1|, o¢) on
[ is also conjugate to the likelihood (thus posterior of u will also be Gaussian)). e



The posterior distribution for the mean

" The posterior distribution for the unknown mean parameteru
On conditioning side, 2
(Vn — (,Ll Ho)
208

Skigimg all fixed pfarams p(,u|y) _ p(yllu)p(:u) o 1_[N expl
yperp p(y) n=1 20

the notation
" Fasy to see that the above will be prop. to exp of a quadratic function of u. Simplitying:

(‘u — MN)Z Gaussian posterior (not a
p(‘uly) oC exp | — 5 surprise.since the cho.senl prior
20- was conjugate to the likelihood)
Gaussian posterior's precision is the sum of 1 1 N
the prior’ - - — o Also the MLE
prior's precision and sum of the noise —_— — — e Contribution _
precisions of all the observations 0-1\2, O—g 0-2 frg:r;[:ﬁztsr?or from the data solution for
Gaussian posterior's mean is a 0'2 NO' _ Zg=1 Vn
convex combination of prior's Uy = MO y (Where Yy = —)
mean and the MLE solution NO'OZ + 0'2 NO_O + 0-2 N

» What happens to the posterior as N (number of observations) grows very large?
= Data (likelihood part) overwhelms the prior b
= Posterior's variance o will approximately be 62 /N (and goes to O as N — )

" The posterior's mean uy approaches y (which is also the MLE solution) CSTT2A: PML



The Predictive Distribution

= |f given a point estimate (i, the plug-in predictive distribution for a test y,would be

The best point estimate
. L A ? A 2
This is an approximation ( ‘ ) — ( ‘ )
of the true PPD p(y.|y) p y* l/l" o N y* l’l) o

= On the other hand, the posterior predictive distribution of y, would be o\

2 A useful fact: When we " A /
—_— h i - th
p.1y) = [ pG.lw, a®)p(uly)dp T 1 ¥
2 2 distribution also has a
—_— losed f (will thi
= [ N.lu, 0H)N (u|pn, o) dp e,
If conditional is Gaussian talking about exponential

.« " . 2. . 2 . L .
This "extra” variance oy in PPD is due to the — N (y* |MN; 0-2 _I_ O-N) then marginal is also family distributions)

averaging over the posterior's uncertainty .
Gaussian .
PRML [Bis 06],

2.115, and also

= For an alternative way to get the above result, note that, for test data | ;. nov
Ve = U + € u ~ N(:uN: 0-1\2,) € ~ N(O, 0_2) stats refresher slides

Using the posterior of u since we

are at test stage now _ , i
Since both p and € are Gaussian r.v., and are independent,

= P (y* |y) =N (y* |[.1N, 02 + 0'1\2]) y, also has a Gaussian posterior predictive, and the

respective means and variances of u and € get added up 72A: PML



Gaussian Observation Model: Some Other Facts

= MLE/MAP for u,a? (or both) is straightforward in Gaussian observation models.

" Posterior also straightforward in most situations for such models

= (As we saw) computing posterior of u is easy (using Gaussian prior) if variance o2 is known
= Likewise, computing posterior of g2 is easy (using gamma prior on ¢#) if mean u is known

= |f u, 0% both are unknown, posterior computation requires computing p(u, o|y)
= Computing joint posterior p(u, a2 |y) exactly requires a jointly conjuage prior p (i, 02)

= "Gaussian-gamma” ("Normal-gamma") is such a conjugate prior — a product of normal and gamma
= Note: Computing joint posteriors exactly is possible only in rare cases such this one

= |f each observation y,, € RP, can assume a likelihood/observation model NV (y|u, )
= Need to estimate a vector-valued mean p € RP. Can use a multivariate Gaussian prior
» Need to estimate a D X D positive definite covariance matrix . Can use a Wishart prior

" [f u, X both are unknown, can use Normal-Wishart as a conjugate prior
CS772A: PML
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