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Plan Today
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▪Quick refresher of basics of probability/statistics ideas for PML
▪ Random variables

▪ Probability distributions and their probabilities

▪ Commonly used probability distributions

▪ Basics of probability modeling of data
▪ Parameter estimation in probabilistic models

▪ Prediction in probabilistic models
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Prob/Stats Refresher
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Random Variables
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▪ Informally, a random variable (r.v.) 𝑋 denotes possible outcomes of an event

▪ Can be discrete (i.e., finite many possible outcomes) or continuous

▪ Some examples of discrete r.v.
▪ 𝑋 ∈  {0, 1} denoting outcomes of a coin-toss

▪ 𝑋 ∈  {1, 2, . . . , 6} denoting outcome of a dice roll

▪ Some examples of continuous r.v.
▪ 𝑋 ∈  (0, 1) denoting the bias of a coin

▪ 𝑋 ∈  ℝ denoting heights of students in a class

▪ 𝑋 ∈  ℝ denoting time to get to your hall from the department

𝑝(𝑋)

𝑝(𝑋)

𝑋(a discrete r.v.)

𝑋(a continuous r.v.)
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Discrete Random Variables
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▪ For a discrete r.v. 𝑋, 𝑝(𝑥) denotes 𝑝(𝑋 =  𝑥) - probability that 𝑋 =  𝑥

▪ 𝑝(𝑋) is called the probability mass function (PMF) of r.v. 𝑋

▪ 𝑝(𝑥) or 𝑝(𝑋 =  𝑥) is the value of the PMF at 𝑥

𝑝 𝑥 ≥ 0
𝑝 𝑥 ≤  1

෍
𝑥

𝑝 𝑥 = 1

𝑝(𝑋)

𝑋



CS772: PML

Continuous Random Variables
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▪ For a continuous r.v. 𝑋, a probability 𝑝(𝑋 =  𝑥) or 𝑝(𝑥) is meaningless

▪ For cont. r.v., we talk in terms of prob. within an interval 𝑋 ∈ (𝑥, 𝑥 + 𝛿𝑥) 
▪ 𝑝(𝑥)𝛿𝑥 is the prob. that 𝑋 ∈ (𝑥, 𝑥 + 𝛿𝑥) as 𝛿𝑥 → 0

▪ 𝑝(𝑥) is the probability density at 𝑋 =  𝑥

𝑝 𝑥 ≥ 0
𝑝 𝑥 ≤ 1

න 𝑝 𝑥 𝑑𝑥 = 1

Yes, probability density at a 

point 𝑥 can very well be 

larger than 1. The integral 

however must be equal to 1
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A word about notation
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▪ 𝑝(. ) can mean different things depending on the context

▪ 𝑝(𝑋) denotes the distribution (PMF/PDF) of an r.v. 𝑋

▪ 𝑝(𝑋 =  𝑥) or 𝑝𝑋(𝑥) or simply 𝑝(𝑥) denotes the prob. or prob. density at value 𝑥

▪ Actual meaning should be clear from the context (but be careful)

▪ Exercise same care when 𝑝(. ) is a specific distribution (Bernoulli, Gaussian, etc.)

▪ The following means generating a random sample from the distribution 𝑝(𝑋)

𝑥 ∼ 𝑝(𝑋)
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Joint Probability Distribution
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▪ Joint prob. dist. 𝑝(𝑋, 𝑌) models probability of co-occurrence of two r.v. 𝑋, 𝑌

▪ For discrete r.v., the joint PMF 𝑝(𝑋, 𝑌 ) is like a table (that sums to 1)

▪ For two continuous r.v.’s 𝑋 and 𝑌, we have joint PDF 𝑝(𝑋, 𝑌)

For 3 r.v.’s, we will likewise 

have a “cube” for the PMF. 

For more than 3 r.v.’s too, 

similar analogy holds 

For more than two r.v.’s, we 

will likewise have a multi-dim 

integral for this property
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Marginal Probability Distribution
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▪ Consider two r.v.’s X and Y (discrete/continuous – both need not of same type)

▪Marg. Prob. is PMF/PDF of one r.v. accounting for all possibilities of the other r.v.

▪ For discrete r.v.’s, 𝑝 𝑋 =  σ𝑦 𝑝(𝑋, 𝑌 = 𝑦) and 𝑝 𝑌 = σ𝑥 𝑝(𝑋 = 𝑥, 𝑌)

▪ For discrete r.v. it is the sum of the PMF table along the rows/columns

▪ For continuous r.v.’s, 

The definition also applied for two sets 

of r.v.’s and marginal of one set of r.v.’s 

is obtained by summing over all 

possibilities of the second set of r.v.’s

For discrete r.v.’s, marginalization is 

called summing over, for continuous 

r.v.’s, it is called “integrating out”
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Conditional Probability Distribution
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▪ Consider two r.v.’s 𝑋 and 𝑌 (discrete/continuous – both need not of same type)

▪ Conditional PMF/PDF 𝑝(𝑋|𝑌) is the prob. dist. of one r.v. 𝑋, fixing other r.v. 𝑌

▪ 𝑝(𝑋|𝑌 =  𝑦) or 𝑝(𝑌 |𝑋 =  𝑥) like taking a slice of the joint dist. 𝑝(𝑋, 𝑌 )

▪Note: A conditional PMF/PDF may also be conditioned on something that is not 
the value of an r.v. but some fixed quantity in general

Discrete Random Variables
Continuous Random Variables

We will  see cond. dist. of output 

𝑦 given weights 𝑤(r.v.) and 

features 𝑿 written as 𝑝(𝑦|𝑤, 𝑋)
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Some Basic Rules
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▪ Sum Rule: Gives the marginal probability distribution from joint probability distribution

▪ Product Rule: 𝑝(𝑋, 𝑌) = 𝑝(𝑌 |𝑋)𝑝(𝑋) = 𝑝(𝑋|𝑌 )𝑝(𝑌 )

▪ Bayes’ rule: Gives conditional probability distribution (can derive it from product rule)

▪ Chain Rule:  𝑝(𝑋1, 𝑋2, . . . , 𝑋𝑁)  =  𝑝(𝑋1)𝑝(𝑋2|𝑋1). . . 𝑝(𝑋𝑁 |𝑋1, . . . , 𝑋𝑁−1)
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Independence
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▪ 𝑋 and 𝑌 are independent when knowing one tells nothing about the other

▪ The above is the marginal independence (𝑋 ⫫  𝑌)

▪ Two r.v.’s 𝑋 and 𝑌 may not be marginally indep but may be given the value of another r.v. 𝑍
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Expectation
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▪ Expectation of a random variable tells the expected or average value it takes

▪ Expectation of a discrete random variable 𝑋 ∈ 𝑆𝑋 having PMF 𝑝(𝑋)

▪ Expectation of a continuous random variable 𝑋 ∈ 𝑆𝑋 having PDF 𝑝(𝑋) 

▪ The definition applies to functions of r.v. too (e.g.., 𝔼 𝑓(𝑋) )

▪ Exp. is always w.r.t. the prob. dist. 𝑝(𝑋) of the r.v. and often written as 𝔼𝑝 𝑋

𝔼[𝑋]  =  ෍

𝑥∈𝑆𝑋

𝑥𝑝(𝑥)

𝔼 𝑋 = න 𝑥𝑝 𝑥 𝑑𝑥

Often the subscript is omitted 

but do keep in mind the 

underlying distribution

Note that this exp. is w.r.t. the 

distribution 𝑝(𝑓(𝑋)) of the r.v. 𝑓(𝑋)
𝑥 ∈ 𝑆𝑋

Probability that 𝑋 =  𝑥

Probability density at 𝑋 =  𝑥
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Expectation: A Few Rules
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▪ Expectation of sum of two r.v.’s: 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌]

▪ Proof is as follows
▪ Define 𝑍 =  𝑋 + 𝑌  

       𝔼 𝑍 = σ𝑧∈𝑆𝑍
𝑧 ⋅ 𝑝(𝑍 = 𝑧)      s.t. 𝑧 =  𝑥 + 𝑦 where 𝑥 ∈  𝑆𝑋 and 𝑦 ∈  𝑆𝑌

                      = σ𝑥∈𝑆𝑋
σ𝑦∈𝑆𝑌

(𝑥 + 𝑦) ⋅ 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)

                  =  σ𝑥 σ𝑦 𝑥 ⋅ 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦) + σ𝑥 σ𝑦 𝑦 ⋅ 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)

                      =  σ𝑥 𝑥 σ𝑦 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦) + σ𝑦 𝑦 σ𝑥 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦)

                  =  σ𝑥 𝑥 ⋅ 𝑝(𝑋 = 𝑥) + σ𝑦 𝑦 ⋅ 𝑝(𝑌 = 𝑦)

          = 𝔼 𝑋 + 𝔼[𝑌]

𝑋 and 𝑌 need not be even 

independent. Can be 

discrete or continuous

Used the rule of marginalization 

of joint dist. of two r.v.’s
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Expectation: A Few Rules (Contd)
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▪ Expectation of a scaled r.v.: 𝔼 𝛼𝑋 = 𝛼𝔼 𝑋

▪ Linearity of expectation: 𝔼 𝛼𝑋 + 𝛽𝑌 = 𝛼𝔼 𝑋 + 𝛽𝔼 𝑌

▪ (More General) Lin. of exp.: 𝔼 𝛼𝑓(𝑋) + 𝛽𝑔(𝑌) = 𝛼𝔼 𝑓(𝑋) + 𝛽𝔼 𝑔(𝑌)

▪ Exp. of product of two independent r.v.’s: 𝔼 𝑋𝑌 = 𝔼 𝑋 𝔼[𝑌]

▪ Law of the Unconscious Statistician (LOTUS): Given an r.v. 𝑋 with a known prob. 
dist. 𝑝(𝑋) and another random variable 𝑌 =  𝑔(𝑋) for some function 𝑔

▪ Rule of iterated expectation: 𝔼𝑝(𝑋) 𝑋 = 𝔼𝑝(𝑌)[𝔼𝑝(𝑋|𝑌) 𝑋|𝑌 ]

𝑓 and 𝑔 are arbitrary functions. 

𝔼 𝑌 = 𝔼 𝑔 𝑋 = ෍
𝑦∈𝑆𝑌

𝑦𝑝 𝑦  = ෍
𝑥∈𝑆𝑋

𝑔 𝑥 𝑝(𝑥)

Requires finding 𝑝(𝑌) Requires only 𝑝(𝑋) which we already have

LOTUS also applicable 

for continuous r.v.’s

𝛼 and 𝛽 are real-valued scalars

𝛼 is a real-valued scalar
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Variance and Covariance
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▪ Variance of a scalar r.v. tells us about its spread around its mean value 𝔼 𝑋 =  𝜇

▪ Standard deviation is simply the square root is variance

▪ For two scalar r.v.’s 𝑋 and 𝑌, the covariance is defined by

▪ For two vector r.v.’s 𝑋 and 𝑌 (assume column vec), the covariance matrix is defined by

▪ Cov. of components of a vector r.v. 𝑋: cov 𝑋 = cov 𝑋, 𝑋

▪ Note: The definitions apply to functions of r.v. too (e.g., var 𝑓(𝑋) )

▪ Note: Variance of sum of independent r.v.’s: var[𝑋 +  𝑌]  =  var[𝑋]  +  var[𝑌]

var 𝑋 = 𝔼 𝑋 − 𝜇 2 = 𝔼 𝑋2  − 𝜇2

cov 𝑋, 𝑌 = 𝔼 {𝑋 − 𝔼[𝑋]}{𝑌 − 𝔼[𝑌]} = 𝔼 𝑋𝑌 − 𝔼[X]𝔼[Y]

cov 𝑋, 𝑌 = 𝔼 {𝑋 − 𝔼[𝑋]}{𝑌⊤ − 𝔼[𝑌⊤]} = 𝔼 𝑋𝑌⊤ − 𝔼[X]𝔼[𝑌⊤]

Important result
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Entropy
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KL Divergence
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Common Probability Distributions
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Important: We will use these extensively to model data as well as parameters of models

▪ Some common discrete distributions and what they can model
▪ Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss

▪ Binomial: Bounded non-negative integers, e.g., # of heads in 𝑛 coin tosses

▪ Multinomial/multinoulli: One of 𝐾 (>2) possibilities, e.g., outcome of a dice roll

▪ Poisson: Non-negative integers, e.g., # of words in a document

▪ Some common continuous distributions and what they can model
▪ Uniform: numbers defined over a fixed range

▪ Beta: numbers between 0 and 1, e.g., probability of head for a biased coin

▪ Gamma: Positive unbounded real numbers

▪ Dirichlet: vectors that sum of 1 (fraction of data points in different classes/clusters)

▪ Gaussian: real-valued numbers or real-valued vectors
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Discrete Distributions

20
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Bernoulli Distribution
21

▪Distribution over a binary random variable 𝑋 ∈ {0,1}, e.g., outcome of a coin-toss 

▪ Defined by probability parameter 𝜇 ∈ (0,1) s.t. 𝜇 =  𝑝(𝑋 = 1)

▪ The probability mass function (PMF) of Bernoulli is

▪ Expectation: 𝔼 𝑋 = 𝜇

▪ Variance: var[𝑋] = 𝜇(1 − 𝜇)

𝑝(𝑋 = 𝑥|𝜇) = 𝜇𝑥 1 − 𝜇 1−𝑥 

𝜇

1 − 𝜇
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Binomial Distribution
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▪Distribution over number of successes 𝑚 in 𝑁 trials, e.g., number of heads in 𝑁 
coin tosses

▪ Defined by a parameter 𝜇 ∈ 0,1  , probability of success of each trial

▪ The probability mass function (PMF) of Binomial is

▪ Expectation: 𝔼 𝑋 = 𝑁𝜇

▪ Variance: var[𝑋] = 𝑁𝜇(1 − 𝜇)

𝑝(𝑋 = 𝑚|𝑁, 𝜇) =
𝑁
𝑚

𝜇𝑚 1 − 𝜇 𝑁−𝑚 
Binomial with 𝑁 = 15, 𝜇 = 0.2

P
ro

b
ab

ili
ty

 o
f 

𝑋
=

𝑚
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Multinoulli Distribution
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▪ Generalization of Bernoulli distribution for discrete/categorical variable 𝑋 taking 
one of 𝐾 > 2 outcomes, e.g., outcome of a single dice roll

▪Note: If  𝑋 = 𝑖, we can also use a one-hot vector of length 𝐾 to denote 𝑋

▪ Multinoulli is defined by 𝐾 params 𝝁 =  [𝜇1, 𝜇2, … , 𝜇𝐾], 𝜇𝑖 ∈ 0,1  and σ𝑖=1
𝐾 𝜇𝑖 = 1

▪ The PMF of Multinoulli is

▪ Expectation: 𝔼 𝑥𝑖 = 𝜇𝑖 , variance: var[𝑥𝑖] = 𝜇𝑖(1 − 𝜇𝑖)

𝑝 𝑋 𝝁 = ෑ
𝑖=1

𝐾

𝜇𝑖
𝑥𝑖

𝑋 = [0, 0, … , 0, 1, 0, … , 0, 0]
Vector of all zeros except the 𝑖𝑡ℎ entry 𝑥𝑖  
which is 1; all other 𝑥𝑗, for 𝑗 ≠ 𝑖 are 0  

Probability of the 𝑖𝑡ℎ 
outcome



CS772: PML

Multinomial Distribution
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▪ Generalization of multinomial for a 𝐾 outcome trial repeated 𝑁 > 1 times

▪Defines distribution of random var. 𝑋 denoting counts of each possible outcome

▪ Can use a vector of length 𝐾 to denote 𝑋

▪ Multinomial is defined by 𝐾 params 𝝁 =  [𝜇1, 𝜇2, … , 𝜇𝐾], 𝜇𝑖 ∈ 0,1  and σ𝑖=1
𝐾 𝜇𝑖 = 1

▪ The PMF of Multinomial is

▪ Expectation: 𝔼 𝑥𝑖 = 𝑁𝜇𝑖 , variance: var[𝑥𝑖] = 𝑁𝜇𝑖(1 − 𝜇𝑖)

▪ Multinomial can also be viewed as a generalization of Binomial for 𝐾 > 2 outcomes

𝑝 𝑋 𝝁 =
𝑁

𝑥1, 𝑥2, … , 𝑥𝐾
ෑ

𝑖=1

𝐾

𝜇𝑖
𝑥𝑖

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝐾−1, 𝑥𝐾]

The 𝑖𝑡ℎ entry 𝑥𝑖 denotes 

the number of times we 

had outcome 𝑖

෍
𝑖=1

𝐾

𝑥𝑖 = 𝑁

E.g., same dice 

rolled 𝑁 times
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Poisson Distribution
25

▪Distribution a non-negative integer (count) random variable 𝑋, e.g., number of 
events in a fixed interval of time

▪Defined by a non-negative rate parameter 𝜆

▪ The PMF of Poisson is

▪ Expectation: 𝔼 𝑋 = 𝜆, variance: var[𝑋] = 𝜆

𝑝 𝑋 = 𝑘 𝜇 =
𝜆𝑘exp(−𝜆)

𝑘!
(𝑘 = 0,1,2, … )

𝑝(𝑋 = 𝑘|𝜆)

𝑋
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Continuous Distributions

26
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Uniform Distribution
27

▪Distribution over a uniformly distributed random variable in interval [𝑎, 𝑏]

▪ The probability density function (PDF) is 

▪ Expectation: 𝔼 𝑋 =
(𝑎+𝑏)

2

▪ Variance: var[𝑋] =
𝑏−𝑎 2

12

𝑝 𝑋 = 𝑥 𝜇 =
1

(𝑏 − 𝑎)

Recall that since 𝑋 is continuous, this 
is not the probability of 𝑋 = 𝑥 but 
probability of 𝑋 ∈ (𝑥, 𝑥 + 𝛿𝑥) where 
𝛿𝑥 is very small

𝑝(𝑋 = 𝑥)

𝑋
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Beta Distribution
28

▪Distribution over a random var. 𝜋 ∈ (0,1), e.g., probability of head for a coin

▪Defined by two parameters 𝛼, 𝛽 > 0. They control the shape of the distribution

▪ The probability density function (PDF) is 

▪ Expectation: 𝔼 𝜋 =
𝛼

𝛼+𝛽

▪ Variance: var[𝜋] =
𝛼+𝛽

𝛼+𝛽 2(𝛼+𝛽+1)

𝑝 𝜋 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
 𝜋𝛼−1 1 − 𝜋 𝛽−1 

𝑝(𝜇)

𝜇

Also equivalent to a uniform 
distribution for 𝛼 = 1, 𝛽 =
1

Γ denotes the gamma function: 

Γ 𝛼 = 0׬ 

∞
𝑡𝛼−1exp −𝑡 𝑑𝑡



CS772: PML

Dirichlet Distribution
29

▪Distribution over a random non-neg vector 𝝅 = [𝜋1, 𝜋2, … , 𝜋𝐾] that sums to 1, 
e.g., vector of probabilities of a dice roll showing each of the 𝐾 faces

▪ Equivalent to a distribution over the 𝐾 −  1 dimensional simplex

▪Defined by 𝐾 non-negative parameters 𝜶 = 𝛼1, 𝛼2, … , 𝛼𝐾

▪ The PDF is

▪ Expectation: 𝔼 𝜋𝑖 =
𝛼𝑖

σ𝑖=1
𝐾 𝛼𝑖

, variance: var[𝜋𝑖] =
 ෝ𝛼𝑖(1−ෝ𝛼𝑖)

 (𝛼0+1)
 where 𝛼0 =  σ𝑖=1

𝐾 𝛼𝑖 

𝑝 𝝅 𝜶 =
Γ(σ𝑖=1

𝐾 𝛼𝑖)

ς𝑖=1
𝐾 Γ 𝛼𝑖

 𝜋𝑖
𝛼𝑖−1

0 ≤ 𝜋𝑖 ≤ 1, ∀𝑖 = 1,2, … , 𝐾,  ෍
𝑖=1

𝐾

𝜋𝑖 = 1

Dirichlet is like a 𝐾-dimensional 

generalization of the Beta distribution
ො𝛼𝑖 =

𝛼𝑖

𝛼0

These parameters control the shape 

of the Dirichlet distribution
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Dirichlet Distribution (contd)
30

▪ Shape of the Dirichlet distribution (𝐾 = 3), as 𝜶 = 𝛼1, 𝛼2, … , 𝛼𝐾  varies

▪ Each point within the two-dim (𝐾 − 1), simplices (triangles) below is a random 
probability vector 𝝅 = [𝜋1, 𝜋2, 𝜋3] of length 3, drawn from the Dirichlet

Visualizations of PDFs of some 3-dim 
Dirichlet distributions (each generated 
using a different conc. Param vector 
𝜶)

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3 𝜋3
𝜋1

𝜋2

𝜶 controls the shape 

of the Dirichlet (just 

like Beta distribution’s 

hyperparameters)

Like a 
uniform 
distribution if 
all 𝛼𝑘’s are 1 All 𝛼𝑘’s large results in 

peak around the 

center of the simplex 

More red means we will 

get more points from that 

region when drawing 

random 𝝅 vectors from 

the Dirichlet 
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Gamma Distribution
31

▪Distribution over non-negative random variable 𝑋 > 0, e.g., time between phone-
calls at a call center

▪Defined by a shape parameters 𝑘 and a scale parameter 𝜃

▪ The PDF is

▪ Expectation: 𝔼 𝑋 = 𝑘𝜃, variance: var[𝑋] = 𝑘𝜃2

▪Note: Sometimes, the gamma distribution can also be defined in another 
parameterization (shape and inverse scale (1/𝜃))

𝑝 𝑋 = 𝑥 𝑘, 𝜃 =
𝑥𝑘−1exp(−

𝑥
𝜃

)

𝜃𝑘Γ(𝑘) 

𝑝(𝑋 = 𝑥)

𝑋
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Gaussian Distribution (Univariate)
32

▪Distribution over real-valued scalar random variables 𝑋 ∈ ℝ, e.g., height of 
students in a class

▪ Defined by a scalar mean 𝜇 and a scalar variance 𝜎2

▪ Mean: 𝔼 𝑋 = 𝜇

▪ Variance: var[𝑋] = 𝜎2

▪ Inverse of variance is called precision: 𝛽 =
1

𝜎2
. 

𝒩 𝑋 = 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

𝑥 − 𝜇 2

2𝜎2
 

𝒩 𝑋 = 𝑥 𝜇, 𝛽 =
𝛽

2𝜋
exp −

𝛽

2
𝑥 − 𝜇 2  

Gaussian PDF in 

terms of precision
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Gaussian Distribution (Multivariate)
33

▪Distribution over real-valued vector random variables 𝑿 ∈ ℝ𝐷

▪ Defined by a mean vector 𝜇 ∈ ℝ𝐷and a covariance matrix 𝚺

▪ Note: The cov. matrix 𝚺 must be symmetric and PSD
▪ All eigenvalues are positive

▪ 𝒛⊤𝚺𝒛 ≥ 0 for any real vector 𝒛

▪ The covariance matrix also controls the shape of the Gaussian

𝒩 𝑿 = 𝒙 𝝁, 𝚺 =
1

2𝜋 𝐷 𝚺
exp − 𝒙 − 𝝁 ⊤𝚺−1(𝒙 − 𝝁)  

A two-dimensional Gaussian
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Covariance Matrix for Multivariate Gaussian
34

Spherical Covariance Diagonal Covariance Full Covariance
5

5-5 -5 -5

-5 -5 -5

5

5 5 5

5 5

Spherical: Equal 
spreads (variances) 
along all dimensions

Diagonal: Unequal 
spreads (variances) 
along all directions 
but still axis-parallel

Full: Unequal 
spreads (variances) 
along all directions 
and also spreads 
along oblique 
directions

5 5

5 5
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Multivariate Gaussian: Marginals and Conditionals
35
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Transformation of Random Variables
36

▪ Suppose 𝑌 =  𝑓(𝑋)  =  𝐴𝑋 +  𝑏 be a linear function of a vector-valued r.v. 𝑋 (𝐴 is a 
matrix and 𝑏 is a vector, both constants)

▪ Suppose 𝔼 𝑋 = 𝜇  and cov 𝑋 = Σ, then for the vector-valued r.v. 𝑌

▪ Likewise, if  𝑌 =  𝑓 𝑋 = 𝑎⊤𝑋 +  𝑏 be a linear function of a vector-valued r.v. 𝑋 (𝑎 is a 
vector and 𝑏 is a scalar, both constants)

▪ Suppose 𝔼 𝑋 = 𝜇  and cov 𝑋 = Σ, then for the scalar-valued r.v. 𝑌

𝔼 𝑌 = 𝔼 𝐴𝑋 + 𝑏 = 𝐴𝜇 + 𝑏

cov 𝑌 = cov 𝐴𝑋 + 𝑏 = 𝐴Σ𝐴⊤

𝔼 𝑌 = 𝔼 𝑎⊤𝑋 +  𝑏 = 𝑎⊤𝜇 + 𝑏

var 𝑌 = var 𝑎⊤𝑋 +  𝑏 = 𝑎⊤Σ𝑎



CS772: PML

Probabilistic Modeling

37
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Probabilistic Modeling of Data: The Setup

▪We are given some training data 𝒟

▪ For supervised learning, 𝒟 contains 𝑁 input-label pairs 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁

▪ For unsupervised learning, 𝒟 contains 𝑁 inputs 𝒙𝑖 𝑖=1
𝑁

▪Other settings are also possible (e.g., semi-sup., reinforcement learning, etc)

▪Our goal is to estimate the distribution (and thus 𝜃) using training data

▪Once the distribution is estimated, we can do things such as 

▪ Predict labels of new inputs, along with our confidence in these predictions

▪ Generate new data with similar properties as training data

▪ .. and a lot of other useful tasks, e.g., detecting outliers

38
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Data/Observation Model

▪Observation model is usually defined by a suitable probability distribution

▪ The distribution’s parameters 𝜃 are unknown and need to be estimated

▪ The quantity 𝑝(𝒟|𝜃) is also referred to as the “likelihood”

▪ Likelihood gives us the probability of the observed data 𝒟 as a function of 𝜃

39

𝑝(𝒟|𝜃)

𝑝(𝒟|𝜃)

𝜃

It’s a function of 𝜃, not a 

distribution over 𝜃 
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Parameter Estimation: A Simple Approach

▪ Likelihood itself is a useful quantity to estimate the parameters 𝜃

▪Maximum Likelihood (ML) is a popular method

▪MLE is akin to minimizing a loss function. Negative log likelihood (NLL) = Loss

▪MLE however as a few issues

▪ Provides only a point estimate of 𝜃 (thus no uncertainty estimate)

▪Does not allow incorporating prior knowledge about 𝜃

▪ Using a prior distribution 𝑝(𝜃) over 𝜃 can help address these issues

40

𝑝(𝒟|𝜃)

𝜃

መ𝜃𝑀𝐿 = argmax
𝜃

 log 𝑝(𝒟|𝜃)

መ𝜃𝑀𝐿
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The Prior

▪ The prior 𝑝(𝜃|𝛼) plays an important role in probabilistic/Bayesian modeling
▪ Here 𝛼 denotes the parameters (“hyperparameters”) of the prior distribution

▪ Reflects our prior beliefs about possible parameter values before seeing the data

▪ Can be “subjective” or “objective”
▪ Subjective: Prior (our beliefs) derived from past experiments

▪ Objective: Prior represents “neutral knowledge” (e.g.. uniform, vague prior)

▪ Can also be seen as a regularizer (we will see the reason soon)

41
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Using Prior in Parameter Estimation

▪ Can use prior in following ways during parameter estimation
▪ Computing the distribution of the parameters conditioned on data

▪ Computing the (MAP) maximum-a-posteriori estimate (report maxima of the posterior)

42

𝑝 𝜃 𝒟, 𝛼 =
𝑝 𝒟, 𝜃 𝛼

𝑝 𝒟 𝛼
=

𝑝(𝒟|𝜃, 𝛼)𝑝 𝜃|𝛼

׬ 𝑝(𝒟|𝜃, 𝛼)𝑝 𝜃|𝛼 𝑑𝜃

=
likelihood × prior

marginal likelihood
=

𝑝(𝒟|𝜃)𝑝 𝜃|𝛼

׬ 𝑝(𝒟|𝜃)𝑝 𝜃|𝛼 𝑑𝜃Given 𝜃, the data is conditionally 

independent of the prior’s 

hyperparameters 𝛼 so 

𝑝(𝒟|𝜃, 𝛼) = 𝑝(𝒟|𝜃)

Assuming 𝛼 is known so 

the posterior is 

conditioned on 𝛼 as well

መ𝜃𝑀𝐴𝑃 = argmax
𝜃

 log 𝑝 𝜃 𝒟, 𝛼 = argmax
𝜃

 [log 𝑝 𝒟 𝜃 + log 𝑝 𝜃|𝛼 ]

Akin to a regularizer added to the loss

= argmin
𝜃

 [𝑁𝐿𝐿 𝜃 − log 𝑝 𝜃|𝛼 ]
The regularizer hyperparameter 

is part of prior

Note that computing MAP 

estimate does not require 

computing the posterior ☺

An important quantity. 

More on this later

The posterior distribution

Posterior can be seen as 

a “compromise” between 

likelihood and the prior

෠𝜃𝑀𝐿
෠𝜃𝑀𝐴𝑃

We only need to 

find the maxima 

of the posterior
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Parameter Estimation: Summary of approaches

▪ Usually one of the following approach taken
1. A single “best” point estimate of the parameters by optimizing an objective function

2. A distribution over the parameters (conditioned on observed data 𝒟) 

3. A set/ensemble of point estimates of parameters (applying approach 1 multiple times)

43

෠𝜃 =  argmax𝜃 𝑓(𝒟; 𝜃)

𝑝(𝜃|𝒟)

𝜃1

𝜃2

𝜃 = [𝜃1, 𝜃2]

𝜃(1) 𝜃(2) 𝜃(𝑆)Computing multiple point 

estimates, each using a 

different subset of the 

training data

Ensemble (e.g., 

training a deep neural 

net with multiple 

different initializations)

𝑓 can be log-likelihood (for MLE) 

or log-posterior (for MAP)

The posterior 

distribution
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An Important Aspect: Posterior Updates

▪ Posterior updates in Bayesian inference can naturally be done in an online fashion

44

Also, the posterior’s spread/variance 

gets smaller as we use more and 

more data to infer it
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Making Predictions: The Predictive Distribution

▪ If  we have computed 𝑝(𝜃|𝒟) then the predictive distribution can be defined as

▪ If  we don’t have 𝑝(𝜃|𝒟) but a set/ensemble of estimates 𝜃(𝑖)
𝑖=1

𝑆
 then 

▪ If  we only have a single point estimate መ𝜃 then 

45

𝑝 𝒟∗ 𝒟 = ׬ 𝑝(𝒟∗, 𝜃|𝒟) 𝑑𝜃 = ׬ 𝑝 𝒟∗ 𝜃, 𝒟 𝑝(𝜃|𝒟) 𝑑𝜃

= ׬ 𝑝 𝒟∗ 𝜃 𝑝(𝜃|𝒟) 𝑑𝜃

= 𝔼𝑝(𝜃|𝒟)[𝑝 𝒟∗ 𝜃 ]

𝑝 𝒟∗ 𝒟 ≈
1

𝑆
෍

𝑖=1

𝑆

𝑝 𝒟∗ 𝜃(𝑖)

𝑝 𝒟∗ 𝒟 ≈ 𝑝 𝒟∗
መ𝜃

Faster to compute since no 

expectation/averaging required but 

less robust because it only considers 

a single best estimate of 𝜃 
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