Getting Started: PML Basics

CS772A: Probabilistic Machine Learning
Piyush Rai



Plan Today

" Quick refresher of basics of probability/statistics ideas for PML
* Random variables
» Probability distributions and their probabilities
= Commonly used probability distributions

" Basics of probability modeling of data
" Parameter estimation in probabilistic models
= Prediction in probabilistic models
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Prob/Stats Refresher



Random Variables

" [nformally, a random variable (rv.) X denotes possible outcomes of an event
" Can be discrete (i.e., finite many possible outcomes) or continuous

" Some examples of discrete rv,
= X € {0,1} denoting outcomes of a coin-toss

P |
=X € {1,2,...,6} denoting outcome of a dice roll 5 TIHhT

X(a dlqscrete rv)

" Some examples of continuous r.v.
= X € (0,1) denoting the bias of a coin |
» X € Rdenoting heights of students in a class p(X)
» X € Rdenoting time to get to your hall from the department

X(a continuous r.v.)
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Discrete Random Variables

" For a discrete rv. X, p(x) denotes p(X = x) - probability that X = x

" p(X) is called the probability mass function (PMF) of rv. X

" p(x) or p(X = x) is the value of the PMF at x

p(x) =0 i
p(x) <1 pXx) .|

Exp(x) =1
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Continuous Random Variables

®* For a continuous rv. X, a probability p(X = x) or p(x) is meaningless

=" For cont. rv., we talk in terms of prob. within an interval X € (x, x + 0x)

" p(x)déx is the prob. that X € (x,x + dx)as dx = 0
" p(x) is the probability density at X = x

Yes, probability density at a p(x) = 0

point x can very well be P—@Q—S—l-

larger than 1. The integral

A\ however must be equal to 1 p(X) dx = 1
Y4

g

_

CS772: PML



A word about notation

" p(.) can mean different things depending on the context

" p(X) denotes the distribution (PMF/PDF) of an rv. X

"p(X = x)orpx(x) or simply p(x) denotes the prob. or prob. density at value x

» Actual meaning should be clear from the context (but be careful)
= Exercise same care when p(.) is a specific distribution (Bernoulli, Gaussian, etc.)

* The following means generating a random sample from the distribution p(X)

x ~ p(X)
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Joint Probability Distribution

= Joint prob. dist. p(X,Y) models probability of co-occurrence of two rv. X, Y
= For discrete r.v., the joint PMF p(X,Y ) is like a table (that sums to 1)

X
similar analogy holds

Y p(X:Y) y ZZP(X:X,Y:}/)::[

For 3 rv.'s, we will likewise '\ /
" " ‘ \:/ ‘
p(X=x,Y=y) have a “cube” for the PMF, .
For more than 3 rv.'s too, e-y

= For two continuous rv.'s X and Y, we have joint PDF n(X,Y)

P\

For more than two r.v.'s, we "

p(X =x, Y =y)dxdy =1 Il ikewise h tdm &R
/x/y will likewise have a multi-dim e’»

integral for this property 18

/



Marginal Probability Distribution

" Consider two rv.'s X and Y (discrete/continuous — both need not of same type)
= Marg. Prob. is PMF/PDF of one r.v. accounting for all possibilities of the other rv,
= For discrete rv.'s, p(X) = X, p(X,Y =y) and p(Y) = Xy p(X = x,Y)

= For discrete rv. it is the sum of the PMF table along the rows/columns

p(X=x,Y=y) Do ,
X X The definition also applied for two sets "
/ Sum over of rv.'s and marginal of one set of rv.'s e /
Y P(X,Y) Y:>p(Y) is obtained by summing over all e»
possibilities of the second set of rv.'s
Sum over

ﬂ o For discrete rv.'s, marginalization is

p(X) called summing over, for continuous

rv.'s, it is called “integrating out”

" For continuous rv.'s, p(X) = fy p(X.Y =y)dy, p(Y)= ] p(X=x,Y)dx
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Conditional Probability Distribution

" Consider two rv.'s X and Y (discrete/continuous — both need not of same type)

= Conditional PMF/PDF p(X|Y) is the prob. dist. of one rv. X, fixing other rv. Y

"p(X|Y = y)orp(Y |X = x) like taking a slice of the joint dist. p(X,Y )

Continuous Random Variables

P(x.y)

Discrete Random Variables

X X

Y 0 o s O N e y Y

n
Yy
Y2

e N,

P(xly=y,)

AREER -
e

P(xly=y,)

= Note: A conditional PMF/PDF may also be conditioned on something that is not

the value of an rv. but some fixed quantity in general We will see cond. dist. of output

y given weights w(r.v.) and

features X written as p(y|w, X)
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Some Basic Rules

= Sum Rule: Gives the marginal probability distribution from joint probability distribution

For discrete r.v.: p(X)=>_, p(X,Y)
For continuous r.v.: p(X) = [, p(X,Y)dY

= Product Rule: p(X,Y) = p(Y |X)p(X) = p(X|Y )p(Y)

* Bayes' rule: Gives conditional probability distribution (can derive it from product rule)

o(vix) = PXIYIR(Y) | For discrete rav: p(Y1X) = SEIOT g
p(X) For continuous r.v.: p(Y\X) — fv;;{f"/” ]) (( ))dy

- Chain RUle: p(XllXZI"'IXN) — p(Xl)p(X2|X1)p(XN |X1,...,XN_1)
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Independence

» X and Y are independent when knowing one tells nothing about the other

p(X|Y =y) = p(X) X e
p(YIX=x) = p(Y) D(X.Y) = p(Y)
p(X,Y) = p(X)p(Y)

» The above is the marginal independence (X Il Y)

" Two rv.'s X and Y may not be marginally indep but may be given the value of another rv. Z
p(X.Y|Z = 2) = p(X|Z = 2)p(Y|Z = 2) X 1L Y|Z
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Expectation

= Expectation of a random variable tells the expected or average value it takes

» Expectation of a discrete random variable X € Sy having PMF p(X)
Probability that X = x
E[X] = ) ()

XESy

= Expectation of a continuous random variable X € Sy having PDF p(X)
Probability density at X = x

]E [X] — f xp (x) dx Note that this exp. is wirt. the

distribution p(f (X)) of the rv. f(X)
Often the subscript is omitted

= The definition applies to functions of rv. too (e.g.., E[f(X)]) but do keep in mind the

underlying distribution

xESX

= Exp. is always wirt. the prob. dist. p(X) of the rv. and often written as E, [X]
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X and Y need not be even

Expectation: A Few Rules

discrete or continuous

» Expectation of sum of two rv.'s: E[X + Y] = E|X]| + E[Y]

= Proof is as follows
" Define = X +Y

ElZ] = Yses,2-p(Z=2z) stz=x+ywherex € Sxyandy € Sy
= Dixesy lyesy(X +¥) - p(X =x,Y = y)
= Lx2yX DX =xY=y)+ 2 2yy pX =xY =y)
= Lx X2y PX =xY =y) + 2y y 2 p(X =xY =)
=2 x pX=x)+ 2,y -p{¥Y =y) oo of trors
= E[X] + E[Y]
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Expectation: A Few Rules (Contd)

a is a real-valued scalar
a and f are real-valued scalars

= Expectation of a scaled rv.: E[aX] = aE|X]
» Linearity of expectation: E[aX + BY] = aE|X]| + BE|Y] f and g are arbitrary functions
» (More General) Lin. of exp.: Elaf(X) + Bg(Y)] = aE[f(X)] + BE|g(Y)]

= Exp. of product of two independent rv.'s: E|XY] = E|X]|E[Y]

" | aw of the Unconscious Statistician (LOTUS): Given an rv. X with a known prob.

dist. p(X) and another random variable Y = g(X) for some function g
Requires finding p(Y) Requires only p(X) which we already have

ElY] = E[g(X)] = z yp(y) = ers g(x)p(x) LOTUS also applicable

YESy for continuous rv.'s

= Rule of iterated expectation: Epx)[X] = Ep ) [Epx vy (XY ]]
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Variance and Covariance

= Variance of a scalar rv. tells us about its spread around its mean value E[X] = u
var[X] = E[(X — w)?] = E[X?] — p?
» Standard deviation is simply the square root is variance

" For two scalar rv.'s X and Y, the covariance is defined by
covlX,Y] = E[{X — E[X]{Y — E[Y]}] = E[XY] — E[X]E[Y]

" For two vector rv.'s X and Y (assume column vec), the covariance matrix is defined by
cov[X, Y] = E[{X — E[X][}{¥T — E[Y"]}] = E[XYT] - E[X]E[Y"]

= Cov. of components of a vector rv. X: cov[X] = cov|X, X]
Important result

* Note: The definitions apply to functions of rv. too (e.g., var|[f (X)])
* Note: Variance of sum of independentrv.'s; var[X + Y] = var|[X]| + var|Y]
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Entropy

o Entropy of a continuous/discrete distribution p(X)

Hp) = — [ p(X)1og p(X)dX
H(p) = —>_ p(X =k)logp(X = k)

o In general, a peaky distribution would have a smaller entropy than a flat distribution

o Note that the KL divergence can be written in terms of expetation and entropy terms
KL(pl|q) = Epx)[— log q(X)] — H(p)

o Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.
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KL Divergence

o Kullback—Leibler divergence between two probability distributions p(X) and g(X)

p(X) q(X) : N
Kl(pllg) = /p X) log dX = —/p X)lo dX for continuous distributions
(plla) (X)1og 25 (X)log 259X )
K
KL(p|llg) = p(X = k) log AX = k) (for discrete distributions)
il q(X = k)

o It is non-negative, i.e., KL(p||q) > 0, and zero if and only if p(X) and g(X) are the same
o For some distributions, e.g., Gaussians, KL divergence has a closed form expression

o KL divergence is not symmetric, i.e., KL(p||q) # KL(q||p)
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Common Probability Distributions

Important: We will use these extensively to model data as well as parameters of models

= Some common discrete distributions and what they can model
= Bernoulli; Binary numbers, e.g., outcome (head/tail, O/1) of a coin toss
* Binomial: Bounded non-negative integers, e.g., # of heads in n coin tosses
= Multinomial/multinoulli; One of K (>2) possibilities, e.g., outcome of a dice roll
= Poisson: Non-negative integers, e.g., # of words in a document

* Some common continuous distributions and what they can model
= Uniform: numbers defined over a fixed range
= Beta: numbers between O and 1, e.g., probability of head for a biased coin
* Gamma: Positive unbounded real numbers
= Dirichlet: vectors that sum of 1 (fraction of data points in different classes/clusters)
» Gaussian: real-valued numbers or real-valued vectors
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Discrete Distributions



Bernoulli Distribution

= Distribution over a binary random variable X € {0,1}, e.g., outcome of a coin-toss

» Defined by probability parameter u € (0,1) st. u = p(X = 1)
" The probability mass function (PMF) of Bernoulli is l—p ?
U
— — X 1—x
p(X = x|p) = p*(1—p)
0 1 X

" Expectation: E[X] = u
= Variance: var[X] = u(1 — )
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Binomial Distribution

= Distribution over number of successes m in N trials, e.g., number of heads in N
Coin tosses

» Defined by a parameter u € (0,1), probability of success of each trial

" The probability mass function (PMF) of Binomial is

— —_ N m _ N—m
p(X =m|N, ) —( )u (1—w
Binomial with N = 15, u = 0.2

025 — —

» Expectation: E[X] = Nu 020 =

010 -
- —l~l_—l—
000 —

I 1 | |

T T [ I O i [P |
012345867 80 101112131415
X CS772: PML

= m

o
1

= Variance: var[X] = Nu(1 — )

Probability of X




Multinoulli Distribution

» Generalization of Bernoulli distribution for discrete/categorical variable X taking
one of K > 2 outcomes, e.g., outcome of a single dice roll

= Note: If X = i, we can also use a one-hot vector of length K to denote X

Vector of all zeros except the it" entry x;

X — [O’ 0’ cer 0’ 1’ 0’ cer ) O, O] which is 1; all other x;, for j # i are 0
Probability of the it"
outcome

= Multinoulli is defined by K params = [fy, Uy, o, g ], t; € (0,1) and Yo p; = 1

» [he PMF of Multinoulli is K
x.
p(X|p) = ‘ ‘ 1ui‘

1=

= Expectation: E|x;] = ;. variance: var[x;] = u; (1 — ;)
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Multinomial Distribution

rolled N times

" Generalization of multinomial for a K outcome trial repeated N > 1 times
* Defines distribution of random var. X denoting counts of each possible outcome
= Can use a vector of length K to denote X The I ey denotes || S _

the number of times we
had outcome i

X = [X1, X5, ) Xjy ooy Xg—1, XK |
= Multinomial is defined by K params @ = [uy, Uy, -, g ], i € (0,1) and Y p; = 1

= The PMF of Multinomial is

aw=(, N ]
p 1 X1,X2, e, XK izllui

= Expectation: E|x;] = Nuy;, variance: var[x;] = Nu; (1 — p;)

= Multinomial can also be viewed as a generalization of Binomial for K > 2 outcomes
CS772: PML



Poisson Distribution

= Distribution a non-negative integer (count) random variable X, €.g., number of
events in a fixed interval of time 0.40

035 ¢ ° A=1
. /\:'l

© A=10

0.30
0.25

p(X = k|2)020) e

0.15

®* Defined by a non-negative rate parameter A

0.10

= The PMF of Poisson is oost /A AN N,
0 5 W
Aexp(—A
p(X =k|u) = P(—4) (k=012,..)

k!

= Expectation: E[X]| = A, variance: var[X] = A
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Continuous Distributions



Uniform Distribution

= Distribution over a uniformly distributed random variable in interval |a, b]

" The probability density function (PDF) is

1

Recall that since X is continuous, this

is not the probability of X = x but 1 b-a |

robability of X € (x,x + 6x) where — —_— —

gxisverylmall p(X T X|M) _ (b _ a) p(X = x)

0 a b
(a+b) X
= Expectation: E[X] = »
. b—a)?

= Variance: var[X] = ( 12)
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Beta Distribution

= Distribution over a random var. ® € (0,1), e.g., probability of head for a coin

* Defined by two parameters a, f > 0. They control the shape of the distribution

" [he probability density function (PDF) is

['(ax +
' denotes the gamma function: a ﬁ p(ﬂ) 1
I'a) = fooo t* lexp(—t)dt Also equivalent to a uniform
distribution fora =1, =
= Expectation: E[r] = ﬁ 1 L
u
. . . a+pf

= Variance: var[m| = @i B @iB D)
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Dirichlet Distribution

= Distribution over a random non-neg vector T = |mq, 7o, ..., Tk | that sums to 1,
e.g., vector of probabilities of a dice roll showing each of the K faces

K
o<m<1 Vi=12..,K, 2 =1
=1

" Fquivalent to a distribution over the K — 1 dimensional simplex

These parameters control the shape

» Defined by K non-negative parameters & = |aq, &y, ..., Q| o the Drichiet distributior

" The PDF is
genemizaton of e Bea dioutir Hi=1 F(a i) ‘ =
_ _ a; . , 1 — a;(1—a;) _ VK
» Expectation: E[m;] = 5K o , variance: var[m;] = (@t D) where ag = )24 Q;
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Dirichlet Distribution (contd)

= Shape of the Dirichlet distribution (K = 3), as a@ = [aq, a5, ..., ag] varies

» Fach point within the two-dim (K — 1), simplices (triangles) below is a random
probability vector T = |4, Ty, T3] Of length 3, drawn from the Dirichlet

Likea
uniform Draws from a 3-dimensional Dirichlet with different a
Vi lizati f PDF f 3-di distribution if w=(1.1.1) s 3065
ISsualizations o S or some >-aim |, ay's-are 1 . . = (10, ‘. Al @S arge results in

peak around the
center of the simplex

Dirichlet distributions (each generated
using a different conc. Param vector

a controls the shape
of the Dirichlet (just
like Beta distribution’s
hyperparameters)

region when drawing

the Dirichlet

lllll oo </ ¢/ o/ </ ¢ O o o/ </
WP AR OWP A TR
g T
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Gamma Distribution

= Distribution over non-negative random variable X > 0, e.g., time between phone-
calls at a call center

" Defined by a shape parameters k and a scale parame \ © ——k=loe=20
it
= The PDF is - X der \ —iInmen
—_ = = = 0.5, = 1.01
x"*"exp(— 5) PETH e

p(X = x|k, 0) =

X
= Expectation: E[X] = k@, variance: var[X] = k6?*

* Note: Sometimes, the gamma distribution can also be defined in another
parameterization (shape and inverse scale (1/6))
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Gaussian Distribution (Univariate)

= Distribution over real-valued scalar random variables X € R, e.g., height of
students in a class

= Defined by a scalar mean p and a scalar variance ¢

0.8 5 0 ll,-"ﬂ\'.lI
- [
1 (x — p)? |
NX =x|u,0%) = exp | — :
2mo? 20
" Mean: E|X] =u
Gaussian PDF in
= \/ariance; var [X] = 0'2 terms of precision
. . - 1
* [nverse of variance is called precision: f = —. N =xlu,B) =j§exp [—g(x—u)zl
o
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Gaussian Distribution (Multivariate)

= Distribution over real-valued vector random variables X € RP
= Defined by a mean vector u € RPand a covariance matrix X

A two-dimensional Gaussian

1
NX=x|pX)= MR exp[—(x — ) T2 (x — )]

Probabiity Density

= Note: The cov. matrix & must be symmetric and PSD
= All eigenvalues are positive
= z'¥z > 0 for any real vector z

" The covariance matrix also controls the shape of the Gaussian
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Covariance Matrix for Multivariate Gaussian

Spherical Covariance Diagonal Covariance Full Covariance

Spherical: Equal q

spreads (variances) .o
along all dimensions ‘! |‘ /

Diagonal: Unequal
spreads (variances)
along all directions
but still axis-parallel

Full: Unequal
spreads (variances)
along all directions
and also spreads
along oblique
directions
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Multivariate Gaussian: Marginals and Conditionals

o Given x having multivariate Gaussian distribution A/ (x|, X) with A = ¥, Suppose

T x(l — l“l’a
=(a) w=()
Zaa z:ab Aau Aab
) = e . K=
<2ba Ebb) (Aba Abb)
o The marginal distribution is simply

p(xa) = N(xa|prz aa)
o The conditional distribution is given by

p(Xalxp) = N(X'Hﬂw- A(Tul)
Hap = Hq— A(T(zlAﬂb(xb = /’l’b)

Thus marginals and conditionals

of Gaussians are Gaussians
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Transformation of Random Variables

" Suppose Y = f(X) = AX + b be alinear function of a vector-valued rv. X (A is a
matrix and b is a vector, both constants)

= Suppose E[X] = u and cov[X] = Z, then for the vector-valued rv. Y

E[Y] = E[AX + b] = Au + b
cov[Y] = cov[AX + b] = AZAT

= Likewise, if Y = f(X) =a'X + b be a linear function of a vectorvalued rv. X (a is a
vector and b is a scalar, both constants)

= Suppose E|X] = u and cov[X] = X, then for the scalar-valued rv. Y
E[Y]=E[a'™X + b]=a'u+0b
var[Y] =var[a'X + b] =a'Xa
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Probabilistic Modeling



Probabilistic Modeling of Data: The Setup

= \We are given some training data D

= For supervised learning, D contains N input-label pairs (x;, ¥;) 14

= For unsupervised learning, D contains N inputs (x;) 4

= Other settings are also possible (e.g., semi-sup., reinforcement learning, etc)
= Our goal is to estimate the distribution (and thus 8) using training data

* Once the distribution is estimated, we can do things such as

= Predict labels of new inputs, along with our confidence in these predictions
= Generate new data with similar properties as training data

= . and a lot of other useful tasks, e.g., detecting outliers
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Data/Observation Model

» Observation model is usually defined by a suitable probability distribution

p(D|6)

" The distribution’s parameters @ are unknown and need to be estimated
* The quantity p(D|8) is also referred to as the “likelihood”

A
It's a function of @, not a

distribution over 6 p (D | 9)

>

0

= |ikelihood gives us the probability of the observed data D as a function of @
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Parameter Estimation: A Simple Approach

" | ikelihood itself is a useful guantity to estimate the parameters 6
* Maximum Likelihood (ML) is a popular method

A
p(D|6)

Oy = argmax logp(D|0)

>

0 éML
= MLE is akin to minimizing a loss function. Negative log likelihood (NLL) = Loss

= MLE however as a few issues

" Provides only a point estimate of 8 (thus no uncertainty estimate)
" Does not allow incorporating prior knowledge about 6

= Using a prior distribution p(8) over 8 can help address these issues
CS772A: PML



The Prior

" The prior p(@|a) plays an important role in probabilistic/Bayesian modeling
" Here a denotes the parameters (“hyperparameters”) of the prior distribution

= Reflects our prior beliefs about possible parameter values before seeing the data

= Can be “subjective” or “objective’

" Subjective: Prior (our beliefs) derived from past experiments
= Objective: Prior represents "neutral knowledge” (e.g.. uniform, vague prior)

* Can also be seen as a regularizer (we will see the reason soon)
CS772A: PML



Posterior can be seen as
a “compromise” between

Using Prior in Parameter Estimation  Lieieams e prer

0.7 1

0.6

= Can use prior in following ways during parameter estimation .
= Computing the distribution of the parameters conditioned on data ;

The posterior distribution p(@lD a) _ p(D, Hla) _ p(Dle, a)p(9|a) 0.1:
' p(Dla) [ p(D|6,a)p(P|a)db

Assuming a is known so

the posterior is p(D|0)pO|a) likelihood X prior

conditioned on a as well

Given 0, the data is conditionally > ] p(D | 9)p(9 |C()d6 - marginal llkellhOOd

independent of the prior's
hyperparameters a so An important quantity.
p(D|6,a) = p(D|0O) More on this later

= Computing the (MAP) maximum-a-posteriori estimate (report maxima of the posterior)

Oriap = argmax logp(0|D, ) = argmax [logp(D|6) + log p(f|a)]

We only need to Note that computing MAP = arginin [NLL(H) — lOg p (0 | 0()]
find the maxima estimate does not require . 6 . The regularizer hyperparameter
of the posterior computing the posterior © Akin to a regularizer added to the loss is part of prior S



Parameter Estimation: Summary of approaches

= Usually one of the following approach taken

1. Asingle "best” point estimate of the parameters by optimizing an objective function
f can be log-likelihood (for MLE)

9 — argmaXG f(D; 6) or log-posterior (for MAP)

2. A distribution over the parameters (conditioned on observed data D)
0 = [91: 0]

s —p(6|D)

3. A set/ensemble of point estimates of parameters (applying approach 1 multiple times)

Computing multiple point Ensemble ( gD o) 6(S)
estimates, each using a p / / * training a deep neural

different subset of the {9 (D ) . D ™~ p } net with multiple

training data different initializations)
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An Important Aspect: Posterior Updates .

= Posterior updates in Bayesian inference can naturally be done in an online fashion

Also, the posterior's spread/variance
gets smaller as we use more and
Bayesian Inference more data to infer it

)

Posterior

fb 4 P(6]D)
Data
D Prior

P(0) Old posterior becomes
the new prior
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Making Predictions: The Predictive Distribution

" [f we have computed p(8|D) then the predictive distribution can be defined as

p(D.|D) = | p(D.,0|D) d6 = | p(D.|6,D)p(6|D) db
= [ p(D.|16)p(8|D) db
= Ep0/p)[p(D.]0)]

= [f we don't have p(0|D) but a set/ensemble of estimates {H(i)}le then

1~ .
p(D.ID) ~ < E - p(D.|6W)
=1

Faster to compute since no
. expectation/averaging required but
9) less robust because it only considers
a single best estimate of 6

= |f we only have a single point estimate 6 then
p(D.ID) ~ p(D.
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