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Course Logistics

= Course Name: Probabilistic Machine Learning — CS772A

" 2 classes each week
= Mon/Wed 18:00-19:15
= Venue: RM-101
= Attendance policy: Minimum 60% (biometric attendance)
= All material (readings etc) will be posted on course webpage

» URL: https://www.cse.iitk.ac.in/users/piyush/courses/pml_spring26/pml.html

" Q/A and announcements on Piazza. Please sign up
= URL: https://piazza.com/iitk.ac.in/secondsemester?026/cs/ /2
" [f need to contact me by email (piyush@cse.litk.ac.in), prefix subject line with "CS772"

» | nofficial auditors are welcome CS772A: PML


https://www.cse.iitk.ac.in/users/piyush/courses/pml_spring26/pml.html
https://piazza.com/iitk.ac.in/secondsemester2026/cs772
mailto:piyush@cse.iitk.ac.in

Workload and Grading Policy

» bvaluation entirely class-room based
" 2 quizzes: 20%

" |n class, closed-book (no cheat-sheet), 45 minutes duration

" 2 homework assignments: 30%

» Mid-sem exam: 20% (date as per DOAA). Closed-book, a cheat-sheet allowed

» End-sem exam: 30% (date as per DOAA). Closed-book, a cheat-sheet allowed

= Practice problems and sample codes will be provided regularly

= Proration: If you miss any quiz/mid-sem, we can prorate it using end-sem marks

* Proration only allowed on limited grounds (e.g., health related) CS779A: PMIL



Textbooks and Readings

" Some books that you may use as reference (freely available online)
= Kevin P. Murphy, Probabilistic Machine Learning: An Introduction (PML-1), The MIT Press, 2022.
= Kevin P. Murphy, Probabilistic Machine Learning: Advanced Topics(PML-2), The MIT Press, 2022.
* Chris Bishop, Pattern Recognition and Machine Learning (PRML), Springer, 2007.
= Chris Bishop and Hugh Bishop, Deep Learning: Foundations and Concepts (DLFC), Springer, 2023.
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= Follow the suggested readings for each lecture (may also include some portions
from these books), rather than trying to read these books in a linear fashion
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Probabilistic Machine Learning

= Machine Learning primarily deals with
= Predicting output y, for new (test) inputs x, given training data (X, y) = {(x;, y)}\L,
= Generating new (synthetic) data given some training data X = {x;}}_,
* Probabilistic ML gives a natural way to solve both these tasks (with some advantages)

» Prediction: Learning the predictive distribution PML is about estimating
these distributions accurately

Using this, we can not only and efficiently

get the mean but also the ( | X: X )
variance (uncertainty) of the p y * x) ) y . . :

. Estimating them exactly is
predicted output y,

hard in general but we can

" Generation: Learning a generative model of data use approximations =
Can “sample” (simulate) from X Both are conditional - “/
this distribution to generate p x* distributions e.,
new data

" At its core, both problems require estimating the underlying distribution of data

CS772A: PML



Probabilistic Machine Learning

= With a probabilistic approach to ML, we can also easily incorporate "domain knowledge”

» Can specify our assumptions about data using suitable probability distributions over
inputs/outputs, usually in the forms Distribution of the input

Probability distribution of 9 p (xn ‘yn, 9) conditioned on its “label/output
P\ WnlXn,

the output as a function

. Distribution of
of input Unknown parameters p (xn ‘ 9) the inputs

of this distribution

= Can specify our assumptions about the unknowns 6 using a "prior distribution’

Represents our belief
about the unknown

parameters before we (9 ) (0 )
see the data p 2

The "Bayesian Learning”
approach

6
= After seeing some data D, can update the prior into a posterior distribution p(@lg%)m oL



The Core of PML: Two Basic Rules of Probability

* Sum Rule (marginalization): Distribution of a considering for all possibilities of b

If b is a discrete rv, If b is a continuous r.v.
p(a) = E p(a,b) or p(a)= fp(a, b)db
» Product Rule ( speaal case of the more general “chain rule” of probability)

p(a,b) = p(a)p(bla) = p(b)p(a|b)

" [hese two rules are the core of most of probabilistic/Bayesian ML
" Bayes rule easily derived from the sum and product rules
(bla) p(b)p(alb) p(b)p(alb) Assumingbisa
a) = = i .
(4 p(a) f p(a, b)db continuous r

CS772A: PML



ML and Uncertainty
(and how PML handles uncertainty)

CS772A: PML



Uncertainty due to Limited Training Data

» Model/parameter uncertainty is due to not having enough training data

Same model class (linear models) Uncertainty not just about the
but uncertainty about the weights  weights but also the model class

3 different model classes
considered here (with
linear, polynomial, circular
decision boundaries)

Each model class itself will have
uncertainty (like left fig) since
there isn't enough training data

= Also called epistemic uncertainty. Usually reducible
= Vanishes with “sufficient” training data

Image credit: Balaji L, Dustin T, Jasper N. (NeurlPS 2020 tutorial) CS772A: PML


https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf

Uncertainty due to Inherent Noise in Training Data

* Data uncertainty can be due to various reasons, e.g.,
" |ntrinsic hardness of labeling, class overlap
= | abeling errors/disagreements (for difficult training inputs)
= Noisy or missing features
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Image credit: Eric Nalisnick Image source: “Improving machine classification using human uncertainty measurements” (Battleday et al, 2021)

= Also called aleatoric uncertainty. Usually irreducible
= \Won't vanish even with infinite training data
= Note: Can sometimes vanish by adding more features
——econmecnnRERIGEEHIEED . .
(figure on the right) or switching to a more complex model Wi ol

Image source: “Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods” (H&W 2021)



https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://openreview.net/pdf?id=rJl8BhRqF7

. . ? In this course, we will mostly focus
the B i h but oth
How to Estimate Uncertainty: onthe Baycsan approach bt e

and will also be discussed

IV
= Uncertainty in parameters: This can be estimated/quantified via mainly three ways: e,»

Sampling multiple training sets and estimating 9(1) 9(2) 9(5)
p (9 D) A case of 2-dim 0 the parameters from each training set
| . /Iy . / *
Bayesian way: Treat params as | , {9 (D ) . ’D ~ p }

random variables and estimate

their distribution conditioned on Frequentist way: Treat params as fixed Ensemble: Train the same model with S

the given training data (a.k.a. ' unknowns and estimate them using different initializations or different

posterior distribution) 01 multiple datasets. This yields a subsets of the training data. Each run
set/distribution over the params(not a will give a different estimate, so we get
"posterior” but a distribution nevertheless!) a set of param estimates

= Uncertainty in predictions: Usually estimated by computing and reporting the mean and
variance of predictions made using many possible values of 8. Commonly reported as:

Predictive Distribution | Can get both mean _ _ o
and variance/quantiles Sets/intervals of possible predictions

p(y* |x*’ D) of the prediction

Lo
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Predictive Uncertainty is Useful

= Predictive uncertainty gives an idea about how much to trust a prediction

" [t can also "guide” us in sequential decision-making:

Test output || Test input
p(Yilx., D) = ]\/‘(y*|,u*,0*2)

Training
data

Blue curve is the mean of the
function (learned so far using
the available data), shaded
region denotes the current
predictive uncertainty

Given our current estimate of the
regression function, which training
input(s) should we add next to
improve its estimate the most?

Uncertainty can help here: Acquire training
inputs from regions where the function is
most uncertain about its current predictions

= Applications in active learning, reinforcement learning, Bayesian optimization, etc

CS772A: PML



Predictive Uncertainty is Useful ors 1 the oty of the s

predicted to be the most likely

* Many modern deep neural networks (DNN) tend to be overconfident

One of the reasons is that they

don't incorporate uncertainty
1

" Especially true if test data is “out-of-distribution (OOD)

Confidence map of a Confidence map of a probabilistic
Low - _.___hon-probabilistic DNN DNN properly incorporating uncertainty
confidence 20
08 15 15
10 10
05 05
04 00 Overconfident 00
08 model =
02 . Model has high confidence for
High predictions on even inputs that
confidence M ,, -15 are far away from training data '~

-20

=20
-3 -2 -1 0 1 2 3

* Prob. deep models often provide better uncertainty estimates to flag OOD data
CS772A: PML

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” (Liu et al, 2020)



https://papers.nips.cc/paper/2020/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf

Reinforcement Learning as Probabilistic Modeling

—

" [nteraction between an agent and an environment __,[:A t
gen

) state r;pward action
. , a,

" |nteraction trajectory T = (Sq, Ag, 7o, S1, A1, T -

pry Environment ]""—

» Can define a probabilistic model for this trajectory

T-1
p() = p(s0) | | Plarlsp(seralse adp(relse a)
t=0

= Dynamics (state transitions, actions taken)may be stochastic
" Rewards may be noisy observations

" States may be observed/latent
CS772A: PML



(Deep) Generative Models as Probabilistic Modeling

" Generative models of data can also be defined as probabilistic models

GAN: Adversarial ' . Discriminator Generator 1,
. X X Z X
training D(x) G(z)

VAE: maximize — N Encoder - Decoder Ly
variational lower bound 94 (2(x) po(x|z)
Flow-based models: X |— Flow ——| Z > Inllfrse — x/
Invertible transform of f(x) [ (2)

distributions
Diffusion models:l X0 o X1 - Xo - z

Gradually add Gaussian - -~ - - - - m - oo ---
noise and then reverse

" | earning such models will also be a topic of study in this course

Figure credit: Lilian Weng CS772A: PML



(Large) Language Models as Probabilistic Modeling
* An LM defines a probability distribution over sequences of tokens

X = {xl, X9, ...,XN}
= Autoregressive modeling is a popular way to define this distribution

N
p(x) = p(x)p(xzlx)p(x3]x0, %3) .. = p(xi|x<;)

1=1

» Params 6 of each conditional p(x;|x<;) defined using neural nets (e.g., transformer)

po (x;|x<;) = softmax(fy(x<;))

A neural net

* One parameters are estimated, the model can be used to generate data
CS772A: PML



Tentative List of Topics

" Basics of probabilistic modeling and inference
= Common probability distributions
" Parameter estimation
= Making predictions in probabilistic models

» Probabilistic models for regression, classification, clustering, dimensionality reduction
= | atent Variable Models (for i.i.d., sequential, and relational data)
= Sampling from probability distributions

= Computing intractable posteriors and intractable expectations
= Approximate Bayesian inference (EM, variational inference, MCMC sampling, etc)

* Deep Generative Models (VAEs, Diffusion Models, Large Language Models)

" Sequential decision-making, Reinforcement Learning

CS772A: PML
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