

Course Logistics and Introduction to Probabilistic Machine Learning

CS772A: Probabilistic Machine Learning

Piyush Rai

Course Logistics

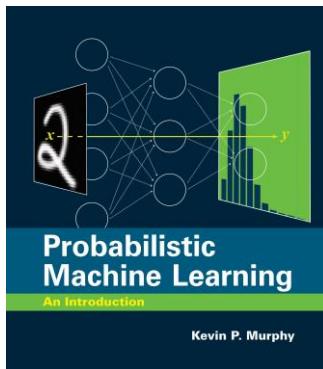
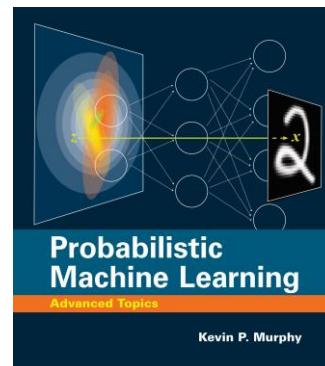
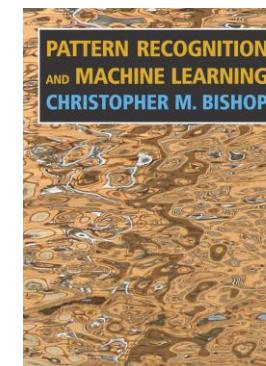
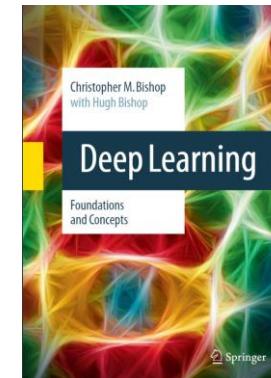
- Course Name: Probabilistic Machine Learning – CS772A
- 2 classes each week
 - Mon/Wed 18:00-19:15
 - Venue: RM-101
- Attendance policy: Minimum 60% (biometric attendance)
- All material (readings etc) will be posted on course webpage
- URL: https://www.cse.iitk.ac.in/users/piyush/courses/pml_spring26/pml.html
- Q/A and announcements on Piazza. Please sign up
 - URL: <https://piazza.com/iitk.ac.in/secondsemester2026/cs772>
 - If need to contact me by email (piyush@cse.iitk.ac.in), prefix subject line with “CS772”
- Unofficial auditors are welcome

Workload and Grading Policy

- Evaluation entirely class-room based
- 2 quizzes: 20%
 - In class, closed-book (no cheat-sheet), 45 minutes duration
- 2 homework assignments: 30%
- Mid-sem exam: 20% (date as per DOAA). Closed-book, a cheat-sheet allowed
- End-sem exam: 30% (date as per DOAA). Closed-book, a cheat-sheet allowed
- Practice problems and sample codes will be provided regularly
- Proration: If you miss any quiz/mid-sem, we can prorate it using end-sem marks
 - Proration only allowed on limited grounds (e.g., health related)

Textbooks and Readings

- Some books that you may use as reference (freely available online)
 - Kevin P. Murphy, [Probabilistic Machine Learning: An Introduction \(PML-1\)](#), The MIT Press, 2022.
 - Kevin P. Murphy, [Probabilistic Machine Learning: Advanced Topics \(PML-2\)](#), The MIT Press, 2022.
 - Chris Bishop, [Pattern Recognition and Machine Learning \(PRML\)](#), Springer, 2007.
 - Chris Bishop and Hugh Bishop, [Deep Learning: Foundations and Concepts \(DLFC\)](#), Springer, 2023.



- Follow the suggested readings for each lecture (may also include some portions from these books), rather than trying to read these books in a linear fashion

Probabilistic Machine Learning

- Machine Learning primarily deals with
 - Predicting output y_* for new (test) inputs \mathbf{x}_* given training data $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
 - Generating new (synthetic) data given some training data $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N$
- Probabilistic ML gives a natural way to solve both these tasks (with some advantages)
- Prediction: Learning the **predictive distribution**

Using this, we can not only get the mean but also the variance (uncertainty) of the predicted output y_*

$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y})$$

PML is about estimating these distributions accurately and efficiently

Estimating them exactly is hard in general but we can use approximations

Both are **conditional distributions**

- Generation: Learning a **generative model** of data

Can “sample” (simulate) from this distribution to generate new data

$$p(\mathbf{x}_* | \mathbf{X})$$

- At its core, both problems require estimating the underlying distribution of data

Probabilistic Machine Learning

- With a probabilistic approach to ML, we can also easily incorporate “domain knowledge”
- Can specify our assumptions about data using suitable probability distributions over inputs/outputs, usually in the forms

Probability distribution of the output as a function of input

$$p(y_n|x_n, \theta)$$

Unknown parameters of this distribution

$p(x_n|y_n, \theta)$

Distribution of the input conditioned on its “label/output”

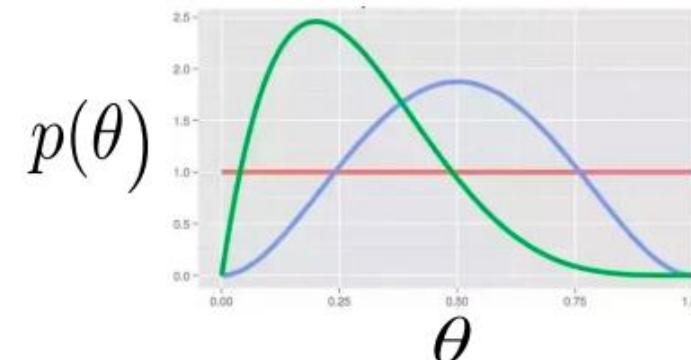
$p(x_n|\theta)$

Distribution of the inputs

- Can specify our assumptions about the unknowns θ using a “prior distribution”

Represents our belief about the unknown parameters before we see the data

$$p(\theta)$$



- After seeing some data \mathcal{D} , can update the prior into a posterior distribution $p(\theta|\mathcal{D})$

The “Bayesian Learning” approach

The Core of PML: Two Basic Rules of Probability

- Sum Rule (marginalization): Distribution of a considering for all possibilities of b

$$p(a) = \sum_b p(a, b) \quad \text{or} \quad p(a) = \int p(a, b) db$$

If b is a discrete r.v.
 If b is a continuous r.v.

- Product Rule (special case of the more general “chain rule” of probability)

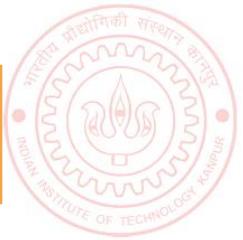
$$p(a, b) = p(a)p(b|a) = p(b)p(a|b)$$

- These two rules are the core of most of probabilistic/Bayesian ML

- Bayes rule easily derived from the sum and product rules

$$p(b|a) = \frac{p(b)p(a|b)}{p(a)} = \frac{p(b)p(a|b)}{\int p(a, b) db}$$

Assuming b is a continuous r.v.



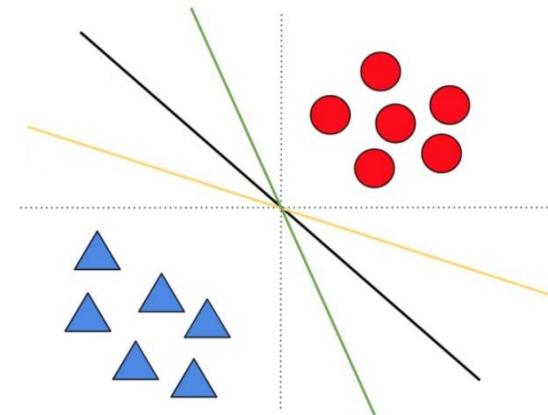
ML and Uncertainty

(and how PML handles uncertainty)

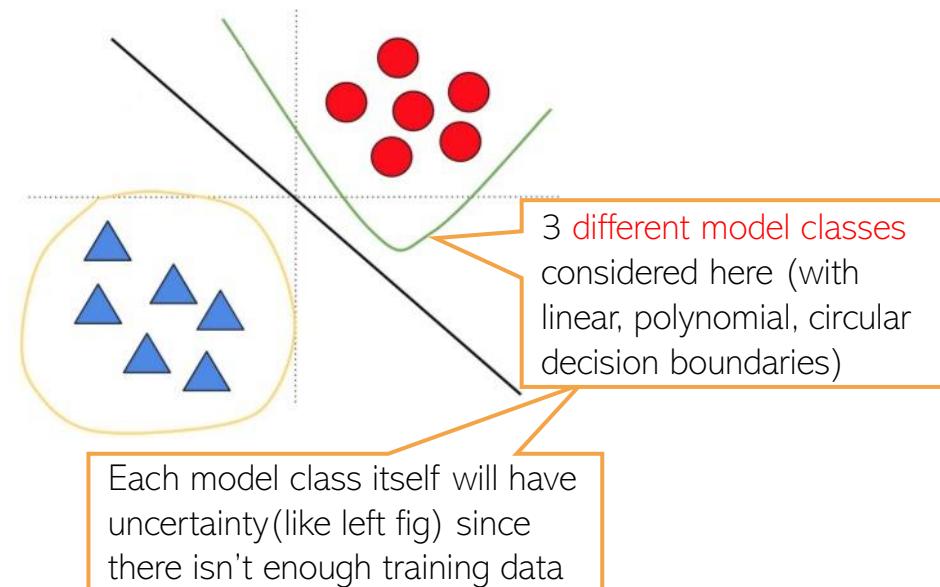
Uncertainty due to Limited Training Data

- Model/parameter uncertainty is due to not having enough training data

Same model class (linear models)
but uncertainty about the weights



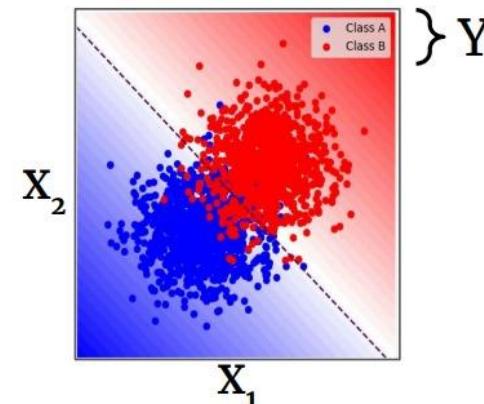
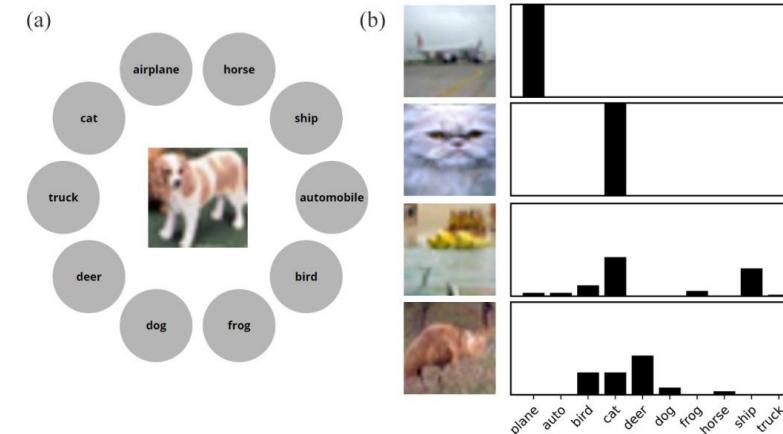
Uncertainty not just about the weights but also the model class



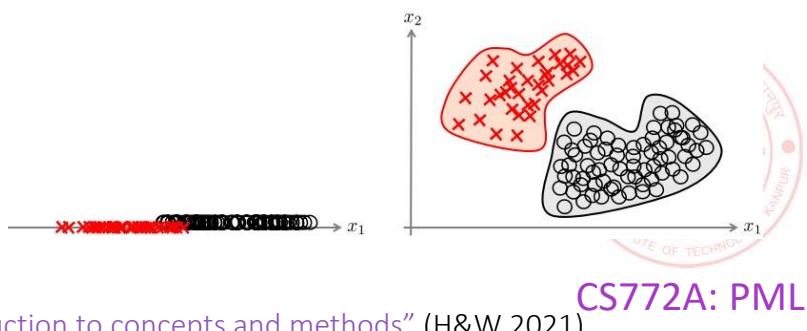
- Also called **epistemic uncertainty**. Usually reducible
 - Vanishes with “sufficient” training data

Uncertainty due to Inherent Noise in Training Data¹⁰

- Data uncertainty can be due to various reasons, e.g.,
 - Intrinsic hardness of labeling, class overlap
 - Labeling errors/disagreements (for difficult training inputs)
 - Noisy or missing features



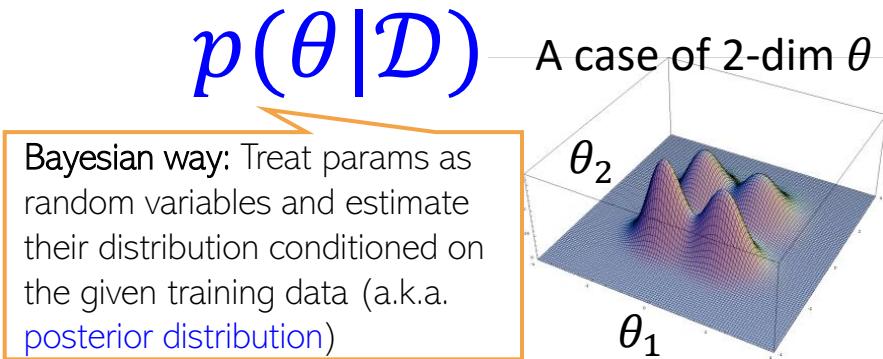
- Also called **aleatoric uncertainty**. Usually irreducible
 - Won't vanish even with infinite training data
 - Note: Can sometimes vanish by adding **more features** (figure on the right) or switching to a **more complex model**



How to Estimate Uncertainty?

In this course, we will mostly focus on the Bayesian approach but other two approaches are also popular and will also be discussed

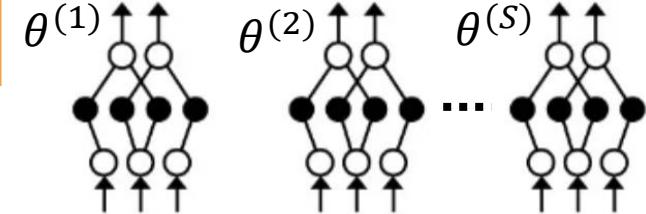
- **Uncertainty in parameters:** This can be estimated/quantified via mainly three ways:



Sampling multiple training sets and estimating the parameters from each training set

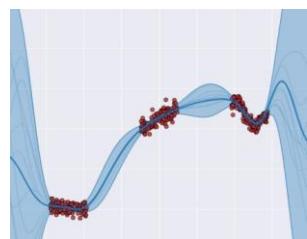
$$\{\hat{\theta}(\mathcal{D}') : \mathcal{D}' \sim p^*\}$$

Frequentist way: Treat params as fixed unknowns and estimate them using **multiple datasets**. This yields a **set/distribution** over the params (not a "posterior" but a distribution nevertheless!)



Ensemble: Train the same model with S different initializations or different subsets of the training data. Each run will give a different estimate, so we get a set of param estimates

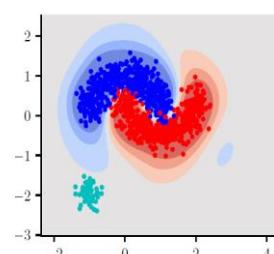
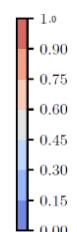
- **Uncertainty in predictions:** Usually estimated by computing and reporting the mean and variance of predictions made using many possible values of θ . Commonly reported as:



Predictive Distribution

$$p(y_* | x_*, \mathcal{D})$$

Can get both mean and variance/quantiles of the prediction



Sets/intervals of possible predictions

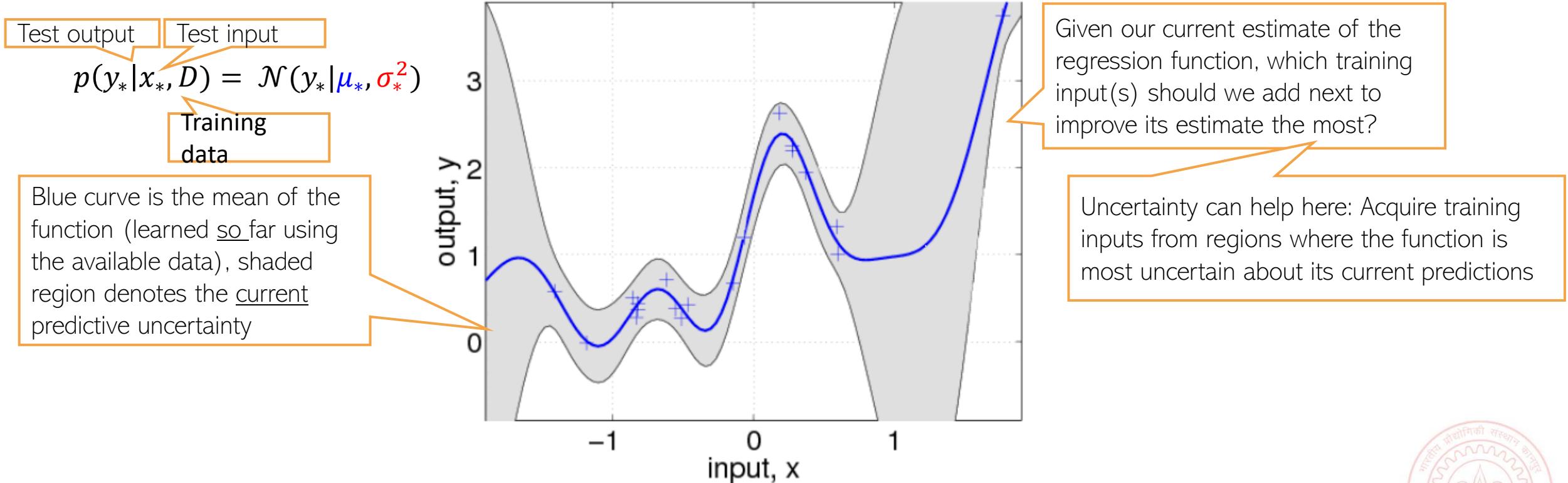
fox
squirrel
0.99

fox
squirrel, gray, fox, bucket, rain
0.82 0.03 0.02

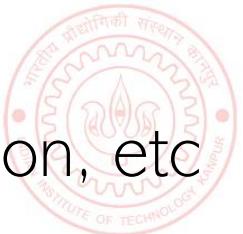
marmot, squirrel, mink, weasel, beaver, polecat
0.30 0.22 0.18 0.16 0.03 0.01

Predictive Uncertainty is Useful

- Predictive uncertainty gives an idea about how much to trust a prediction
- It can also “guide” us in sequential decision-making:



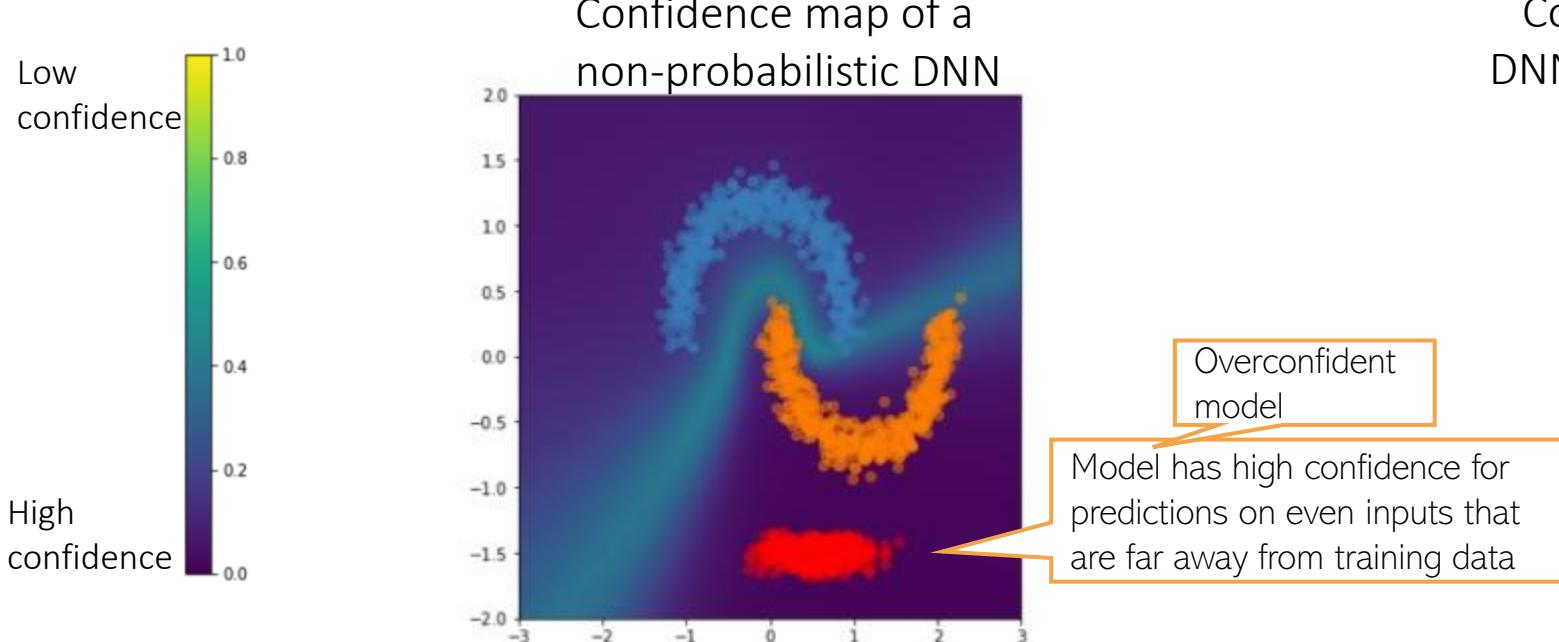
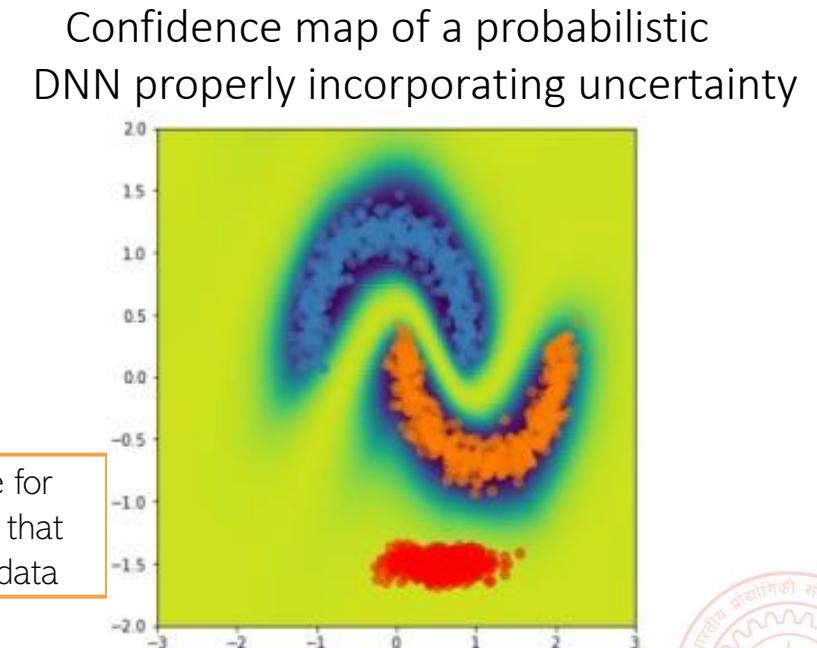
- Applications in active learning, reinforcement learning, Bayesian optimization, etc



Predictive Uncertainty is Useful

- Many modern deep neural networks (DNN) tend to be **overconfident**
- Especially true if test data is “out-of-distribution (OOD)”

For classification, “confidence” refers to the probability of the class predicted to be the most likely



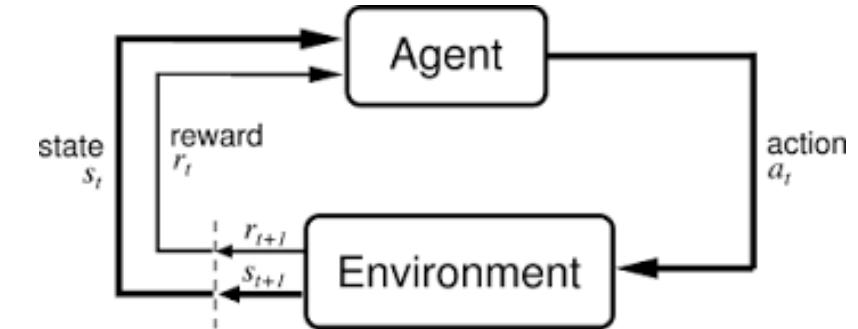
- Prob. deep models often provide better uncertainty estimates to flag OOD data

Reinforcement Learning as Probabilistic Modeling¹⁴

- Interaction between an agent and an environment
- Interaction trajectory $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots)$
- Can define a probabilistic model for this trajectory

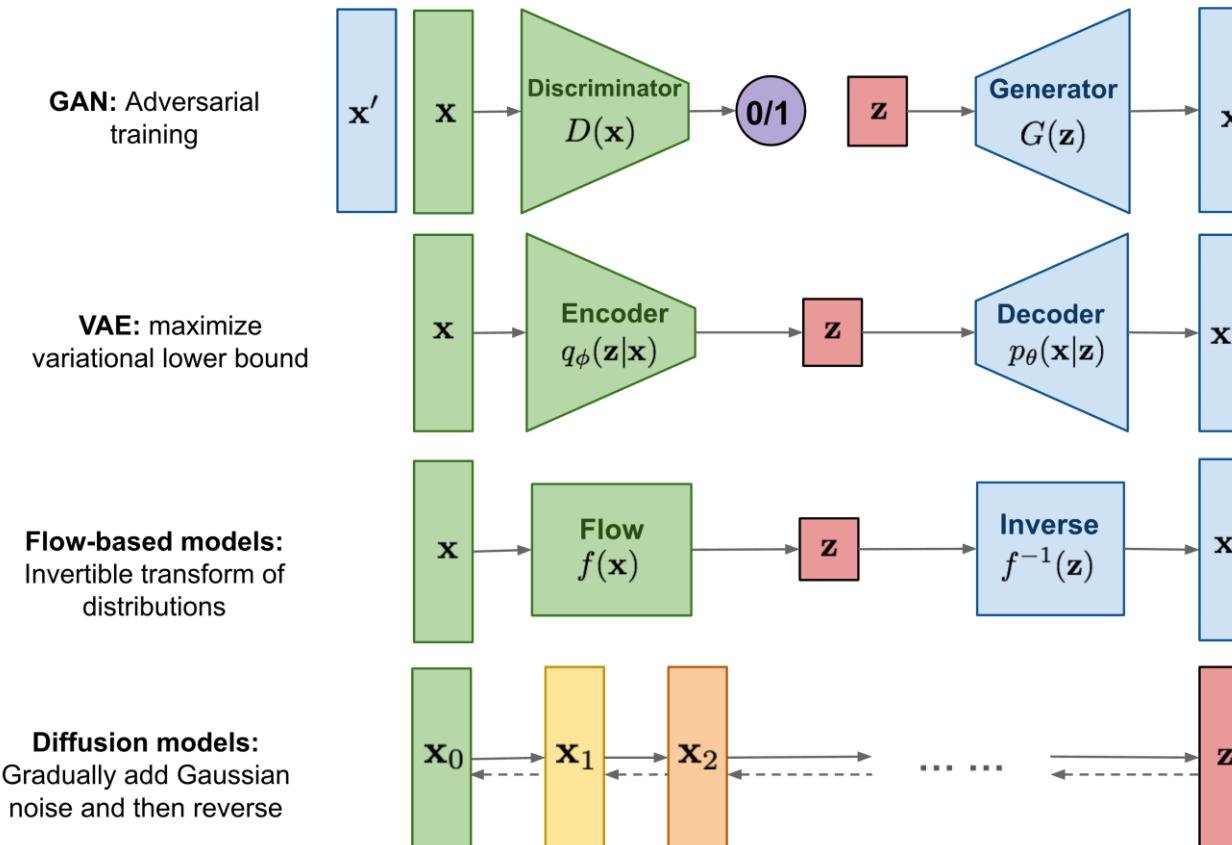
$$p(\tau) = p(s_0) \prod_{t=0}^{T-1} p(a_t | s_t) p(s_{t+1} | s_t, a_t) p(r_t | s_t, a_t)$$

- Dynamics (state transitions, actions taken) may be stochastic
- Rewards may be noisy observations
- States may be observed/latent



(Deep) Generative Models as Probabilistic Modeling

- Generative models of data can also be defined as probabilistic models



- Learning such models will also be a topic of study in this course

(Large) Language Models as Probabilistic Modeling¹⁶

- An LLM defines a probability distribution over sequences of tokens

$$\mathbf{x} = \{x_1, x_2, \dots, x_N\}$$

- Autoregressive modeling is a popular way to define this distribution

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \dots = \prod_{i=1}^N p(x_i|\mathbf{x}_{<i})$$

- Params θ of each conditional $p(x_i|\mathbf{x}_{<i})$ defined using neural nets (e.g., transformer)

$$p_\theta(x_i|\mathbf{x}_{<i}) = \text{softmax}(f_\theta(\mathbf{x}_{<i}))$$

A neural net

- One parameters are estimated, the model can be used to generate data

Tentative List of Topics

- Basics of probabilistic modeling and inference
 - Common probability distributions
 - Parameter estimation
 - Making predictions in probabilistic models
- Probabilistic models for regression, classification, clustering, dimensionality reduction
- Latent Variable Models (for i.i.d., sequential, and relational data)
- Sampling from probability distributions
- Computing intractable posteriors and intractable expectations
 - Approximate Bayesian inference (EM, variational inference, MCMC sampling, etc)
- Deep Generative Models (VAEs, Diffusion Models, Large Language Models)
- Sequential decision-making, Reinforcement Learning

