Introduction to Gaussian Processes
(Kernel Methods meet Bayesian Learning)

CS772A: Probabilistic Machine Learning
Piyush Rai

Linear Models and Their Limitations

= Consider learning to map an input x to the output y

" We've seen various discriminative models (linear and generalized linear models)

p(ylw,x) = N(ylw'x,571) (Linear Regression)
p(ylw,x) = [o(w' x)][1-c(w'x)] (Logistic Regression)
p(ylw,x) = ExpFam(w'x) (Generalized Linear Model)

Natural param of canonical GLM

" These have limited expressive power — can't learn nonlinear patterns

00

Nonlinear Regression Nonlinear Classification

CS772A: PML

Learning Nonlinear Functions

= Assume the input to output relationship to be modeled by a nonlinear function f

p(y
p(y
p(y

f,x)
f,x)
f,x)

N(}/‘ f(x): /B_l) In all of these, the linear ﬂ
[O‘(f(X))]y[]. B O‘(f(X))]l_y score w' x has been replaced e-’»

by a nonlinear function f (x)
ExpFam(f(x))

/

= \Would like to model this function in a probabilistic/Bayesian manner
= Nonlinearity + all the benefits of probabilistic/Bayesian modeling

" Some ways to achieve this

Example: Assuming x is scalar,
d(x) = [1,x,x2, ..., x¥], for some k

= Ad-hoc: Manually define nonlinear features ¢ (x) + train Bayesian linear model

= Ad-hoc: Use a pre-trained deep neural net to extract features ¢ (x) + train Bayesian linear model
= Bayesian Neural Networks (later)

* Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)

CS772A: PML

Any choice of the GP covariance Hmmm.. So GPs look like kernel

G a u S S | a n P rO C e S S function has an associated feature | methods with all the benefits of

map ¢(x) for the inputs x probabilistic/Bayesian modeling

= A Gaussian Process (GP) defines a distribution over functions and is denoted as

Akin to how we define a Gaussian Mean Function Covariance Function Can also think of a function as an
distribution over scalars/vectors,

infinite dimensional vector of function's
defined by a mean and g:}) (M (_), K (_) s)) values at different inputs (x), i.e.,

variance/covariance matrix f=1f(x), f(xy), fx3),...]

» Every draw/sample from GP (u, k) will give a random function f

f(x)“ Each of these curves is a random p and K can be pre-defined
K/\ /\ function drawn from the GP or can even be learned
,f"_'\\ . . .
— — d\/kf:”:x Mean Function u(.) defines the Covariance Function k(.,.) defines
D “average” function looks like: similarity between pairs of inputs and
u(x) = E[f(x)] controls the shape of these curves

(also needs to be pos-sem-def)

=" [MP: It f ~GP(u, k) then f's value at any finite set of inputs is jointly Gaussian

Can concisely f(x1)] T(x1)7 [r(xq,x1) K (X1, XN)]T \/eré/.us'eful pKropel.fty for, mal|<ing A
write it as fx) | _ ulxz) | [r(xz, xq) (X2, xp) predictions: Fnowing -fS e Y /
p(f) = N(wK) p : = N :) : . : at some N “training” inputs, say, »
' ' ' ' ' ' X1, X2, ., Xy, We can easily
Lf (xn)- uCen)) LeCey, 1) - k(xy, X)) compute its value at a new test
N X 1 vector of f'svalues: f | | N X 1 mean vector: p N x N cov/kernel matrix (PSD): K input x,, using the Gaussian

joint-to-conditional formula 72A: PML

The results we saw here relating
the score f, to f will still hold ©

P re d | Ct | n g u S I n g < 5 P We just need to use a likelihood model for y,, to A
handle such “noisy settings (will see soon) s '\.f‘ /
F | -
p?;er;r;p_e NOnlfwB~Y) The setting considered on this slide is the "noiseless” setting »
nin/ — niyn . . . _ _
n We ha\/e already seen that pGnlfa) = Bernoulli(y,|o(£,)) where the response y,, is S|mp|y‘g|ven by v, = fn = »

f (x,,). More realistic settings with have each output y, as a
transformation of a “score” given by GP: f,, = f(x;,)

fgx% ng% Kgxl'xlg Kgxl xN; concisel
S) =0 = o
f(xn) u(xy)l Le(ey,x1) - k(xy, xn)

= | et's assume the mean function u(x) = 0, thus p = 0 and p(f) = N (0,K)

= Assume we know f = [f(xq), f(x5), ..., f(xy)] and want to compute f(x,)
* Due to the GP property, joint distribution of f's values will always be Gaussian

PPD without (4 ([f D = N (O] [IE- k*]) where K, = [r(xy,x,), K(xz,X,), ..., K(xy, x.)]"
withou),
computing ﬁk 0 k* K(.X'*, x*) N X 1 vector of similarities of

posterior © (N + 1) x 1 vector (N 4+ 1) X (N + 1) matrix x, with each of the N training inputs
Form of prediction similar

p(ﬁklf) — N(k:er_lfJ K(x*; x*) T k;rK_lk*) — N(,u*; 0-*2) to kernel regression but

also get variances o2

= Exercise: Show that predictive mean p, = Yo, Bifi = Laik(xi, x,)

CS772A: PML

GP: A Visualization) - o2
/[

" Assumed zero mean function and a squared exponential kernel

Each curve below is obtained by Shaded area shows the predictive uncertainty for
drawing a random f from the GP each of the test inputs (+/- 2 std)
‘prior” p(f) = N(0,K) and

Each curve below is obtained by drawing

plotting it. random f's the GP posterior p(f|f;rgin)
Kiis the kernel matrix of a finite which is also a Gaussian
2- number of inputs represented on the 25
x axis (say 100 equi-spaced points)
1.5¢ between -5 and 5). f will be a vector
i of f's values at these inputs 1.5
1
Foosl f
0.5
0_
0
~0.5
-0.5
=y S
-1.5 -1.5
-2 : : -2
5 0 5 -5 0 5
X X

Figure courtesy: MLAPP (Murphy) CS772A: PML

GP for Noisy Setting: Regression (Gaussian Lik.)

» For Gaussian lik, we can get PPD p(y,|y) without computing the GP posterior p(f|y)
= Note that, in this case, the marginal likelihood is also a Gaussian

weranssivece . p(¥) = [p@IOPHAf = N(Y|0,K + £711y) = N(y]0,Cy)

covariance/kern.el. | | | N(ylf, B~ y) N (f10,K) . .
" The joint distribution of the training y and test response y, is also a Gaussian

|dentical to the noiseless
p ([y]) = N ([y] | [O] CN k*]) case except the additional
Note: All hyperparams - _ 1 .
asstumed tgpbepknovvn y* y* O ’ k;r K (x*’ x*) —I— ﬁ 1 B~ term on the diagonal

Weighted average of

= Using the above, we can easily obtain p(y,|y) using Gaussian properties te riing responses

W, has a similar

p()’*b’) = N(kIC&ly,K(x*,x*) — k;rC]Tflk* 4+ 18_1) — N(M*,Uf) interpretation as in

the noiseless case

= This is almost identical to the expression of p(f.|f) from the noiseless case

except K there is replaced by Cy and extra B~ term in variance
CS772A: PML

GP Regression: An lllustration

" The figure below shows GP predictive mean and variance as noise variance changes

Mean predictions plus 3 st.deviations (noise variance=0.000001)

Blue curve: True function

Red point: Training inputs (noisy)
Red curve: Learned predictive mean
Shaded region: +/- 3 std-dev

-3 -2] 0 1 2 3

" As expected, the predictive mean worsens and predictive variance increases as the
NOISe variance INCreases

Figure courtesy: https://sandipandey.wixsite.com/simplydatascience/post/gaussian-process-regression-with-python CS772A: PML

Weight Space View vs Function Space View

» GPs are defined wi.rt. a function space that models input-output relationship
" |n contrast, we have seen models that are defined w.rt. a weight space, e.g.,

p(y|X,w) = N(y|Xw, B~1I,)- tkelihood

: : Marginal likelihood
D (W) —]\/‘(Wluo’ 20) Prior over weight vector after integrating

P(y X) = fp(ylx, W)p(w)dw —]\/‘(le”O”B—llN + XZOXT) out the weights
p(y X) = N(yl(), :B_llN + XXT) Marginal likelihood assuming gy = 0 and £y =1
p(y X) = N(y|0 XXT) Assuming noise-free likelihood

" Thus the joint distribution of the N [ESPONSES Y1, V2, - YN is a multivariate Gaussian

(X{ X X x
This equivalence also shows V1] 0] }r .. 1T N Same as a GP f(x;) = y;, u(x) = 0 and linear
that Bayesian linear regression p 2 = o 0 2% Xo XN

, . . covariance/kernel function K(Xi,Xj) = x/ X;
is a special case of GP with
linear kernel

3’N 01 Ixfx; - xE:xN
" Thus GPs can be seen as bypassmg the weight space and directly defining the

model using a marginal likelihood via a function space defined by the GP
CS772A: PML

GP for Noisy Setting: Classification and GLM

» Binary classification: Now likelihood will be Bernoulli: p(y,|f,,) = Bernoulli(y,|o(f;,))
= For multi-class (K > 2) GP. p(y,,|f;,) will be multinoulli and £, will be a K X 1 vector

" For GP based GLM, p(y,lf) will be some exp-family distribution
» The prior p(f) will still be a GP. Assuming a zero-mean GP prior p(f) = N (f]|0, K)
" The posterior predictive p(y,|y) can again be written as

p(y.ly) = |

pOulfIp(fly)df.

| S

pOLf)p (L) (Fly)dfdf.

" This in general is not as easy to compute unlike the case of GP regression we saw
* p(f.|f) is still not a problem (will be Gaussian due to the GP property)

= GP posterior p(f|y) «< p(f)p(y|f) will require approximation (Laplace, MCMC, variational, etc)
= The overall integral will require approximation as well

CS772A: PML

Learning Hyperparameters in GP based Models

» Can learn the hyperparameters of the GP prior as well as of the likelihood model
= Assuming 4 = 0, the hyperparams of GP are cov/kernel function hyperparams

| |X X | |2 Ability to learn ﬂ /
_ _ n— 4m kernel hyperparams N~ 4
ﬁ:(x,,, xm) = exp (~) (RBF keme” . (without cross- .'
Can help in feature selection (irrelevant Different RBF‘ valid) is another
D 2 features will tend to have very large y4) kernel bandwidth very appealing
(x — X) y4 for each feature fGP
o nd md property o
K(Xp, Xm) = exp| — E (ARD kernel)
d=1 Td

K(Xn, Xm) = Ko, (Xn,Xm) + Ko, (Xn, Xm) + ... + Koy, (Xn, Xm) (flexible composition of multiple kernels)

» MLE-Il'is a popular choice for learning these hyperparams (otherwise MCMC, VI, etc)
= Denoting the covariance/kernel matrix as Kg, for Gaussian likelihood case, the marg-lik
p(¥|6,7) = N(¥|0,Kqg + 87 1y)

" This can be maximized to learn 8 and S

* For non-Gaussian likelihoods, the marg-lik itself will need to be approximated
CS772A: PML

Coming Up

" Some aspects of GPs
= Scalability
= Connections with neural nets
= Some recent advances

CS772A: PML

Scalability of GPs

= Computational costs in some steps of GP models scale in the size of training data

» For example, prediction cost is O(N) ggﬁgaﬁnfrgmg Cy
p(y.ly) = N (., o) u, =kICyly o =k(x,x.) —KICy'k, + B!

* GP models often require matrix inversions (e.g., in marg-lik computation when
estimating hyperparameters) — takes O(N3)

= Storage also requires O(N?) since need to store the covariance matrix
M < N pseudo-inputs

= A lot of work on speeding up GPst. Some prominent approaches include 31 pseudo-outputs
* [nducing Point Methods (condition predictions only on a small set of “learnable” points)
= Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)
= Kernel approximations

= Note that nearest neighbor methods and kernel methods also face similar issues
* Many tricks to speed up kernel methods can be used for speeding up GPs too

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018

CS772A: PML

GP: Some Comments

" GP is sometimes referred to as a nonparametric model because
= Complexity (representation size) of the function f grows in the size of training data
= To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

N
e = f(x) = ke Culy =k ' =Y ank(xs, Xn
N

n=1
= |t impli S | IS written | ini
implies that £(.) = > _, ank(., xn) Which means f is written in terms of all training examples

= Thus the representation size of f depends on the number of training examples

" |n contrast, a parametric model has a size that doesn’t grow with training data
= £.g. alinear model learns a weight vector w € R? (D parameters, size independent of N)

» Nonparametric models more flexible since their complexity is not limited beforehand

* Note: Methods like nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)
CS772A: PML

Neural Networks and Gaussian Process

" An infinitely-wide single hidden layer NN with i.i.d. priors on weights = GP
= Shown formally by (Neal?, 1994). Based on applying the central limit theorem

Sum of infinite many
Yn ii.d. random variables

(thus W Gaussian and so
is any finite collection of ‘1".1:'

" This equivalence is useful for several reasons
= Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)
= With GPs, inference is easy (at least for regression and with known hyperparams)
= A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik's theorem)

= Connection generalized to infinitely wide multiple hidden layer NN (Lee et al®, 2018)
CS772A: PML

2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)

GP: A Few Other Comments

" GPs can be thought of as Bayesian analogues of kernel methods

= Can get estimate in the uncertainty in the function and its predictions

Draws from the GP Posterior (Translates into a Posterior Predictive)

e W

X
* Can learn the kernel (by learning the hyperparameters of the kernels)

= Not limited to supervised learning problems

= f could even define a mapping of low-dim latent variable z.. to an observation x..

— " - " GP latent variable model for dimensionality reduction
xn f(Zn) + 'noise (like a kernel version of probabilistic PCA)

= Many mature implementations of GP exist. You may check out
= GPyTorch (PyTorch), GPFlow (Tensorflow)
= GPML (MATLAB), GPsuff (MATLAB/Octave) CS772A: PML

GP: Some Other Recent Advances

" Deep Gaussian Processes (DGP)
= Akin to a deep neural network where each hidden node is modeled by a GP

f(h) @ f(y)

Inputs Intermediate Layer Outputs
(can be multiple layers)

= A nice alternative to linear transform + nonlinearity in neural nets, e.g., h = tanh(Wx)

» GPs with deep kernels defined by neural nets
= Neural Processes (GP + neural nets): Faster way to do GPs

A neural net Aggregating the training

based encoder = () data (instead of storing it)
X4 Yy l" e M
\— =
7~ e ()
X2 Ya }' e Hr2
o =
~ e)
Xc Ye l‘ e H'c
s = _J

CS772A: PML

