
Introduction to Gaussian Processes
(Kernel Methods meet Bayesian Learning)

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Linear Models and Their Limitations
▪ Consider learning to map an input 𝒙 to the output 𝑦

▪We’ve seen various discriminative models (linear and generalized linear models)

▪ These have limited expressive power – can’t learn nonlinear patterns

2

Natural param of canonical GLM

CS772A: PML

Learning Nonlinear Functions

▪ Assume the input to output relationship to be modeled by a nonlinear function 𝑓

▪ Would like to model this function in a probabilistic/Bayesian manner
▪ Nonlinearity + all the benefits of probabilistic/Bayesian modeling

▪ Some ways to achieve this
▪ Ad-hoc: Manually define nonlinear features 𝜙(𝒙) + train Bayesian linear model

▪ Ad-hoc: Use a pre-trained deep neural net to extract features 𝜙(𝒙) + train Bayesian linear model

▪ Bayesian Neural Networks (later)

▪ Gaussian Processes (a Bayesian approach to kernel based nonlinear learning; today)

3

In all of these, the linear

score 𝒘⊤𝒙 has been replaced

by a nonlinear function 𝑓(𝒙)

Example: Assuming 𝑥 is scalar,

𝜙 𝑥 = [1, 𝑥, 𝑥2, … , 𝑥𝑘], for some 𝑘

CS772A: PML

Gaussian Process

▪ A Gaussian Process (GP) defines a distribution over functions and is denoted as

▪ Every draw/sample from 𝒢𝒫(𝜇, 𝜅) will give a random function 𝑓

▪ IMP: If 𝑓 ~ 𝒢𝒫(𝜇, 𝜅) then 𝑓’s value at any finite set of inputs is jointly Gaussian

4

𝒢𝒫(𝜇(.), 𝜅(. , .))
Mean Function Covariance Function Can also think of a function as an

infinite dimensional vector of function’s

values at different inputs (𝑥), i.e.,

𝒇 = [𝑓 𝑥1 , 𝑓 𝑥2 , 𝑓 𝑥3 , …]

𝑥

𝑓(𝑥) Each of these curves is a random

function drawn from the GP

Akin to how we define a Gaussian

distribution over scalars/vectors,

defined by a mean and

variance/covariance matrix

𝑝

𝑓(𝑥1)

𝑓 𝑥2
⋮

𝑓(𝑥𝑁)

= 𝒩

𝜇(𝑥1)

𝜇 𝑥2
⋮

𝜇(𝑥𝑁)

,

𝜅 𝑥1, 𝑥1
𝜅 𝑥2, 𝑥1

⋯
𝜅(𝑥1, 𝑥𝑁)

𝜅 𝑥2, 𝑥𝑁
⋮ ⋱ ⋮

𝜅(𝑥𝑁, 𝑥1) ⋯ 𝜅(𝑥𝑁, 𝑥𝑁)

Mean Function 𝜇(.) defines the

“average” function looks like:

𝜇 𝑥 = 𝔼[𝑓 𝑥]

Covariance Function 𝜅(. , .) defines

similarity between pairs of inputs and

controls the shape of these curves

(also needs to be pos-sem-def)

Very useful property for making

predictions: Knowing 𝑓’s value

at some 𝑁 “training” inputs, say,

𝑥1, 𝑥2, … , 𝑥𝑁, we can easily

compute its value at a new test

input 𝑥∗, using the Gaussian

joint-to-conditional formula

𝜇 and 𝜅 can be pre-defined

or can even be learned

Hmmm.. So GPs look like kernel

methods with all the benefits of

probabilistic/Bayesian modeling

𝑁 × 𝑁 cov/kernel matrix (PSD): 𝐊𝑁 × 1 mean vector: 𝛍𝑁 × 1 vector of 𝑓’s values: 𝐟

Can concisely

write it as

𝑝 𝐟 = 𝒩(𝛍,𝐊)

Any choice of the GP covariance

function has an associated feature

map 𝜙(𝑥) for the inputs 𝑥

CS772A: PML

Predicting using GP

▪We have already seen that

▪ Let’s assume the mean function 𝜇 𝑥 = 0, thus 𝛍 = 𝟎 and 𝑝 𝐟 = 𝒩(𝟎, 𝐊)

▪ Assume we know 𝐟 = 𝑓 𝑥1 , 𝑓 𝑥2 , … , 𝑓 𝑥𝑁 and want to compute 𝑓(𝑥∗)

▪Due to the GP property, joint distribution of 𝑓’s values will always be Gaussian

▪ Exercise: Show that predictive mean 𝜇∗ = σ𝑖=1
𝑁 𝛽𝑖𝑓𝑖 = σ𝑖=1

𝑁 𝛼𝑖𝜅(𝑥𝑖 , 𝑥∗)

5

𝑝

𝑓(𝑥1)

𝑓 𝑥2
⋮

𝑓(𝑥𝑁)

= 𝒩

𝜇(𝑥1)

𝜇 𝑥2
⋮

𝜇(𝑥𝑁)

,

𝜅 𝑥1, 𝑥1
𝜅 𝑥2, 𝑥1

⋯
𝜅(𝑥1, 𝑥𝑁)

𝜅 𝑥2, 𝑥𝑁
⋮ ⋱ ⋮

𝜅(𝑥𝑁 , 𝑥1) ⋯ 𝜅(𝑥𝑁 , 𝑥𝑁)
𝑝 𝐟 = 𝒩(𝛍, 𝐊)

concisely

𝑝
𝐟
𝑓∗

= 𝒩
𝟎
0
,
𝐊 𝐤∗
𝐤∗
⊤ 𝜅 𝑥∗, 𝑥∗

where 𝐤∗ = [𝜅 𝑥1, 𝑥∗ , 𝜅 𝑥2, 𝑥∗ , … , 𝜅 𝑥𝑁 , 𝑥∗]
⊤

𝑁 × 1 vector of similarities of

𝑥∗ with each of the 𝑁 training inputs(𝑁 + 1) × 1 vector (𝑁 + 1) × (𝑁 + 1) matrix

𝑝 𝑓∗ 𝐟 = 𝒩 𝐤∗
⊤𝐊−1𝐟, 𝜅 𝑥∗, 𝑥∗ − 𝐤∗

⊤𝐊−1𝐤∗ = 𝒩(𝜇∗, 𝜎∗
2)

The setting considered on this slide is the “noiseless” setting

where the response 𝑦𝑛 is simply given by 𝑦𝑛 = 𝑓𝑛 =
𝑓 𝑥𝑛 . More realistic settings with have each output 𝑦𝑛 as a

transformation of a “score” given by GP: 𝑓𝑛 = 𝑓 𝑥𝑛

We just need to use a likelihood model for 𝑦𝑛 to

handle such “noisy settings (will see soon)

For example

𝑝 𝑦𝑛 𝑓𝑛 = 𝒩(𝑦𝑛|𝑓𝑛, 𝛽
−1)

𝑝 𝑦𝑛 𝑓𝑛 = Bernoulli(𝑦𝑛|𝜎(𝑓𝑛))

The results we saw here relating

the score 𝑓∗ to 𝐟 will still hold ☺

Form of prediction similar

to kernel regression but

also get variances 𝜎∗
2

PPD without

computing

posterior ☺

CS772A: PML

GP: A Visualization

▪ Assumed zero mean function and a squared exponential kernel

Each curve below is obtained by

drawing a random 𝐟 from the GP

“prior” 𝑝(𝐟) = 𝒩(𝟎, 𝐊) and

plotting it.

𝑥

𝑓

Each curve below is obtained by drawing

random 𝐟’s the GP posterior 𝑝(𝐟|𝐟𝑡𝑟𝑎𝑖𝑛)
which is also a Gaussian

Shaded area shows the predictive uncertainty for

each of the test inputs (+/- 2 std)

𝐊 is the kernel matrix of a finite

number of inputs represented on the

x axis (say 100 equi-spaced points

between -5 and 5). 𝐟 will be a vector

of 𝑓’s values at these inputs

𝑥

𝑓

Figure courtesy: MLAPP (Murphy)

6

CS772A: PML

GP for Noisy Setting: Regression (Gaussian Lik.)

▪ For Gaussian lik, we can get PPD 𝑝 𝑦∗ 𝒚 without computing the GP posterior 𝑝(𝒇|𝒚)

▪Note that, in this case, the marginal likelihood is also a Gaussian

▪ The joint distribution of the training 𝒚 and test response 𝑦∗ is also a Gaussian

▪ Using the above, we can easily obtain 𝑝 𝑦∗ 𝒚 using Gaussian properties

▪ This is almost identical to the expression of 𝑝 𝑓∗ 𝒇 from the noiseless case
except 𝐊 there is replaced by 𝐂N and extra 𝛽−1 term in variance

7

𝑝 𝒚 = ∫ 𝑝 𝒚 𝒇 𝑝 𝒇 𝑑𝒇

𝑝
𝒚
𝑦∗

= 𝒩
𝒚
𝑦∗

|
𝟎
0
,
𝐂N 𝐤∗
𝐤∗
⊤ 𝜅 𝑥∗, 𝑥∗ + 𝛽−1

Identical to the noiseless

case except the additional

𝛽−1 term on the diagonal

𝑝 𝑦∗ 𝒚 = 𝒩 𝐤∗
⊤𝐂𝑁

−1𝒚, 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1 = 𝒩(𝜇∗, 𝜎∗
2)

Also useful when learning

hyperparams of the GP

covariance/kernel

𝜇∗ has a similar

interpretation as in

the noiseless case

Weighted average of

the training responses

Note: All hyperparams

assumed to be known

𝒩(𝒚|𝒇, 𝛽−1𝐈𝐍) 𝒩(𝒇|𝟎,𝐊)

= 𝒩 𝒚 𝟎,𝐊 + 𝛽−1𝐈𝑵 = 𝒩 𝒚 𝟎, 𝐂N

CS772A: PML

GP Regression: An Illustration

▪ The figure below shows GP predictive mean and variance as noise variance changes

▪ As expected, the predictive mean worsens and predictive variance increases as the
noise variance increases

8

Blue curve: True function
Red point: Training inputs (noisy)
Red curve: Learned predictive mean
Shaded region: +/- 3 std-dev

Figure courtesy: https://sandipandey.wixsite.com/simplydatascience/post/gaussian-process-regression-with-python

x

y

CS772A: PML

Weight Space View vs Function Space View

▪ GPs are defined w.r.t. a function space that models input-output relationship

▪ In contrast, we have seen models that are defined w.r.t. a weight space, e.g.,

▪ Thus the joint distribution of the 𝑁 responses 𝑦1, 𝑦2, … , 𝑦𝑁 is a multivariate Gaussian

▪ Thus GPs can be seen as bypassing the weight space and directly defining the
model using a marginal likelihood via a function space defined by the GP

9

𝑝 𝒚 𝑿,𝒘 = 𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)

𝑝(𝒘) = 𝒩(𝒘|𝝁0, 𝚺0)

𝑝 𝒚 𝑿 = ∫ 𝑝 𝒚 𝑿,𝒘 𝑝 𝒘 𝑑𝒘 = 𝒩(𝒚|𝑿𝝁0, 𝛽
−1𝑰𝑁 + 𝑿𝚺0𝑿

⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝛽−1𝑰𝑁 + 𝑿𝑿⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝑿𝑿⊤)

𝑝

𝑦1
𝑦2
⋮
𝑦𝑁

= 𝒩

0
0
⋮
0

,

𝑥1
⊤𝑥1

𝑥2
⊤𝑥1

⋯
𝑥1
⊤𝑥𝑁

𝑥2
⊤𝑥𝑁

⋮ ⋱ ⋮
𝑥𝑁
⊤𝑥1 ⋯ 𝑥𝑁

⊤𝑥𝑁

Same as a GP 𝑓(𝑥𝑖) = 𝑦𝑖 , 𝜇 𝑥 = 0 and linear

covariance/kernel function 𝜅 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖
⊤𝑥𝑗

Likelihood

Prior over weight vector
Marginal likelihood

after integrating

out the weights

Marginal likelihood assuming 𝝁0 = 𝟎 and 𝚺0 = 𝑰

Assuming noise-free likelihood

This equivalence also shows

that Bayesian linear regression

is a special case of GP with

linear kernel

CS772A: PML

GP for Noisy Setting: Classification and GLM

▪ Binary classification: Now likelihood will be Bernoulli: 𝑝 𝑦𝑛 𝑓𝑛 = Bernoulli(𝑦𝑛|𝜎(𝑓𝑛))

▪ For multi-class (𝐾 > 2) GP, 𝑝 𝑦𝑛 𝑓𝑛 will be multinoulli and 𝑓𝑛 will be a 𝐾 × 1 vector

▪ For GP based GLM, 𝑝 𝑦𝑛 𝑓𝑛 will be some exp-family distribution

▪ The prior 𝑝(𝒇) will still be a GP. Assuming a zero-mean GP prior 𝑝 𝒇 = 𝒩(𝐟|𝟎, 𝐊)

▪ The posterior predictive 𝑝 𝑦∗ 𝒚 can again be written as

▪ This in general is not as easy to compute unlike the case of GP regression we saw

▪ 𝑝 𝑓∗ 𝒇 is still not a problem (will be Gaussian due to the GP property)

▪ GP posterior 𝑝 𝒇 𝒚 ∝ 𝒑 𝒇 𝒑(𝒚|𝒇) will require approximation (Laplace, MCMC, variational, etc)

▪ The overall integral will require approximation as well

10

𝑝 𝑦∗ 𝒚 = ∫ 𝑝 𝑦∗ 𝑓∗ 𝑝 𝑓∗ 𝒚)𝑑𝑓∗

= ∫ 𝑝 𝑦∗ 𝑓∗ 𝑝 𝑓∗ 𝒇 𝑝 𝒇 𝒚 𝑑𝒇𝑑𝑓∗

CS772A: PML

Learning Hyperparameters in GP based Models

▪ Can learn the hyperparameters of the GP prior as well as of the likelihood model

▪ Assuming 𝜇 = 0, the hyperparams of GP are cov/kernel function hyperparams

▪ MLE-II is a popular choice for learning these hyperparams (otherwise MCMC, VI, etc)

▪ Denoting the covariance/kernel matrix as 𝐊𝜃, for Gaussian likelihood case, the marg-lik

▪ This can be maximized to learn 𝜃 and 𝛽

▪ For non-Gaussian likelihoods, the marg-lik itself will need to be approximated

11

Different RBF

kernel bandwidth

𝛾𝑑 for each feature

Can help in feature selection (irrelevant

features will tend to have very large 𝛾𝑑)

𝑝 𝒚|𝜃, 𝛽−1 = 𝒩 𝒚 𝟎,𝐊𝜃 + 𝛽−1𝐈𝑵

Ability to learn

kernel hyperparams

(without cross-

valid) is another

very appealing

property of GP

CS772A: PML

Coming Up

▪ Some aspects of GPs

▪ Scalability

▪ Connections with neural nets

▪ Some recent advances

12

CS772A: PML

Scalability of GPs

▪ Computational costs in some steps of GP models scale in the size of training data

▪ For example, prediction cost is 𝑂(𝑁)

▪ GP models often require matrix inversions (e.g., in marg-lik computation when
estimating hyperparameters) – takes 𝑂(𝑁3)

▪ Storage also requires 𝑂(𝑁2) since need to store the covariance matrix

▪ A lot of work on speeding up GPs1. Some prominent approaches include

▪ Inducing Point Methods (condition predictions only on a small set of “learnable” points)

▪ Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)

▪ Kernel approximations

▪Note that nearest neighbor methods and kernel methods also face similar issues
▪ Many tricks to speed up kernel methods can be used for speeding up GPs too

13

𝑝 𝑦∗ 𝒚 = 𝒩(𝜇∗, 𝜎∗
2) 𝜇∗ = 𝐤∗

⊤𝐂𝑁
−1𝒚 𝜎∗

2 = 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1

𝑂(𝑁) cost assuming C𝑁
is already inverted

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018

𝑀 ≪ 𝑁 pseudo-inputs

and pseudo-outputs

CS772A: PML

GP: Some Comments

▪ GP is sometimes referred to as a nonparametric model because
▪ Complexity (representation size) of the function 𝑓 grows in the size of training data

▪ To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

▪ It implies that which means 𝑓 is written in terms of all training examples

▪ Thus the representation size of 𝑓 depends on the number of training examples

▪ In contrast, a parametric model has a size that doesn’t grow with training data
▪ E.g., a linear model learns a weight vector 𝒘 ∈ ℝ𝐷 (𝐷 parameters, size independent of 𝑁)

▪ Nonparametric models more flexible since their complexity is not limited beforehand
▪ Note: Methods like nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)

14

CS772A: PML

Neural Networks and Gaussian Process

▪ An infinitely-wide single hidden layer NN with i.i.d. priors on weights = GP

▪ Shown formally by (Neal2, 1994). Based on applying the central limit theorem

▪ This equivalence is useful for several reasons
▪ Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)

▪ With GPs, inference is easy (at least for regression and with known hyperparams)

▪ A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)

▪ Connection generalized to infinitely wide multiple hidden layer NN (Lee et al3, 2018)

15

2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)

CS772A: PML

GP: A Few Other Comments

▪ GPs can be thought of as Bayesian analogues of kernel methods

▪ Can get estimate in the uncertainty in the function and its predictions

▪ Can learn the kernel (by learning the hyperparameters of the kernels)

▪ Not limited to supervised learning problems
▪ 𝑓 could even define a mapping of low-dim latent variable 𝑧𝑛 to an observation 𝑥𝑛

▪ Many mature implementations of GP exist. You may check out
▪ GPyTorch (PyTorch), GPFlow (Tensorflow)

▪ GPML (MATLAB), GPsuff (MATLAB/Octave)

16

𝒙𝑛 = 𝑓 𝒛𝑛 + "noise" GP latent variable model for dimensionality reduction

(like a kernel version of probabilistic PCA)

CS772A: PML

GP: Some Other Recent Advances

▪ Deep Gaussian Processes (DGP)

▪ Akin to a deep neural network where each hidden node is modeled by a GP

▪ A nice alternative to linear transform + nonlinearity in neural nets, e.g., ℎ = tanh(𝑾𝒙)

▪ GPs with deep kernels defined by neural nets

▪ Neural Processes (GP + neural nets): Faster way to do GPs

17

Aggregating the training

data (instead of storing it)

A neural net

based encoder

