GLMs (wrap-up) and Generative Models for Supervised Learning

CS772A: Probabilistic Machine Learning

Piyush Rai

Plan for today and announcements

- Wrap up GLM
- Testing conditional independence in directed graphical models
- Generative models for supervised learning
- Also, Quiz 1 on Monday (Sept 5) at 7pm
- Rescheduled class on Saturday (Sept 3) at 6pm
- Mid-sem exam on Sept 19 in L17 (18:00-20:00), ERES seating arrangement

GLM with Canonical Response Function

For GLM with Canon Resp Func (a.k.a., canonical GLM)

$$p(y|\eta) = h(y) \exp(\eta y - A(\eta)) = h(y) \exp(y \boldsymbol{w}^{\top} \boldsymbol{x} - A(\eta))^{2}$$

The simple form of canonical GLM (nat. param just a linear function $\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}$) makes parameter estimation via MLE/MAP easy since gradient and Hessian have simple expressions (though the Hessian may be expensive to compute/invert)

- Consider doing MLE (assuming N i.i.d. responses). The log likelihood $L(\eta) = \log p(Y|\eta) = \log \prod_{n=1}^{N} h(y_n) \exp(y_n w^\top x_n - A(\eta_n)) = \sum_{n=1}^{N} \log h(y_n) + w^\top \sum_{n=1}^{N} y_n x_n - \sum_{n=1}^{N} A(\eta_n)$
- Convexity of $A(\eta)$ guarantees a global optima. Gradient of log-lik w.r.t. **w**

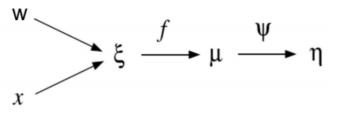
$$\mathbf{g} = \sum_{n=1}^{N} \left(y_n \mathbf{x}_n - A'(\eta_n) \frac{d\eta_n}{d\mathbf{w}} \right) = \sum_{n=1}^{N} \left(y_n \mathbf{x}_n - \mu_n \mathbf{x}_n \right) = \sum_{n=1}^{N} \left(y_n - \mu_n \mathbf{x}_n \right) = \sum_{n=1}^{N} \left(y_n - \mu_n \mathbf{x}_n \right) = \sum_{n=1}^{N} \left(y_n - \mu_n \mathbf{x}_n \right) = \mathbf{x}_{n=1}^{N} \left(y_n - \mu_$$

- Note $\mu_n = f(\xi_n) = f(\mathbf{w}^\top \mathbf{x}_n)$ and $f = \psi^{-1}$ ("inverse link") depends on the model
 - Real-valued y (linear regression): f is identity, i.e., $\mu_n = w^{\mathsf{T}} x_n$
 - Binary y (logistic regression): f is sigmoid function, i.e., $\mu_n = \frac{\exp(w^T x_n)}{1 + \exp(w^T x_n)}$
 - Count-valued y (Poisson regression): f is exp, i.e., $\mu_n = \exp(\mathbf{w}^T \mathbf{x}_n)$
 - Non-negative y (gamma regression): f is inverse negative i.e., $\mu_n = -1/(w^T x_n)$

Fully Bayesian Inference for GLMs

- Most GLMs, except linear regression with Gaussian lik. and Gaussian prior, do not have conjugate pairs of likelihood and priors (recall logistic regression)
- Posterior over the weight vector w is intractable
- Approximate inference methods needed, e.g.,
 - Laplace approximation (have already seen): Easily applicable since derivatives (first and second) can be easily computed (note that we need w_{MAP} and Hessian)
 - MCMC or variational inference (will see later)

Various Types of GLMs

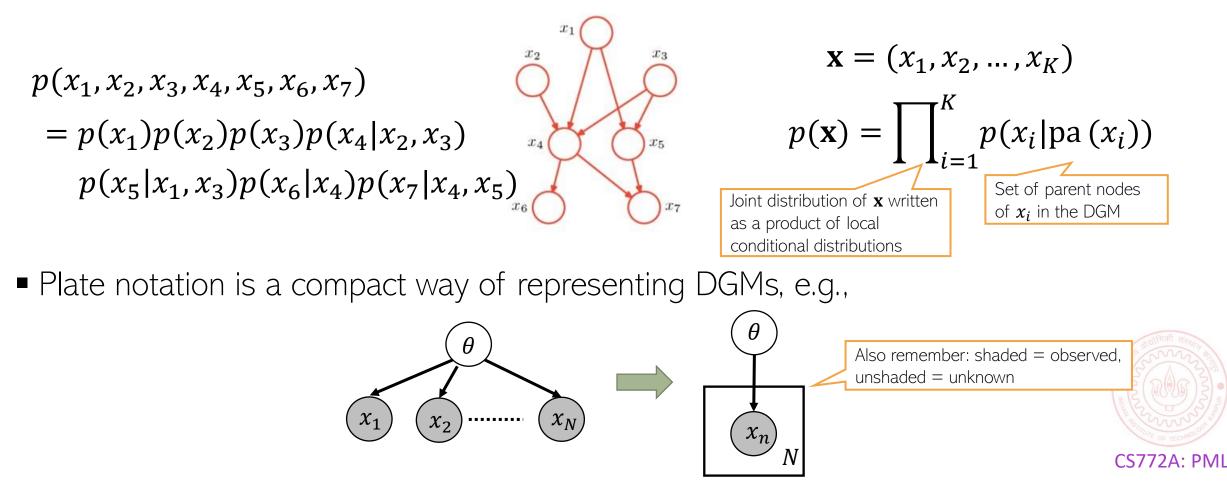


Type of response	Type of GLM	Link Function Ψ	Response Function f (Inv Link Func if canon. GLM) (Operates on $\xi = w^{T}x$)	Activation
Real	Gaussian	Identity	Identity	Linear
Binary	Logistic	Log-odds: $\log \frac{\mu}{1-\mu}$	Sigmoid	Sigmoid
Binary	Probit	Inv CDF: $\Phi^{-1}(\mu)$	Φ (CDF of N(0,1))	Probit
Categorical	Multinoulli	Log-odds: $\log \frac{\mu_k}{1-\mu_k}$	Softmax	Softmax
Count	Poisson	$\log \mu$	exp	
Non-negative real	gamma	Negative of inverse	Negative of inverse	
Binary	Gumbel	Gumbel Inv CDF: log(-log())	Gumbel CDF: exp(-exp(-))	

.. and several others (exponential, inverse Gaussian, Binomial, Tweedie, etc)

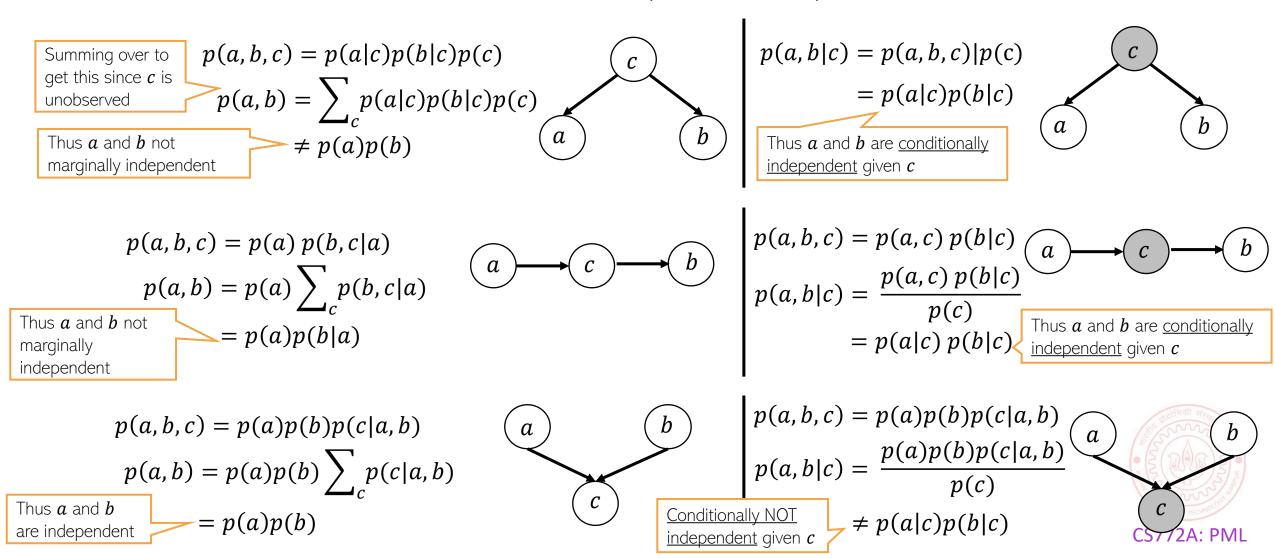
(Directed) Graphical Models

- Most models we study can be represented via directed graphical models (DGMs)
- A DGM is a graph with nodes denoting random variables and edges their dependences



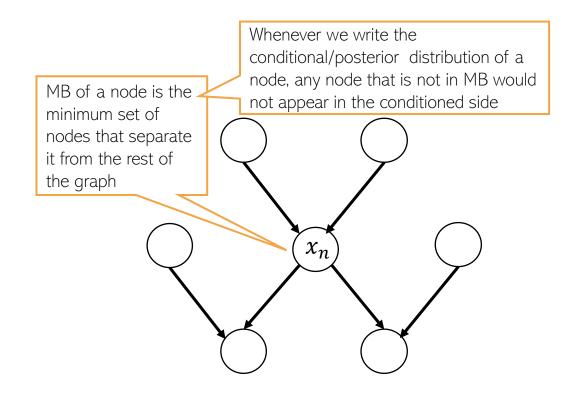
DGMs and Independence

• Goal: Test if two nodes a and b are independent in presence of a third node c



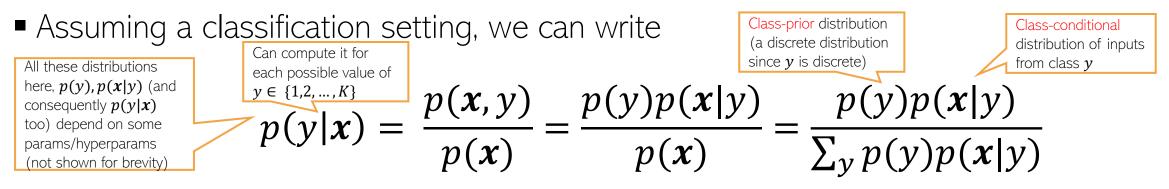
DGMs and Independence

- A node in a DGM is independent of all other nodes given its Markov Blanket
- Markov Blanket (MB) consists of a nodes parents, children, and co-parents



Generative Supervised Learning

- Want to learn the conditional distribution p(y|x) for supervised learning (reg/class.)
- Generative approach assumes a model for the joint distribution p(x, y)



- Note that the inputs of each class have a specific distribution $p(\boldsymbol{x}|\boldsymbol{y})$
 - Thus the inputs are also assumed to be "generated" via a process defined by p(x|y)
- We learn p(y) and p(x|y) using training data $(X, y) = \{(x_n, y_n)\}_{n=1}^N$
 - To estimate $p(y = k | \theta)$ or $p(y | \theta)$, the data is $\{y_n\}_{n=1}^N$: Bernoulli (K = 2) or multinoulli (K > 2) To estimate $p(x|y = k, \theta)$, the data is all the inputs from class k, i.e., $X_k = \{x_n: y_n = k\}$
- These distributions can be estimated using point estimation or using fully Bayesian inference

CS772A: PML

Have already seen the discriminative approach

to learn p(y|x) (prob linear regression,

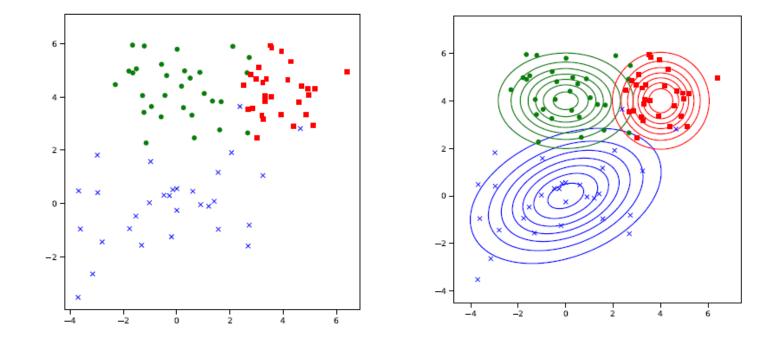
logistic regression, and also GLM)

Generative Supervised Learning: Classification

10

CS772A: PML

Training: Fit an appropriate probability distribution for data from each class



• Test time: Evaluate under which class, the test input has largest probability p(x|y = k) or largest class posterior probability $p(y = k|x) \propto p(y = k)p(x|y = k)$

Generative Classification: A Generative Story

• Assuming binary labels, can define a "generative story" for each example (x_i, y_i)

First draw ("generate") a binary label $y_i \in \{0,1\}$

 $y_i \sim \text{Bernoulli}(\pi)$ For multi-class problems, we will have a multinoulli instead

• Now draw ("generate") the input x_i from the distribution of class $y_i \in \{0,1\}$

 $\boldsymbol{x}_i | \boldsymbol{y}_i \sim p(\boldsymbol{x} | \boldsymbol{\theta}_{\boldsymbol{y}_i})$

Most generative models (supervised as well as unsupervised/semi-supervised) can be expressed via such a story

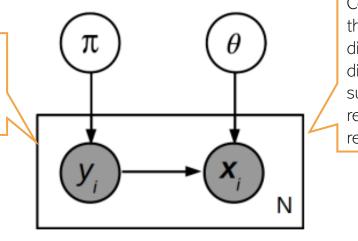
A discriminative model

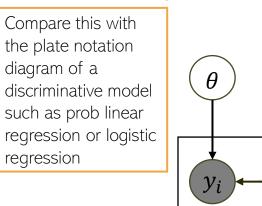
(no model for x_i 's)

• Writing $\theta = (\theta_0, \theta_1)$, the above generative model shown in "plate notation"

Note that in this generative process, we assume y is generated first since the generation of \boldsymbol{x} depends on what \boldsymbol{y} is

Note that in this generative process, we assume y is generated first since the generation of \boldsymbol{x} depends on what \boldsymbol{y} is





Order of generation in this story depends on what part of the data/parameters depend on what data/params

> Often we also show the generation of parameters/unknowns as well (via their respective distributions)

Generative Classification: Learning Procedure

Recall the generative classification model

(Posterior) Probability of

belonging to class k, conditioned on the input x

Probability (density) of input $oldsymbol{x}$ under class $oldsymbol{k}$

A way to handle this is to assume simpler forms for p(x|y) (e.g., Gaussian with diagonal/spherical covar – naïve Bayes) but it might sacrifice accuracy too

difficult especially if \pmb{x} is high-

enough data from each class

dimensional and we don't have

 $\sum_{k=1}^{K} \pi_k = 1$

For π , can use Beta or Dirichlet (we have already seen these

examples)

• We need to learn p(y) and p(x|y) here given training data $(X, y) = \{(x_n, y_n)\}_{n=1}^N$

 $p(y = k | \mathbf{x}) = \frac{p(y = k)p(\mathbf{x} | y = k)}{\sum_{k} p(y = k)p(\mathbf{x} | y = k)}$

Prior probability of

belonging to class k

- Class prior distribution p(y) will always be a discrete distribution, e.g.,
 - For $y \in \{0,1\}$, $p(y) = p(y|\pi) = \text{Bernoulli}(y|\pi)$ with $\pi \in (0,1)$
 - For $y \in \{1, 2, \dots, K\}$, $p(y) = p(y|\boldsymbol{\pi}) = \text{multinoulli}(y|\boldsymbol{\pi})$ where $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]$
- Class conditional distribution p(x|y) will depend on the nature of inputs, e.g.,
 - For $x \in \mathbb{R}^D$, p(x|y=k) can be a multivariate Gaussian (one per class)

Note: When estimating θ_k , we only need inputs from class k $X_k = \{x_n: y_n = k\}$ • Can estimate π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ and $\{\theta_k\}_{k=1}^K$ using (X, Y) via point est. or fully Bayesian infermations for π and $\{\theta_k\}_{k=1}^K$ and $\{\theta_k$

Generative Classification: Making Predictions

- Once π and $\{\theta_k\}_{k=1}^K$ are learned, we are ready to make prediction for any test input \boldsymbol{x}_*
- Two ways to make the prediction
- Approach 1: If we have point estimates for π and $\{\theta_k\}_{k=1}^K$, say $\hat{\pi}$ and $\{\hat{\theta}_k\}_{k=1}^K$. Then

$$p(y_* = k | \mathbf{x}_*) = \frac{p(y_* = k | \hat{\pi}) p(\mathbf{x}_* | \hat{\theta}_k)}{\sum_k p(y = k | \hat{\pi}) p(\mathbf{x} | \hat{\theta}_k)} \propto \hat{\pi}_k p(\mathbf{x}_* | \hat{\theta}_k)$$
Compute for every value of k and normalize

- Approach 2: If we have the full posterior for π and $\{\theta_k\}_{k=1}^K$. Then
 - Instead of using $p(y_* = k | \hat{\pi})$, we will use $p(y_* = k | y) = \int p(y_* = k | \pi) p(\pi | y) d\pi$
 - Instead of using $p(\mathbf{x}_*|\hat{\theta}_k)$, we will use $p(\mathbf{x}_*|\mathbf{X}_k) = \int p(\mathbf{x}_*|\theta_k) p(\theta_k|\mathbf{X}_k) d\theta_k$
 - Using these quantities, the prediction will be made as

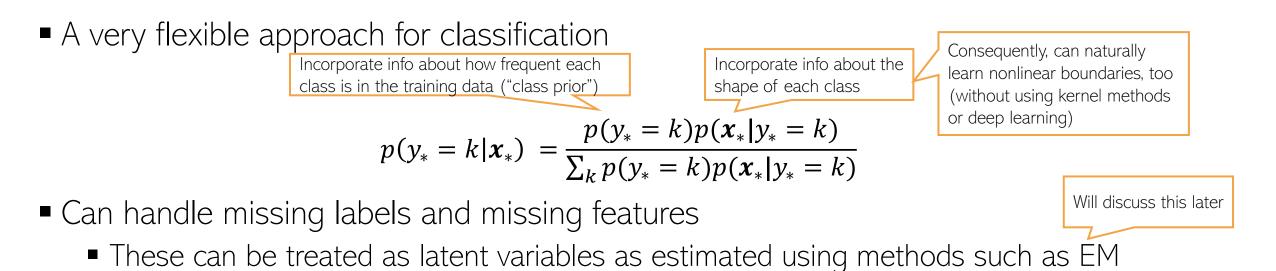
$$p(y_* = k | x_*, X, y) = \frac{p(y_* = k | y) p(x_* | X_k)}{\sum_k p(y_* = k | y) p(x_* | X_k)} \propto p(y_* = k | y) p(x_* | X_k)$$
Compute for every value of k and normalize
$$p(y_* = k | x_*, X, y) = \frac{p(y_* = k | y) p(x_* | X_k)}{\sum_k p(y_* = k | y) p(x_* | X_k)}$$
Note that we aren't using a single "best" value of the parameters π and θ_k .

ike Approach

PPD of y_*

CS772A: PMI

Generative Sup. Learning: Some Comments



- Ability to handle missing labels makes it suitable for semi-supervised learning
- The choice of the class-conditional and proper estimation is important
 - Can leverage advances in deep generative models to learn very flexible forms for p(x|y)
- Can also use it for regression (define p(x, y) via some distr. and obtain p(y|x) from it)
- Can also <u>combine</u> generative and discriminative approaches for supervised learning
 CS772A: PML

Hybrids of Discriminative and Generative Models

- Both discriminative and generative models have their strengths/shortcomings
- Some aspects about discriminative models for sup. learning

Recall prob linear regression and logistic reg

- Discriminative models have usually fewer parameters (e.g., just a weight vector)
- Given "plenty" of training data, disc. models can usually outperform generative models
- Some aspects about generative models for sup. learning
 - Can be more flexible (we have seen the reasons already)
 - Usually have more parameters to be learned
 - Modeling the inputs (learning $p(\mathbf{x}|\mathbf{y})$) can be difficult for high-dim inputs
- Some prior work on combining discriminative and generative models. Examples: $p(x, y, \theta_d, \theta_g) = p_{\theta_d}(y|x)p_{\theta_g}(x)p(\theta_d, \theta_g)$

 $\alpha \log p(y|x;\theta) + \beta \log p(x;\theta)$

Approach 1 (McCullum et al, 2006) – modeling the joint $p(x, y|\theta)$ using a multi-conditional likelihood

$$p(x, y, z) = p(y|x, z) \cdot p(x, z)$$

Approach 2 (Lasserre et al, 2006) -Coupled parameters between discriminative and generative models

Approach 3 (Kuleshov and Ermon, 2017) – Coupling discriminative and generative models via a latent variable z (see "Deep Hybrid Models: Bridging Discriminative and Generative Approaches", UAI 2017)

