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Plan for today and announcements

▪Wrap up GLM

▪ Testing conditional independence in directed graphical models

▪ Generative models for supervised learning

▪ Also, Quiz 1 on Monday (Sept 5) at 7pm

▪ Rescheduled class on Saturday (Sept 3) at 6pm

▪Mid-sem exam on Sept 19 in L17 (18:00-20:00), ERES seating arrangement
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GLM with Canonical Response Function

▪ For GLM with Canon Resp Func (a.k.a., canonical GLM)

▪ Consider doing MLE (assuming 𝑁 i.i.d. responses). The log likelihood

▪ Convexity of 𝐴(𝜂) guarantees a global optima. Gradient of log-lik w.r.t. 𝒘

▪ Note 𝜇𝑛 = 𝑓 𝜉𝑛 = 𝑓(𝒘⊤𝒙𝑛) and 𝑓 = 𝜓−1 (“inverse link”) depends on the model
▪ Real-valued 𝑦 (linear regression): 𝑓 is identity, i.e., 𝜇𝑛 = 𝒘⊤𝒙𝑛

▪ Binary 𝑦 (logistic regression): 𝑓 is sigmoid function, i.e., 𝜇𝑛 =
exp(𝒘⊤𝒙𝑛)

1+exp(𝒘⊤𝒙𝑛)

▪ Count-valued 𝑦 (Poisson regression): 𝑓 is exp, i.e., 𝜇𝑛 = exp(𝒘⊤𝒙𝑛)

▪ Non-negative 𝑦 (gamma regression): 𝑓 is inverse negative i.e., 𝜇𝑛 = −1/(𝒘⊤𝒙𝑛)
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The simple form of canonical GLM (nat. 

param just a linear function 𝒘⊤𝒙 ) makes 

parameter estimation via MLE/MAP easy 

since gradient and Hessian have simple 

expressions (though the Hessian may be 

expensive to compute/invert)

Exp of suff-stats 𝔼[𝑦𝑛]
Corrective 

updates for 𝒘
The Hessian can also be 

shown to be

𝐇 = −𝛁𝐠 = 
𝑛=1

𝑁

𝑓′( 𝜂𝑛)𝒙𝑛𝒙𝑛
⊤

𝐠 =
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Fully Bayesian Inference for GLMs

▪Most GLMs, except linear regression with Gaussian lik. and Gaussian prior, do not 
have conjugate pairs of likelihood and priors (recall logistic regression)

▪ Posterior over the weight vector 𝑤 is intractable

▪ Approximate inference methods needed, e.g., 

▪ Laplace approximation (have already seen): Easily applicable since derivatives (first and 
second) can be easily computed (note that we need 𝑤𝑀𝐴𝑃 and Hessian)

▪ MCMC or variational inference (will see later)
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Various Types of GLMs
5

Type of response Type of GLM Link Function Ψ Response Function 𝑓
(Inv Link Func if canon. GLM)

(Operates on 𝝃 = 𝒘⊤𝒙)

Activation

Real Gaussian Identity Identity Linear

Binary Logistic Log-odds: log
𝜇

1−𝜇
Sigmoid Sigmoid

Binary Probit Inv CDF: Φ−1(𝜇) Φ (CDF of N(0,1)) Probit

Categorical Multinoulli Log-odds: log
𝜇𝑘

1−𝜇𝑘
Softmax Softmax

Count Poisson log 𝜇 exp

Non-negative real gamma Negative of inverse Negative of inverse

Binary Gumbel Gumbel Inv CDF: log(-log()) Gumbel CDF: exp(-exp(-))

.. and several others (exponential, inverse Gaussian, Binomial, Tweedie, etc)
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(Directed) Graphical Models

▪Most models we study can be represented via directed graphical models (DGMs)

▪ A DGM is a graph with nodes denoting random variables and edges their dependences

▪ Plate notation is a compact way of representing DGMs, e.g., 
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𝑝(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)

= 𝑝 𝑥1 𝑝 𝑥2 𝑝 𝑥3 𝑝(𝑥4|𝑥2, 𝑥3)

𝑝 𝑥5 𝑥1, 𝑥3 𝑝 𝑥6 𝑥4)𝑝(𝑥7|𝑥4, 𝑥5)

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝐾)

𝑝(𝐱) =ෑ
𝑖=1

𝐾

𝑝(𝑥𝑖|pa (𝑥𝑖))

Set of parent nodes 

of 𝑥𝑖 in the DGM
Joint distribution of 𝐱 written 

as a product of local 

conditional distributions

𝑥1 𝑥2 𝑥𝑁

𝜃

𝑥𝑛

𝜃

𝑁

Also remember: shaded = observed, 

unshaded = unknown
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DGMs and Independence

▪ Goal: Test if  two nodes 𝑎 and 𝑏 are independent in presence of a third node 𝑐

7

𝑎 𝑏

𝑐𝑝 𝑎, 𝑏, 𝑐 = 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐 𝑝(𝑐)

𝑝 𝑎, 𝑏 =
𝑐
𝑝 𝑎 𝑐 𝑝 𝑏 𝑐 𝑝(𝑐)

≠ 𝑝(𝑎)𝑝(𝑏)

Summing over to 

get this since 𝑐 is 

unobserved

Thus 𝑎 and 𝑏 not 

marginally independent

𝑎 𝑏

𝑐𝑝 𝑎, 𝑏|𝑐 = 𝑝 𝑎, 𝑏, 𝑐 |𝑝(c)

= 𝑝 𝑎 𝑐 𝑝 𝑏 𝑐

Thus 𝑎 and 𝑏 are conditionally 

independent given 𝑐

𝑎 𝑐 𝑏
𝑝 𝑎, 𝑏, 𝑐 = 𝑝(𝑎) 𝑝(𝑏, 𝑐|𝑎)

𝑝 𝑎, 𝑏 = 𝑝(𝑎)
𝑐
𝑝(𝑏, 𝑐|𝑎)

= 𝑝 𝑎 𝑝(𝑏|𝑎)
Thus 𝑎 and 𝑏 not 

marginally 

independent

𝑎 𝑐 𝑏𝑝 𝑎, 𝑏, 𝑐 = 𝑝(𝑎, 𝑐) 𝑝(𝑏|𝑐)

𝑝 𝑎, 𝑏|𝑐 =
𝑝(𝑎, 𝑐) 𝑝(𝑏|𝑐)

𝑝(𝑐)

= 𝑝(𝑎|𝑐) 𝑝(𝑏|𝑐)
Thus 𝑎 and 𝑏 are conditionally 

independent given 𝑐

𝑐

𝑎 𝑏

𝑐

𝑎 𝑏𝑝 𝑎, 𝑏, 𝑐 = 𝑝(𝑎)𝑝(𝑏)𝑝(𝑐|𝑎, 𝑏)

𝑝 𝑎, 𝑏 = 𝑝(𝑎)𝑝(𝑏)
𝑐
𝑝(𝑐|𝑎, 𝑏)

= 𝑝 𝑎 𝑝(𝑏)

𝑝 𝑎, 𝑏, 𝑐 = 𝑝(𝑎)𝑝(𝑏)𝑝(𝑐|𝑎, 𝑏)

𝑝 𝑎, 𝑏|𝑐 =
𝑝(𝑎)𝑝(𝑏)𝑝(𝑐|𝑎, 𝑏)

𝑝(𝑐)

≠ 𝑝 𝑎 𝑐 𝑝(𝑏|𝑐)Conditionally NOT 

independent given 𝑐

Thus 𝑎 and 𝑏
are independent
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DGMs and Independence

▪ A node in a DGM is independent of all other nodes given its Markov Blanket

▪Markov Blanket (MB) consists of a nodes parents, children, and co-parents
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𝑥𝑛

MB of a node is the 

minimum set of 

nodes that separate 

it from the rest of 

the graph

Whenever we write the 

conditional/posterior  distribution of a 

node, any node that is not in MB would 

not appear in the conditioned side
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Generative Supervised Learning
9

▪ Want to learn the conditional distribution 𝑝(𝑦|𝒙) for supervised learning (reg/class.)

▪ Generative approach assumes a model for the joint distribution 𝑝(𝒙, 𝑦)

▪ Assuming a classification setting, we can write

▪ Note that the inputs of each class have a specific distribution 𝑝(𝒙|𝑦)
▪ Thus the inputs are also assumed to be “generated” via a process defined by 𝑝(𝒙|𝑦)

▪ We learn 𝑝(𝑦) and 𝑝(𝒙|𝑦) using training data 𝑿, 𝒚 = 𝑥𝑛, 𝑦𝑛 𝑛=1
𝑁

▪ To estimate 𝑝 𝑦 = 𝑘 𝜃 or 𝑝 𝑦 𝜃 , the data is 𝑦𝑛 𝑛=1
𝑁 : Bernoulli (𝐾 = 2) or multinoulli (𝐾 > 2) To 

estimate 𝑝(𝒙|𝑦 = 𝑘, 𝜃), the data is all the inputs from class 𝑘, i.e., 𝑿k = {𝒙𝑛: 𝑦𝑛 = 𝑘}

▪ These distributions can be estimated using point estimation or using fully Bayesian inference

𝑝 𝑦 𝒙 =
𝑝(𝒙, 𝑦)

𝑝(𝒙)
=
𝑝(𝑦)𝑝(𝒙|𝑦)

𝑝(𝒙)
=

𝑝(𝑦)𝑝(𝒙|𝑦)

σ𝑦 𝑝(𝑦)𝑝(𝒙|𝑦)

Class-conditional

distribution of inputs 

from class 𝑦

Class-prior distribution 

(a discrete distribution 

since 𝑦 is discrete)All these distributions 

here, 𝑝(𝑦), 𝑝(𝒙|𝑦) (and 

consequently 𝑝(𝑦|𝒙)
too) depend on some 

params/hyperparams

(not shown for brevity)

Can compute it for 

each possible value of 

𝑦 ∈ {1,2, … , 𝐾}

Have already seen the discriminative approach 

to learn 𝑝(𝑦|𝑥) (prob linear regression, 

logistic regression, and also GLM)
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Generative Supervised Learning: Classification
10

▪ Training: Fit an appropriate probability distribution for data from each class

▪ Test time: Evaluate under which class, the test input has largest probability 𝑝(𝑥|𝑦 = 𝑘)
or largest class posterior probability 𝑝 𝑦 = 𝑘 𝑥 ∝ 𝑝 𝑦 = 𝑘 𝑝(𝑥|𝑦 = 𝑘)
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Generative Classification: A Generative Story

▪ Assuming binary labels, can define a “generative story” for each example (𝒙𝑖 , 𝑦𝑖)
▪ First draw (“generate”) a binary label 𝑦𝑖 ∈ {0,1}

▪ Now draw (“generate”) the input 𝒙𝑖 from the distribution of class 𝑦𝑖 ∈ {0,1}

▪ Writing 𝜃 = 𝜃0, 𝜃1 , the above generative model shown in “plate notation”
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𝑦𝑖 ∼ Bernoulli 𝜋

𝒙𝑖|𝑦𝑖 ∼ 𝑝 𝒙|𝜃𝑦𝑖

For multi-class problems, we 

will have a multinoulli instead

Note that in this generative process, 

we assume y is generated first 

since the generation of 𝒙 depends 

on what 𝑦 is

Note that in this generative process, 

we assume y is generated first 

since the generation of 𝒙 depends 

on what 𝑦 is

Compare this with 

the plate notation 

diagram of a 

discriminative model 

such as prob linear 

regression or logistic 

regression

N

𝜃

𝑦𝑖 𝒙𝑖

A discriminative model

(no model for 𝒙𝑖’s)

Most generative models (supervised as 

well as unsupervised/semi-supervised) 

can be expressed via such a story

Order of generation in this 

story depends on what part of 

the data/parameters depend 

on what data/params

Often we also show the 

generation of 

parameters/unknowns 

as well (via their 

respective distributions)
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Generative Classification: Learning Procedure

▪ Recall the generative classification model

▪ We need to learn 𝑝(𝑦) and 𝑝(𝒙|𝑦) here given training data 𝑿, 𝒚 = 𝑥𝑛, 𝑦𝑛 𝑛=1
𝑁

▪ Class prior distribution 𝑝(𝑦) will always be a discrete distribution, e.g.,
▪ For 𝑦 ∈ {0,1}, 𝑝 𝑦 = 𝑝 𝑦 𝜋 = Bernoulli 𝑦|𝜋 with 𝝅 ∈ (0,1)

▪ For 𝑦 ∈ {1,2,… , 𝐾}, 𝑝 𝑦 = 𝑝 𝑦 𝝅 = multinoulli 𝑦|𝝅 where 𝝅 = [𝜋1, … , 𝜋𝐾]

▪ Class conditional distribution 𝑝(𝒙|𝑦) will depend on the nature of inputs, e.g.,
▪ For 𝒙 ∈ ℝ𝐷 , 𝑝 𝒙 𝑦 = 𝑘 can be a multivariate Gaussian (one per class) 

▪ Can estimate 𝜋 and {θ𝑘}𝑘=1
𝐾 using 𝑿, 𝒚 via point est. or fully Bayesian infer.
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𝑝 𝒙 𝑦 = 𝑘 = 𝑝 𝒙 𝜃𝑘 = 𝒩(𝒙|𝜇𝑘 , Σ𝑘)

𝑝 𝑦 = 𝑘 𝒙 =
𝑝(𝑦 = 𝑘)𝑝(𝒙|𝑦 = 𝑘)

σ𝑘 𝑝(𝑦 = 𝑘)𝑝(𝒙|𝑦 = 𝑘)

Prior probability of 

belonging to class 𝑘

(Posterior) Probability of 

belonging to class 𝑘,
conditioned on the input 𝒙

Probability (density) of 

input 𝒙 under class 𝑘


𝑘=1

𝐾

𝜋𝑘 = 1

Note: When estimating 𝜃𝑘 , we 

only need inputs from class 𝑘
𝑿k = {𝒙𝑛: 𝑦𝑛 = 𝑘}

Will need appropriate prior 

distributions for 𝜋 and {θ𝑘}𝑘=1
𝐾

For 𝜋 , can use Beta or Dirichlet 

(we have already seen these 

examples)

Note: Estimating 𝑝(𝒙|𝑦) can be 

difficult especially if  𝒙 is high-

dimensional and we don’t have 

enough data from each class

A way to handle this is to assume simpler forms for 

𝑝(𝒙|𝑦) (e.g., Gaussian with diagonal/spherical covar –

naïve Bayes) but it might sacrifice accuracy too
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Generative Classification: Making Predictions

▪ Once 𝜋 and {θ𝑘}𝑘=1
𝐾 are learned, we are ready to make prediction for any test input 𝒙∗

▪ Two ways to make the prediction

▪ Approach 1: If  we have point estimates for 𝜋 and {θ𝑘}𝑘=1
𝐾 , say ො𝜋 and { መ𝜃𝑘}𝑘=1

𝐾 . Then

▪ Approach 2: If  we have the full posterior for 𝜋 and {θ𝑘}𝑘=1
𝐾 . Then

▪ Instead of using 𝑝(𝑦∗ = 𝑘| ො𝜋), we will use 𝑝 𝑦∗ = 𝑘 𝒚 = ∫ 𝑝 𝑦∗ = 𝑘 𝜋 𝑝 𝜋 𝒚 𝑑𝜋

▪ Instead of using 𝑝(𝒙∗| 𝜃𝑘), we will use 𝑝 𝒙∗ 𝑿𝑘 = ∫ 𝑝 𝒙∗ 𝜃𝑘 𝑝 𝜃𝑘 𝑿𝑘 𝑑𝜃𝑘
▪ Using these quantities, the prediction will be made as
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𝑝 𝑦∗ = 𝑘 𝑥∗, 𝑿, 𝒚 =
𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

σ𝑘 𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

𝑝 𝑦∗ = 𝑘 𝒙∗ =
𝑝(𝑦∗ = 𝑘|ො𝜋)𝑝(𝒙∗| መ𝜃𝑘)

σ𝑘 𝑝(𝑦 = 𝑘| ො𝜋)𝑝(𝒙| መ𝜃𝑘)
∝ ො𝜋𝑘𝑝(𝒙∗| መ𝜃𝑘)

∝ 𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

PPD of 𝑦∗

PPD of 𝒙∗

Compute for every value 

of 𝑘 and normalize

Compute for every value 

of 𝑘 and normalize

Note that we aren’t using a single 

“best” value of the params 𝜋 and 𝜃𝑘
unlike Approach 1
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Generative Sup. Learning: Some Comments

▪ A very flexible approach for classification

▪ Can handle missing labels and missing features

▪ These can be treated as latent variables as estimated using methods such as EM

▪ Ability to handle missing labels makes it suitable for semi-supervised learning

▪ The choice of the class-conditional and proper estimation is important

▪ Can leverage advances in deep generative models to learn very flexible forms for 𝑝(𝒙|𝑦)

▪ Can also use it for regression (define 𝑝(𝒙, 𝑦) via some distr. and obtain 𝑝(𝑦|𝒙) from it)

▪ Can also combine generative and discriminative approaches for supervised learning
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𝑝 𝑦∗ = 𝑘 𝒙∗ =
𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

σ𝑘 𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

Incorporate info about how frequent each 

class is in the training data (“class prior”)

Incorporate info about the 

shape of each class

Will discuss this later

Consequently, can naturally 

learn nonlinear boundaries, too 

(without using kernel methods 

or deep learning)
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Hybrids of Discriminative and Generative Models

▪ Both discriminative and generative models have their strengths/shortcomings

▪ Some aspects about discriminative models for sup. learning
▪ Discriminative models have usually fewer parameters (e.g., just a weight vector)

▪ Given “plenty” of training data, disc. models can usually outperform generative models

▪ Some aspects about generative models for sup. learning
▪ Can be more flexible (we have seen the reasons already)

▪ Usually have more parameters to be learned

▪ Modeling the inputs (learning 𝑝(𝒙|𝑦)) can be difficult for high-dim inputs

▪ Some prior work on combining discriminative and generative models. Examples:
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Approach 1 (McCullum et 

al, 2006) – modeling the 

joint 𝑝(𝑥, 𝑦|𝜃) using a 

multi-conditional likelihood

Approach 2 (Lasserre et al, 2006) –

Coupled parameters between 

discriminative and generative models

Approach 3 (Kuleshov and Ermon, 2017) – Coupling discriminative and generative models via a latent 

variable 𝑧 (see “Deep Hybrid Models: Bridging Discriminative and Generative Approaches“, UAI 2017)

Recall prob linear 

regression and logistic reg


