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Logistic Regression

▪ A discriminative model for binary classification (𝑦 ∈ {0,1})

▪ A linear model with parameters 𝒘 ∈ ℝ𝐷 computes a score 𝒘⊤𝒙 for input 𝒙

▪ A sigmoid function maps this real-valued score into probability of label being 1

▪ Thus conditional distribution of label 𝑦 ∈ {0,1} given 𝒙 is the following Bernoulli

▪ Can use a Gaussian prior on 𝒘: 𝑝 𝒘 𝜆 = 𝒩 𝒘|𝟎, 𝜆−1𝑰

▪ Point estimation (MLE/MAP) for LR gives global optima (NLL is convex in 𝒘)

▪We will mainly focus on fully Bayesian inference (computing the posterior)
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𝑝 𝑦 𝒙,𝒘 = Bernoulli 𝑦 𝜇 = 𝜇𝑦 1 − 𝜇 1−𝑦 =
exp 𝒘⊤𝒙

1 + exp 𝒘⊤𝒙

𝑦
1

1 + exp 𝒘⊤𝒙

1−𝑦

real-valued score

𝑝 𝑦 = 1 𝒙,𝒘 = 𝜇 = 𝜎 𝒘⊤𝒙 Large positive score 𝒘⊤𝒙 means 

large prob of label being 1, and large 

negative score means low prob

Likelihood

𝜎 𝑧 =
1

1 + exp(−𝑧)
=

exp(𝑧)

1 + exp(𝑧)

There are other ways too that can convert 

the score into a probability, such as a CDF:

𝑝 𝑦 = 1 𝒙,𝒘 = 𝜇 = Φ 𝒘⊤𝒙 where Φ is 

the CDF of 𝒩(0,1). This model is known as 

“Probit Regression”.

Can also use a sparsity-inducing prior, such as 

spike-and-slab or a scale-mixture of Gaussians
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Logistic Regression: The Posterior

▪ The posterior will be

▪Need to approximate the posterior in this case

▪ For now, we will use a simple approximation called Laplace approximation
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𝑝 𝒘 𝑿, 𝒚 =
𝑝 𝒘 𝑝(𝒚|𝑿,𝒘)

𝑝(𝒚|𝑿)
=

𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛)

׬ 𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛) 𝑑𝒘

BernoulliGaussian Unfortunately, Gaussian and 

Bernoulli are not conjugate 

with each other, so analytic 

expression for the posterior 

can’t be obtained unlike 

prob. linear regression

Other approx. inference methods, 

such as MCMC and VI later

Hyperparam 𝜆
not shown

Laplace approx: Approximates 

the intractable posterior by a 

Gaussian whose mean is the 

MAP solution of the LR model

.. and the covariance matrix of this Gaussian is 

set to the inverse of the Hessian matrix 

(second derivative) of the model’s negative 

log-joint of params and data, evaluated at the 

MAP solution

First or second-order optimization 

methods can be used

𝜇𝑛 = 𝜎(𝒘⊤𝒙𝑛)
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LR Posterior: An Illustration

▪ Assuming the Gaussian approximation, some samples from the posterior of LR

▪ Each sample drawn from 𝑝(𝒘|𝑿, 𝒚) will give a weight vector 

▪ Each such 𝒘 corresponds to one of the separators in the above figure
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Not all separators from from the posterior are 

equally good; their “goodness” will depends 

on their posterior probabilities 𝑝(𝒘|𝑿, 𝒚)

When making predictions, we can still use all 

of them but weighted by their importance 

based on their posterior probabilities

That’s exactly what we do when 

computing the predictive distribution
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LR: Posterior Predictive Distribution

▪ The posterior predictive distribution can be computed as

▪Monte-Carlo approximation of this integral is one possible way
▪ Draw 𝑀 samples 𝒘1, 𝒘2, … ,𝒘𝑀, from the approx. of posterior 

▪ Approximate the PPD as follows

▪ In contrast, when using MLE/MAP solution ෝ𝒘𝑜𝑝𝑡, the plug-in pred. distribution
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𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 = 𝑝׬ 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘

sigmoid Gaussian (if  using Laplace approx.)
Integral not tractable and 

must be approximated

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈
1

𝑀
෍

𝑚=1

𝑀

𝑝 𝑦∗ = 1 𝒘m, 𝒙∗ =
1

𝑀
෍

𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 = 𝑝׬ 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘

≈ 𝑝 𝑦∗ = 1 ෝ𝒘𝑜𝑝𝑡, 𝒙∗ = 𝜎(ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛)
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LR: Plug-in Prediction vs Bayesian Averaging

▪ Plug-in prediction uses a single 𝒘 (point est) to make prediction

▪ PPD does an averaging using all possible 𝒘’s from the posterior
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Posterior averaging is like 

using an ensemble of 

models. In this example, 

each model is a linear 

classifier but the ensemble-

like effect resulted in 

nonlinear boundaries

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈ 𝜎(ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛) 𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈

1

𝑀
෍

𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

Color transitions (red 

to blue) in both plots 

denote how the 

probability of an 

input changes from 

belonging to red 

class to belonging to 

blue class. All inputs 

on a line (or curve 

on RHS plot)have 

the same probability 

of belonging to the 

red/blue class
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Multiclass Logistic (a.k.a. Softmax) Regression
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▪ Also called multinoulli/multinomial regression: Basically, LR for 𝐾 > 2 classes

▪ In this case, 𝑦𝑛 ∈ 1,2, … , 𝐾 and label probabilities are defined as

▪ 𝐾 weight vecs 𝒘1, 𝒘2, … ,𝒘𝐾 (one per class), each 𝐷-dim, and 𝑾 = [𝒘1, 𝒘2, … ,𝒘𝐾]

▪ Each likelihood 𝑝 𝑦𝑛 𝒙𝑛,𝑾 is a multinoulli distribution. Therefore total likelihood

▪ Can do MLE/MAP/fully Bayesian estimation for 𝑾 similar to LR model

𝑝 𝑦𝑛 = 𝑘 𝒙𝑛,𝑾 =
exp(𝒘𝑘

⊤𝒙𝑛)

σℓ=1
𝐾 exp(𝒘ℓ

⊤𝒙𝑛)
= 𝜇𝑛𝑘

Also note that σℓ=1
𝐾 𝜇𝑛ℓ =1 

for any input 𝒙𝑛

Softmax function

𝑝 𝒚|𝑿,𝑾 = ෑ
𝑛=1

𝑁

ෑ
ℓ=1

𝐾

𝜇𝑛ℓ
𝑦𝑛ℓ Notation: 𝑦𝑛ℓ = 1 if true class of 

𝒙𝑛 is ℓ and 𝑦𝑛ℓ′ = 0 ∀ ℓ′ ≠ ℓ
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Laplace Approximation of Posterior Distribution

▪ Consider a posterior distribution that is intractable to compute

▪ Laplace approximation approximates the above using a Gaussian distribution

▪Why is the above Gaussian a reasonable approximation to the posterior? 

8

Unknowns of 

the model
Data
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Derivation of the Laplace Approximation

▪ Let’s write the Bayes rule as

▪ Approximating log 𝑝(𝒟, 𝜃) by a quadratic function of 𝜃 will make it a Gaussian

▪ Consider the second-order Taylor approx of a function 𝑓 𝜃 around some 𝜃0

▪ Assuming 𝑓 𝜃 = log 𝑝(𝒟, 𝜃) and 𝜃0 = 𝜃𝑀𝐴𝑃, 

▪ Thus Laplace approx. is based on a second-order Taylor approx. of the posterior
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Constant w.r.t. 𝜃

+ const

Aha! This is a Gaussian!

Comparing with a Gaussian PDF

Mean = 𝜃𝑀𝐴𝑃
Cov. Matrix = H−1

−H

≈

Recall that Hessian is the 

second derivative of the 

negative of log-joint
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Properties of Laplace Approximation

▪ Usually straightforward if  derivatives (first and second) can be computed easily

▪ Expensive if  parameter 𝜃 is very high dimensional
▪ Reason: We need to invert the Hessian whose size is 𝐷 × 𝐷 (𝐷 is the # of params)

▪ Can do badly if  the (true) posterior is multimodal

▪ Applicable only when 𝜃 is real-valued (won’t if, say, it is positive, binary etc)

▪ Note: Even if  we have a non-probabilistic model (loss function + regularization), we 
can obtain an approx “posterior” for that model using the Laplace approximation
▪ Optima of the regularized loss function will be Gaussian’s mean

▪ Second derivative of the regularized loss function will be the Hessian
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True posterior

Gaussian 

approximation

E.g., a deep neural network, or even in 

simpler models (e.g., logistic reg with a 

very large number of features

For multimodal posteriors, 

can use a mixture of 

Laplace approximation*

If  𝐾 local modes, then define the approx. 

posterior as a mixture of 𝐾 Gaussians

𝑝 𝜃 𝐷 ≈෍
𝑘=1

𝐾

𝜋(𝑘)𝒩(𝜃|𝜃𝑀𝐴𝑃
𝑘 , 𝐻 𝑘 −1

)

(see paper cited below for details)

*Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning (Eschenhagen et al, 2021)

Useful for deep 

learning models
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Laplace Approx. for High-Dimensional Problems

▪When 𝜃 is very high dim, one option is to approximate the Hessian itself

▪One such approx. of the Hessian is a diagonal approximation

▪ The diagonal approx. of Hessian may be too crude 
▪ Ignores covariances among params and treats them as being independent of each other

▪ A block-diagonal approx. proposed recently (in the context of deep neural nets)
▪ Treats params across layers to be independent but correlated within the same layer

▪ The approach known as Kronecker-Product Factored (KFAC) Laplace approximation
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𝐇 ≈ diag(𝐅)

Fisher Information Matrix (FIM)

Assuming a discriminative 

model with parameters 𝜃

Example: A Bayesian neural net 

for regression/classification 

(𝜃 denotes the weights of the 

network)FIM is easily computable 

in auto-diff  frameworks 

used in deep learning

KFAC paper: “A Scalable Laplace Approximation for Neural Networks” (Ritter et al, ICLR 2018)
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Generalized Linear Models
▪ (Probabilistic) Linear Regression: when response 𝑦 is real-valued

▪ Logistic Regression: when response 𝑦 is binary (0/1)

▪ In both, the model depends on the inputs 𝒙 via a linear model 𝒘⊤𝒙

▪ Generalized Linear Models (GLM) allow modeling other types of responses, e.g.,
▪ Counts (e.g., predicting the hourly hits on a website)

▪ Positive reals (e.g., predicting depth of different pixels in a scene, or stock prices)

▪ Fractions between 0 and 1 (e.g., predicting proportion of crude oil convertible to gasoline)

▪Note: Can convert responses to real values and apply standard regression, but it 
is better to model them directly (e.g., for better interpretability of the model)

12

Note: Probabilistic 

Linear Regression and 

Logistic Regression 

are also GLMs
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Generalized Linear Models: Formally

▪ GLMs model the response using an exponential family distribution

▪ The inputs 𝒙 only appear via a linear model  𝜉 = 𝒘⊤𝒙 and the overall pipeline is

▪Note: Some GLM are represented via exponential dispersion family given by
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Response 𝑦 assumed 

univariate but vector 

GLMs also exist

Scalar natural param 

(depends on input 𝒙) Scalar suff-stats 𝜙(𝑦) = 𝑦

Conditional mean of response 

𝜇 = 𝔼 𝑦 𝒙 = 𝑓 𝜉 = 𝑓(𝒘⊤𝒙)

Natural parameter 

𝜂 = 𝜓(𝜇)

Link FunctionResponse 

Function

For prob. linear regression with 

Gaussian lik, 𝑓 is identify since 

mean 𝜇 = 𝔼 𝑦 𝒙 = 𝒘⊤𝒙

For logistic regression, 𝑓
is sigmoid since mean 

𝜇 = 𝔼 𝑦 𝒙 = 𝜎(𝒘⊤𝒙)

For GLM with Canonical 

Response Function (next 

slide), 𝜓 = 𝑓−1 and thus nat. 

param. 𝜂 = 𝜉 = 𝒘⊤𝒙

The reason why GLMs 

can model a wide 

variety of responses

Called the “dispersion parameter”

If  𝜎2 is fixed, it is the 

standard exponential family

Examples: Gaussian GLM, Gamma GLM

𝔼 𝑦 = 𝐴′ 𝜂
var 𝑦 = 𝐴′′ 𝜂 𝜎2

Recall cumulant results of exp-fam

𝑓 known as “inverse 

link function” in this 

case
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Generalized Linear Models: Examples

▪ Consider the overdispersed GLMs

▪ Consider a linear regression model with Gaussian likelihood

▪ Comparing the expressions, 𝜂 = 𝒘⊤𝒙, 𝐴 𝜂 =
𝜂2

2
, log ℎ 𝑦, 𝜎2 = −𝑦2/2𝜎2

▪ Can likewise express other models for exp-family distributions 𝑝(𝑦|𝒙)
▪ Regardless of the form, all will have 𝜂 = 𝒘⊤𝒙
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𝑝 𝑦 𝒙,𝒘, 𝜎2 ∝ exp −
𝑦 − 𝒘⊤𝒙 2

2𝜎2
= exp −

𝑦2 + 𝒘⊤𝒙 2 − 2𝑦𝒘⊤𝒙

2𝜎2
= exp

𝑦𝒘⊤𝒙 − 𝒘⊤𝒙 2/2

𝜎2
−

𝑦2

2𝜎2

𝑝 𝑦 𝜂, 𝜎2 = ℎ(𝑦, 𝜎2)exp
𝜂𝑦 − 𝐴(𝜂)

𝜎2
= exp

𝜂𝑦 − 𝐴(𝜂)

𝜎2
+ log ℎ(𝑦, 𝜎2)

Note that here we 

expressed the Gaussian in 

the overdispersed GLM 

form unlike how we did it 

earlier when discussing 

exp-family
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GLM with Canonical Response Function

▪ For GLM with Canon Resp Func (a.k.a., canonical GLM)

▪ Consider doing MLE (assuming 𝑁 i.i.d. responses). The log likelihood

▪ Convexity of 𝐴(𝜂) guarantees a global optima. Gradient of log-lik w.r.t. 𝒘

▪ Note 𝜇𝑛 = 𝑓 𝜉𝑛 = 𝑓(𝒘⊤𝒙𝑛) and 𝑓 = 𝜓−1 (“inverse link”) depends on the model
▪ Real-valued 𝑦 (linear regression): 𝑓 is identity, i.e., 𝜇𝑛 = 𝒘⊤𝒙𝑛

▪ Binary 𝑦 (logistic regression): 𝑓 is sigmoid function, i.e., 𝜇𝑛 =
exp(𝒘⊤𝒙𝑛)

1+exp(𝒘⊤𝒙𝑛)

▪ Count-valued 𝑦 (Poisson regression): 𝑓 is exp, i.e., 𝜇𝑛 = exp(𝒘⊤𝒙𝑛)

▪ Non-negative 𝑦 (gamma regression): 𝑓 is inverse negative i.e., 𝜇𝑛 = −1/(𝒘⊤𝒙𝑛)
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The simple form of canonical GLM (nat. 

param just a linear function 𝒘⊤𝒙 ) makes 

parameter estimation via MLE/MAP easy 

since gradient and Hessian have simple 

expressions (though the Hessian may be 

expensive to compute/invert)

Exp of suff-stats 𝔼[𝑦𝑛]
Corrective 

updates for 𝒘
The Hessian can also be 

shown to be

𝐇 = −𝛁𝐠 = ෍
𝑛=1

𝑁

𝑓′( 𝜂𝑛)𝒙𝑛𝒙𝑛
⊤

𝐠 =
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Fully Bayesian Inference for GLMs

▪Most GLMs, except linear regression with Gaussian lik. and Gaussian prior, do not 
have conjugate pairs of likelihood and priors (recall logistic regression)

▪ Posterior over the weight vector 𝑤 is intractable

▪ Approximate inference methods needed, e.g., 

▪ Laplace approximation (have already seen): Easily applicable since derivatives (first and 
second) can be easily computed (note that we need 𝑤𝑀𝐴𝑃 and Hessian)

▪ MCMC or variational inference (will see later)
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Various Types of GLMs
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Type of response Type of GLM Link Function Ψ Response Function 𝑓
(Inv Link Func if canon. GLM)

(Operates on 𝝃 = 𝒘⊤𝒙)

Activation

Real Gaussian Identity Identity Linear

Binary Logistic Log-odds: log
𝜇

1−𝜇
Sigmoid Sigmoid

Binary Probit Inv CDF: Φ−1(𝜇) Φ (CDF of N(0,1)) Probit

Categorical Multinoulli Log-odds: log
𝜇𝑘

1−𝜇𝑘
Softmax Softmax

Count Poisson log 𝜇 exp

Non-negative real gamma Negative of inverse Negative of inverse

Binary Gumbel Gumbel Inv CDF: log(-log()) Gumbel CDF: exp(-exp(-))

.. and several others (exponential, inverse Gaussian, Binomial, Tweedie, etc)


