(1) Exponential Family Distributions (Contd)
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Exp. Family (Pitman, Darmois, Koopman, 1930s)

" Defines a class of distributions. An Exponential Family distribution is of the form

p(x10) = gy h0x) Rl o(x)] = h(x) expldTo(x) ~ A)

1

»x € X™is the rv. being modeled (X denotes some space, e.g., R or {0,1})

=9 € R%: Natural parameters or canonical parameters defining the distribution

= p(x) € R?: Sufficient statistics (another random variable)
= Why “sufficient”: p(x]0) as a function of 8 depends on x only via ¢ (x)

=7(0) = [ h(x)exp[6T ¢ (x)]dx: Partition Function

"A(8) = log Z(0):

" h(x): A constant (doesn't depend on 8)

| og-partition function (also called cumulant function)
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Expressing a Distribution in Exp. Family Form

= Recall the form of exp-fam distribution p(x|0) = h(x)exp[0Tp(x) — A(6)]
= To write any exp-fam dist p() in the above form, write it as exp(log p())

exp (log Binomial(x|N, p)) = exp ('Og (N> A ”)NX)

X

X

- (i’) exp (xlog 1 f# — Nlog(1 —#))

= Now compare the resulting expression with the exponential family form

p(x|6) = h(x)exp[0 ' p(x) — A(0)]

. o identity the natural parameters, sufficient statistics, log-partition function, etc.

—  exp (Iog (N) + xlog i+ (N — x) log(1 — ,u))
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(Univariate) Gaussian as Exponential Family

" | et’s try to write a univariate Gaussian in the exponential family form
p(x|0) = h(x)exp[0" ¢(x) — A(0)]

» Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

1 (x — p)’ 1 7 1, p
N(x ,-:72 — exp | — — exp| —x — —x — — —logo
(x|p, 0%) Y7 -2 P 202 V2 P o2 202 202 &

1 [ > Tx 1 n
— ex o — — Og T
V2 = 2‘:%2 x° 202 &

-[3]-) el = l-[E

h(x) = = A(f) = £, +logo = 72+ — Liog(~26,) — L log(2n)
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Other Examples

= Many other distribution belong to the exponential family
= Bernoulli
" Beta
" Gamma
= Multinoulli/Multinomial
= Dirichlet
= Multivariate Gaussian
" . and many more ( https://en.wikipedia.org/wiki/Exponential family )

= Note: Not all distributions belong to the exponential family, e.g.,
= Uniform distribution (x ~ Unif(a, b))
= Student-t distribution
= Mixture distributions (e.g., mixture of Gaussians)
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Log-Partition Function

* The log-partition function is A(#) = log Z(0) = log [ h(x)exp[f ' ¢(x)]dx
" A(O) is also called the cumulant function
= Derivatives of A(0) can be used to generate the cumulants of the sufficient statistics

" Exercise: Assume 6 to be a scalar (thus ¢(x) is also scalar). Show that the first and
the second derivatives of A(@) are

dA

@ — Ep(x|9) [Qb(x)]

d2A 2 2

F Ep(x|9) [Qb (X)] o [EP(-"W)[QS(X)” — var[gb(x)]

= Above result also holds when 8 and ¢ (x) are vector-valued (the “var” will be “covar”)

» Important: A(@) is a convex function of 8. Why?
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VILE for Exponential Family Distributions

" Assume data D = {xq,...,xy} drawn i.i.d. from an exp. family distribution

p(x]6) = h(x)exp[6' ¢ (x) — A(0)]

* To do MLE, we need the overall likelihood -- a product of the individual likelihoods

N

N N N -
p(D|0) = Hp(x,-|9) = [H h(x,-)] exp [9TZ o(x;) — NA(O)] — [H h(xf)] exp [9 ¢(D) — NA(Q)}

i=1

= To estimate 8 (as we'll see shortly), we only need ¢(D) = Z,N:l ¢(x;) and N
= Size of ¢(D) = X, p(x;) does not grow with N (same as the size of each ¢ (x;))

» Only exponential family distributions have finite-sized sufficient statistics
* No need to store all the data; can simply update the sufficient statistics as data comes
= Useful in probabilistic inference with large-scale data sets and “online” parameter estimation
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MLE and Moment Matching

" The likelihood is of the form p(D|6) = [Hf"zl h(x,-)} exp |07 ¢(D) — NA(H)]
= The log-likelihood is (ignoring constant wirt. 8): log p(D]0) = 0" ¢(D) — NA(H)
* This is concave in 8 (since —A(0) is concave)

* Maximization (MLE solution) will yield a global maxima of 8

= MLE for exp-fam distributions can also be seen as doing moment-matching

v [0T¢(’D)—NA(9)] = ¢(D)— NVG[A(0)] = (D) — NE,x 0 [6(x)]
N

B Z P(xi) — NEp(x|0)[¢(x)]

= Therefore, at the “optimal” (i.e., MLE) 8, we must have Empirical moment

Expected moment (computed using data)

Can thus solve for the

N
A\ i 1
MLE 8 also b h
|°¢:‘ / the exp:cStZd Zmrgatc ™ Ep(x|9) [Cb(X)] = — E qb(xl)
e» empirical moments N P
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Moment Matching: An Example

= Given dataD = {xq,...,xy} drawn i.i.d. from a univar Gaussian p(x) = N (x|u, o%)

Blo(x)] = 5 > 0(x)

Moment matching

Same solution that
we get by doing

SR }
N 2;21 Xj MLE

X
]E[ 2] = |1 <N o
X N D i1 X ] N
1
o | =7 Zi:l Xi
= For a univariate Gaussian, note that 2 2 2
o =E[x] — u

Elx] = p TN
Tw uations, tw 1 L XP—
unl?nijvnas ((),usandoaz) E[Xz] = VEII’[X] -+ E[X]2 — 0-2 - N’2 iV Z,:, 170 )
— N > i1 (X — )

CS/772AFPIV

= Since the “true’, i.e., expected moments: E[¢(x)] = E [;2]




Bayesian Inference for Expon. Family Distributions

» Already saw that the total likelihood given N i.i.d. observations D = {x4,..., Xy}
N

p(D|0) ox exp [9T¢(D) - NA(H):

where ¢(D) = Z o(xi)

" | et's choose the following prior (note: looks similar in terms of 8 within exp)

p(6]vo, T0) = h(6) exp [9% — A(8) — Ac(o, To)]

= |gnoring the prior's log-partition function Ac(vo, T0) = log [, h(8) exp [0 ' 70 — 16 A(6)] d

p(Bvo, T0) o h(8) exp [9% _ VOA((;)}

= Comparing the prior's form with the likelihood, note that

" 1V, is like the number of "pseudo-observations”™ coming from the prior

. is the total sufficient statistics of the pseudo-observations (

/v er pseudo-obs
0
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The Posterior

" [he likelihood and prior were )
p(D|6) o exp [equ(D) . NA(@)] where (D) =3 6(x)

Assume its log partition 1 h(o lQT — A8 ]
0,70) X ex T0 120 .
function denoted as A (vg, 7o) P ) (6) exp (6) Posterior is also

. , from the same Happens when the
» The posterior p(0|D) o p(0)p(D|0) therefore will be family as the prior .| prior is conjugate
to the likelihood

Its log partition function will be T _
I oo partion urction wilbe |1 p(9]D) oc h(0) exp |0 (70 + 6(D)) — (vo + N)A(D)]

= Fvery exp family likelihood has a conjugate prior having the form above
= Posterior's hyperparams T, v obtained by adding “stuff” to prior's hyperparams

Number of pseudo-observations plus p Another equivalent form To = To/ Vo
number of actual observations o — VT N T 7o + ¢(D)
| , p(81D) o h(8) exp 67 (1o + N) — (0 + N)A(6)
Suff-stats of pseudo-obervations plus 749" ¢— 79 + QfJ(D) vo+ N
suff-stats of actual observations gl & Bl 3 = %
Convex comb of avg B voTo + N
suff-stats of pseudo T +—
vo + N CS772A: PML

obs and actual obs




Posterior Predictive Distribution

» Assume some training data D = {xq,...,xy} from some exp-fam distribution
= Assume some test data D' = {¥y,..., Xy} from the same distribution

" The posterior pred. distr. of D’

Exp. Fam. likelihood
w.rt. test data

p(D'1D) = [ p(D'10)p(01 D)0

Posterior (same form as the
prior due to conjugacy)

(>

c(vo+ N, 10+ ¢(D))| db

o

NI
= / [H h(i:)] exp [0T¢(D’) - N’A(O)] h(0) exp {9*(70 + #(D)) = (vo + N)A(H) —

W

constant w.r.t. 6

" This gets further simplified into

N

constant w.r.t. 6

- -

APIP) = [11 h(i')} """"" exp [Ad(o + N; 7o ¥ ¢(D))]

=~

exp [Ac(l/o + N, 70+ ¢(D))] CS772A: PML
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Posterior Predictive Distribution g

marginal likelihood has
closed form expression

*Since A, = logZ, or Z, = exp(A.) we can write the PPD as | "> working vith xp-

p(D'|D) = [H h(x;)

i=1

Z(vo + N+ N, 79 + o(D) + ¢(D"))
Z(vo + N, 70 + ¢(D))

] family distributions

i [H h(X; ] exp [Ac(vo + N+ N', 79 + ¢(D) + ¢(D')) — Ac(vo + N, 70 + ¢(D))]

» Therefore the posterior predictive is proportional to

= Ratio of two partition functions of two “posterior distributions” (one with N + N’ examples and
the other with N examples)

= Exponential of the difference of the corresponding log-partition functions

* Note that the form of Z. (and A.) will simply depend on the chosen conjugate prior

= Very useful result. Also holds for N = 0
= |n this case p(D’) = [ p(D’|0)p(8)db is simply the marginal likelihood of test data D’
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summary

" Exp. family distributions are very useful for modeling diverse types of data/parameters
= Conjugate priors to exp. family distributions make parameter updates very simple
= Other guantities such as posterior predictive can be computed in closed form

» Useful in designing generative classification models. Choosing class-conditional from
exponential family with conjugate priors helps in parameter estimation

= Useful in designing generative models for unsupervised learning

» Used in designing Generalized Linear Models: Model p(y|x) using exp. fam distribution
* Linear regression (with Gaussian likelihood) and logistic regression are GLMs

= Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs

sampling, and especially variational inference)
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Probabilistic Models for Classification

" Goal: Learn the conditional distribution (PMF) of discrete label y given input x

. p(y|x)
Will depend on some parameters
(not shown here for brevity) p (y ‘ x)
A discrete distribution, e.g., Bernoulli

y or multinoulli whose parameters will
depend on the inputs x

" [wo ways to learn this conditional distribution
= Discriminative Approach: Don't model the inputs x and directly define p(y|x)

» Generative Approach: Also model the inputs x and define p(y|x) as ———

' Prior probability . . ,
Note: Can also use it for of class y ak.a. “class-prior inputs from class y

regression if we can define B p ( X, y) . p (y) p (x | y) _ p (y) p (x | y) aka. “class-conditional

the joint p(x,y) and can
distribution

wenpoln - p(ylx) = = =
p(x) p(x) 2y b)p(x|y)

joint is Gaussian)

" Both discriminative and generative approaches can be learned via point
estimation or by using fully Bayesian inference
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There are other ways too that can convert
B y . the score into a probability, such as a CDF:
Logistic Regression 10 = L) = 0w e
the CDF of V'(0,1). This model is known as
"Probit Regression”.

= A discriminative model for binary classification (y € {0,1})
= A linear model with parameters w € RP computes a score w' x for input x
= A sigmoid function maps this real-valued score into probability of label being 1

1 _ exp(2)
1+exp(—2z) 1+ exp(2)

o(z) =
p(y =1lx,w) =pu=0w'x)

Large positive score w'x means

large prob of label being 1, and large
z .

real-valued score negative score means low prob

* Thus conditional distribution of label y € {0,1} given x is the following Bernoulli
Likelihood

exp(wTx) 17

1 1y
1+exp(w'x)| |1+ exp(wa)]

p(ylx,w) = Bernoulli[y|u] = u¥(1 — )77 = [

Can also use a sparsity-inducing prior, such as

= Can use a Gaussian prior on w: p(W|A1) = N (W|0, A1) | cioas o s covssine
=" Point estimation (MLE/MAP) for LR gives global optima (NLL is convex in w)
= We will mainly focus on fully Bayesian inference (computing the posterior)csz72a: pui



Logistic Regression: The Posterior

* The posterior will be o\
voa /

Gaussian Bernoulli Unfortunately, Gaussian and

Bernoulli are not conjugate 67»
p(w)p(y|X, W) p(W) H7I¥=1 p(yn|w, xn) with each other, so analytic

W| X , = = expression for the posterior

p( y) p(le) f p(W) ngl p(yn|w, xn) AW | can't be obtained unlike

Hyperparam 4 prob. linear regression

not shown o . o
' ' ' ' ther approx. inference metnods,

= Need to approximate the posterior in this case o e o e

" For now, we will use a simple approximation called Laplace approximation

Laplace approx: Approximates Wwvap = argmax log p(wly, X)

the intractable posterior by a
(Gaussian whose mean is the
MAP solution of the LR model

= arg max log p(y, w|X)
= argmin[— log p(y, w|X)]

First or second-order optimization

.. and the covariance matrix of this Gaussian is
methods can be used

set to the inverse of the Hessian matrix
vere S H = V’[-logp(y, w|X)]|
(second derivative) of the model's negative gpLy, N—
log-joint of params and data, evaluated at the
CS772A: PML
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Next Class

" | aplace approximation (contd)
" Bayesian logistic regression (contd)
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