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Exp. Family (Pitman, Darmois, Koopman, 1930s)

▪Defines a class of distributions. An Exponential Family distribution is of the form

▪ 𝒙 ∈ 𝒳𝑚 is the r.v. being modeled (𝒳 denotes some space, e.g., ℝ or {0,1}) 

▪ 𝜃 ∈ ℝ𝑑 : Natural parameters or canonical parameters defining the distribution

▪ 𝜙(𝒙) ∈ ℝ𝑑 : Sufficient statistics (another random variable)
▪ Why “sufficient”: 𝑝(𝑥|𝜃) as a function of 𝜃 depends on 𝒙 only via 𝜙(𝒙)

▪𝑍 𝜃 = ∫ ℎ 𝒙 exp 𝜃⊤𝜙 𝒙 𝑑𝒙: Partition Function

▪𝐴 𝜃 = log 𝑍(𝜃): Log-partition function (also called cumulant function)

▪ℎ(𝒙): A constant (doesn’t depend on 𝜃)
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Expressing a Distribution in Exp. Family Form

▪ Recall the form of exp-fam distribution 𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃

▪ To write any exp-fam dist 𝑝() in the above form, write it as exp(log 𝑝())

▪Now compare the resulting expression with the exponential family form

.. to identify the natural parameters, sufficient statistics, log-partition function, etc.
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(Univariate) Gaussian as Exponential Family

▪ Let’s try to write a univariate Gaussian in the exponential family form

▪ Recall the PDF of a univar Gaussian (already has exp, so less work needed :))
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Other Examples

▪Many other distribution belong to the exponential family
▪ Bernoulli

▪ Beta

▪ Gamma

▪ Multinoulli/Multinomial

▪ Dirichlet

▪ Multivariate Gaussian

▪ .. and many more ( https://en.wikipedia.org/wiki/Exponential_family )

▪Note: Not all distributions belong to the exponential family, e.g.,
▪ Uniform distribution (x ∼ Unif(a, b))

▪ Student-t distribution

▪ Mixture distributions (e.g., mixture of Gaussians)
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Log-Partition Function

▪ The log-partition function is 

▪𝐴(𝜃) is also called the cumulant function

▪ Derivatives of 𝐴(𝜃) can be used to generate the cumulants of the sufficient statistics

▪ Exercise: Assume 𝜃 to be a scalar (thus 𝜙(𝑥) is also scalar). Show that the first and 
the second derivatives of 𝐴(𝜃) are

▪ Above result also holds when 𝜃 and 𝜙(𝑥) are vector-valued (the “var” will be “covar”)

▪ Important: 𝐴(𝜃) is a convex function of 𝜃. Why?

6



CS772A: PML

MLE for Exponential Family Distributions

▪ Assume data 𝒟 = {𝑥1, . . . , 𝑥𝑁} drawn i.i.d. from an exp. family distribution

▪ To do MLE, we need the overall likelihood -- a product of the individual likelihoods

▪ To estimate 𝜃 (as we’ll see shortly), we only need

▪ Size of 𝜙 𝒟 = σ𝑖=1
𝑁 𝜙 𝑥𝑖 does not grow with 𝑁 (same as the size of each 𝜙 𝑥𝑖 )

▪ Only exponential family distributions have finite-sized sufficient statistics
▪ No need to store all the data; can simply update the sufficient statistics as data comes

▪ Useful in probabilistic inference with large-scale data sets and “online” parameter estimation
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MLE and Moment Matching

▪ The likelihood is of the form

▪ The log-likelihood is (ignoring constant w.r.t. 𝜃):

▪ This is concave in 𝜃 (since −𝐴(𝜃) is concave)
▪ Maximization (MLE solution) will yield a global maxima of 𝜃

▪ MLE for exp-fam distributions can also be seen as doing moment-matching

▪ Therefore, at the “optimal” (i.e., MLE) መ𝜃, we must have
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Expected moment

Empirical moment 

(computed using data)

Can thus solve for the 

MLE 𝜃 also by matching 

the expected and 

empirical moments
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Moment Matching: An Example

▪ Given data 𝒟 = {𝑥1, . . . , 𝑥𝑁} drawn i.i.d. from a univar Gaussian 𝑝 𝑥 = 𝒩 𝑥 𝜇, 𝜎2

▪ Since the “true”, i.e., expected moments:

▪ For a univariate Gaussian, note that
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Moment matching

Two equations, two 

unknowns (𝜇 and 𝜎2)

Same solution that 

we get by doing 

MLE
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Bayesian Inference for Expon. Family Distributions

▪ Already saw that the total likelihood given 𝑁 i.i.d. observations 𝒟 = {𝑥1, . . . , 𝑥𝑁}

▪ Let’s choose the following prior (note: looks similar in terms of 𝜃 within exp)

▪ Ignoring the prior’s log-partition function

▪ Comparing the prior’s form with the likelihood, note that
▪ 𝜈0 is like the number of “pseudo-observations” coming from the prior

▪ 𝜏0 is the total sufficient statistics of the pseudo-observations (𝜏0/ 𝜈0 per pseudo-obs)
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The Posterior

▪ The likelihood and prior were 

▪ The posterior                              therefore will be

▪ Every exp family likelihood has a conjugate prior having the form above

▪ Posterior’s hyperparams 𝜏0
′ , 𝜈0

′ obtained by adding “stuff” to prior’s hyperparams
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Posterior is also 

from the same 

family as the prior
Happens when the 

prior is conjugate 

to the likelihood

Number of pseudo-observations plus 

number of actual observations

Suff-stats of pseudo-obervations plus 

suff-stats of actual observations

Its log partition function will be 

𝐴𝑐(𝜈0 + 𝑁, 𝜏0 + 𝜙(𝒟))

Assume its log partition 

function denoted as 𝐴𝑐(𝜈0, 𝜏0)

Convex comb of avg

suff-stats of pseudo 

obs and actual obs

Another equivalent form
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Posterior Predictive Distribution

▪ Assume some training data 𝒟 = {𝑥1, . . . , 𝑥𝑁} from some exp-fam distribution

▪ Assume some test data 𝒟′ = {𝑥1, . . . , 𝑥𝑁′} from the same distribution

▪ The posterior pred. distr. of 𝒟′

▪ This gets further simplified into
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Exp. Fam. likelihood 

w.r.t. test data

Posterior (same form as the 

prior due to conjugacy)
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Posterior Predictive Distribution

▪ Since 𝐴𝑐 = log𝑍𝑐 or 𝑍𝑐 = exp(𝐴𝑐), we can write the PPD as

▪ Therefore the posterior predictive is proportional to
▪ Ratio of two partition functions of two “posterior distributions” (one with 𝑁 + 𝑁′ examples and 

the other with 𝑁 examples)

▪ Exponential of  the difference of the corresponding log-partition functions

▪ Note that the form of 𝑍𝑐 (and 𝐴𝑐) will simply depend on the chosen conjugate prior

▪ Very useful result. Also holds for 𝑁 = 0
▪ In this case                                         is simply the marginal likelihood of test data 𝒟′
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Thus PPD as well as 

marginal likelihood has 

closed form expression 

when working with exp-

family distributions
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Summary

▪ Exp. family distributions are very useful for modeling diverse types of data/parameters

▪ Conjugate priors to exp. family distributions make parameter updates very simple

▪ Other quantities such as posterior predictive can be computed in closed form

▪ Useful in designing generative classification models. Choosing class-conditional from 
exponential family with conjugate priors helps in parameter estimation

▪ Useful in designing generative models for unsupervised learning

▪ Used in designing Generalized Linear Models: Model 𝑝(𝑦|𝑥) using exp. fam distribution
▪ Linear regression (with Gaussian likelihood) and logistic regression are GLMs

▪ Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs 
sampling, and especially variational inference)
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Probabilistic Models for Classification

▪ Goal: Learn the conditional distribution (PMF) of discrete label 𝑦 given input 𝒙

▪ Two ways to learn this conditional distribution

▪Discriminative Approach: Don’t model the inputs 𝒙 and directly define 𝑝(𝑦|𝒙)

▪ Generative Approach: Also model the inputs 𝒙 and define 𝑝(𝑦|𝒙) as

▪ Both discriminative and generative approaches can be learned via point 
estimation or by using fully Bayesian inference
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𝑝(𝑦|𝒙)
A discrete distribution, e.g., Bernoulli 

or multinoulli whose parameters will 

depend on the inputs 𝒙

Will depend on some parameters 

(not shown here for brevity)

𝑝(𝑦|𝒙)

𝑝 𝑦 𝒙 =
𝑝(𝒙, 𝑦)

𝑝(𝒙)
=
𝑝(𝑦)𝑝(𝒙|𝑦)

𝑝(𝒙)
=

𝑝(𝑦)𝑝(𝒙|𝑦)

σ𝑦 𝑝(𝑦)𝑝(𝒙|𝑦)

Distribution of 

inputs from class 𝑦
Prior probability 

of class 𝑦

a.k.a. “class-conditional” 

distribution

a.k.a. “class-prior”Note: Can also use it for 

regression if  we can define 

the joint 𝑝(𝒙, 𝑦) and can 

obtain 𝑝 𝑦 𝒙 from that 

joint (usually easy if  the 

joint is Gaussian)  

𝑦
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Logistic Regression

▪ A discriminative model for binary classification (𝑦 ∈ {0,1})

▪ A linear model with parameters 𝒘 ∈ ℝ𝐷 computes a score 𝒘⊤𝒙 for input 𝒙

▪ A sigmoid function maps this real-valued score into probability of label being 1

▪ Thus conditional distribution of label 𝑦 ∈ {0,1} given 𝒙 is the following Bernoulli

▪ Can use a Gaussian prior on 𝒘: 𝑝 𝒘 𝜆 = 𝒩 𝒘|𝟎, 𝜆−1𝑰

▪ Point estimation (MLE/MAP) for LR gives global optima (NLL is convex in 𝒘)

▪We will mainly focus on fully Bayesian inference (computing the posterior)
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𝑝 𝑦 𝒙,𝒘 = Bernoulli 𝑦 𝜇 = 𝜇𝑦 1 − 𝜇 1−𝑦 =
exp 𝒘⊤𝒙

1 + exp 𝒘⊤𝒙

𝑦
1

1 + exp 𝒘⊤𝒙

1−𝑦

real-valued score

𝑝 𝑦 = 1 𝒙,𝒘 = 𝜇 = 𝜎 𝒘⊤𝒙 Large positive score 𝒘⊤𝒙 means 

large prob of label being 1, and large 

negative score means low prob

Likelihood

𝜎 𝑧 =
1

1 + exp(−𝑧)
=

exp(𝑧)

1 + exp(𝑧)

There are other ways too that can convert 

the score into a probability, such as a CDF:

𝑝 𝑦 = 1 𝒙,𝒘 = 𝜇 = Φ 𝒘⊤𝒙 where Φ is 

the CDF of 𝒩(0,1). This model is known as 

“Probit Regression”.

Can also use a sparsity-inducing prior, such as 

spike-and-slab or a scale-mixture of Gaussians
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Logistic Regression: The Posterior

▪ The posterior will be

▪Need to approximate the posterior in this case

▪ For now, we will use a simple approximation called Laplace approximation
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𝑝 𝒘 𝑿, 𝒚 =
𝑝 𝒘 𝑝(𝒚|𝑿,𝒘)

𝑝(𝒚|𝑿)
=

𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛)

∫ 𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛) 𝑑𝒘

BernoulliGaussian Unfortunately, Gaussian and 

Bernoulli are not conjugate 

with each other, so analytic 

expression for the posterior 

can’t be obtained unlike 

prob. linear regression

Other approx. inference methods, 

such as MCMC and VI later

Hyperparam 𝜆
not shown

Laplace approx: Approximates 

the intractable posterior by a 

Gaussian whose mean is the 

MAP solution of the LR model

.. and the covariance matrix of this Gaussian is 

set to the inverse of the Hessian matrix 

(second derivative) of the model’s negative 

log-joint of params and data, evaluated at the 

MAP solution

First or second-order optimization 

methods can be used
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Next Class

▪ Laplace approximation (contd)

▪ Bayesian logistic regression (contd)
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